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Abstract— Software Defined Networking (SDN) represents a 

new paradigm in networking that shifts the traditional 

architecture from a fully distributed model to a centralized one. 

The central principle is the separation of the data and control 

layers. The logic and intelligence of the control layer is moved to 

the controller, a software tool,  usually open source, used to 

develop, standardize, and manage network applications. It 

bridges the communication of network applications and the 

underlying infrastructure, providing programmable interfaces 

and other functionalities. In this work, the controllers Ryu, 

ONOS, OpenDalight and Floodlight were evaluated using the 

Mininet emulator and the iPerf tool. We focus on the Fat-tree  

topology, which is a complex topology widely used in data 

centers. The metrics taken are throughput, latency, and Jitter. 

The aim is to investigate and compare the performance of the 

four controllers, providing in-depth analysis and giving insights 

about their behavior and effectiveness. 

Keywords— Software defined networking, SDN controllers, 

performance evaluation, Fat-tree .  

I. INTRODUCTION  

These days, the huge volumes of data traffic needs impose 
the reconsideration of traditional network operations and 
demand innovative solutions to overcome limitations due to 
the scale of networks or variations in equipment. Software-
Defined Networking (SDN) is a promising approach on 
network implementation and unfolds new opportunities for 
solution deployment capable to handle such problems. 
Towards this objective, the SDN architecture a) separates the 
data plane and control plane providing respectively flexibility 
to the forwarding process and intelligence to the routing 
process [1], b) centralizes control of all the data plane 
elements [2].  

Network behavior is defined by the software that is 
accommodated on server(s) at a central point beyond the 
physical forwarding devices. In contrast with traditional 
networks, SDN is implemented on logically centralized  
topologies allowing for a global view of the network and 
providing central management of network resources and 
services [2]. Applications are running on an abstract and high 
level, communicate and interact through APIs overcoming the 
problems posed from multiple vendors’ networked devices 
[3]. These four main characteristics of SDN, programmability, 
centralized control, openness, and the decoupling of the data 
plane from the control plane enhance and simplify network 
functionality, addressing issues in regards to common network 

services such as routing, access control, traffic engineering, 
bandwidth management, QoS, energy efficiency, security, 
reliability and, enforced management policies. 

The SDN is vertically divided into three layers, namely an 
application layer, a control layer and a data layer as illustrated 
in Fig. 1. The data plane includes the network elements and 
uses the southbound interface for their communication with 
the control plane. OpenFlow is the most common standard to 
serve this type of communications [4]. The application plane 
accommodates for SDN applications and establishes their 
instructions or communication requirements with the control 
plane using the northbound interface.  

The control plane is the core of the SDN architecture. It is 
placed between the other two planes and is responsible of 
processing application requests and the exertion of low-level 
control over the underlying network devices. All tasks 
(routing, topology discovery, load balancing) relative to the 
control plane are allocated to a software component, called 
SDN controller. It is a centralized or decentralized application 
running on one or more servers. The controller aggregates all 
the network intelligence while having authority to allow for 
centralized management and control, automation, and policy 
enforcement in physical and virtual network environments. It 
has the responsibility to manage data forwarding in the 
infrastructure. The key factor of success in this complex task, 
is the performance in terms of throughput, latency, and jitter. 
However, as there is a plentitude of open-source available 
controllers, choosing the optimum requires intense work [5], 
[6].  

The companies and organizations, acting in data centers 
domain, expect benefits from the adoption of SDN and are 
working together towards its development. In data centers, 
cheap and commodity switches form complex topologies 
(e.g., Fat-tree) over which SDN controllers manage the traffic. 

In this work, we demonstrate a comparative study of the 
following selected SDN controllers: ONOS, Ryu, Floodlight 
and OpenDaylight. We address their performance on Fat-tree 
topologies, which wide used in data center. 

The contribution of this work is (a) a thorough 
investigation of four different SDN controllers, (b) an 
experimental comparative study using as key performance 
indicators, throughput, latency, and jitter and finally (c) an 
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evaluation of controllers’ behavior on real world topologies 
used in data center.  

The remainder of this paper is organized as follows: In 
Section II, we review the related literature on the topic of SDN 
controller comparison. In Section III, we describe the 
background of the compared controllers. In Section IV, we 
present the methodology and evaluation framework. In 
Section V, we present the simulations conducted and discuss 
the results achieved. Finally, in Section VI, we conclude this 
work and discuss future work. 

II. RELATED WORK 

Having recognized the importance of SDN controllers, the 
research community is often engaged in comparative studies 
of them. For example, Zhu et al. [7] made a qualitative 
comparison of 34 controllers acknowledging how software 
aging, controller placement and benchmarking tools impact 
the reliability of performance metrics. According to their 
research and considering latency and throughput, multi-
threaded controllers, including centralized and distributed 
ones (e.g., Floodlight, OpenDaylight and ONOS) perform 
better than single-threaded (e.g., Ryu) and are more suitable 
for complex environments. 

OpenDaylight and ONOS are the two most popular SDN 
controllers  used for evaluation from  researchers. According 
to their benchmarking, ONOS outperforms in terms of burst 
rate, throughput, round trip time (RTT) and bandwidth, GUI, 
clusters, link-up, switch-up, while OpenDaylight performs 
better in regards of topology discovery and stability [5], [8]. 
Li et al. [9] make a point that different controllers have 
different advantages and characteristics and thus selection 
needs to consider specific application scenarios. They 
employed the Mininet emulator and qperf tools with VMware 
Workstation as the underlying virtualization platform to show 
how Floodlight clearly outperforms Ryu based on bandwidth 
and latency. 

Lunagariya et al. [10] have compared the performance of 
several controllers including Ryu, OpenDaylight, Floodlight 
and ONOS, while others[11], [12] focus exactly on these 
controllers. All four controllers support multithreading, 
virtualization and TLS and are available with REST APIs. By 
employing the Mininet emulator, iPerf and ping tools 
considering throughput, jitter and latency, on different 

network topologies (linear, tree and mesh) with varying 
number of connections, researchers conclude on different 
results about the controller with the best performance. 

Bispo et al. [13], focus on 2 Python based controllers 
(POX & Ryu) and 2 Java based controllers (OpenDaylight & 
ONOS). They used Cbench in both latency and throughput 
mode. Their qualitative comparison was based on i) interface 
versatility, ii) GUI, iii) REST API, iv) programming language 
v) OpenFlow support, modularity, vi) multithreading support 
and vii) documentation and showed OpenDaylight and ONOS 
as the most feature rich controllers of the four. The authors 
experimental setup utilized Openstack Icehouse and the KVM 
hypervisor and their results favour OpenDaylight in most 
cases with ONOS following close by. 

All the aforementioned studies do not give a clear picture 
of the performance of SDN controllers and are mainly limited 
to simplified topologies. In contrast, our work investigates the 
behavior of SDN controllers and tries to shed light on their 
performance in real-world topologies such as Fat-tree used in 
data centers, which is not entirely present in terms of 
analytical benchmarking in any other work. 

III. STATE-OF THE ART OF SDN CONTROLLERS 

Although each SDN controller consists of two key 
components the core and the interfaces, however, there are 
many implementations that differ in the way they are deployed 
(e.g., programming language), the number and type of module 
and the capabilities. Among them ONOS, Ryu, Floodlight and 
OpenDaylight are the four of the most well-known controllers. 
All these controllers are open source. Before continuing with 
the comparative study, we briefly present  them. 

A. Ryu 

Ryu [14] is a SDN controller fully written in python and 
supported by Nippon Telegraph and Telephone (NTT). Its 
design is based on components aiming to the improvement of 
network agility. Communication down to the data plane and 
up to management applications is supported by the 
southbound and the northbound REST APIs respectively. 
Using various protocols, such as Netconf and OpenFlow, Ryu 
directs the actions of the forwarding plane in line with the 
rules and policies of management applications [15]. The Ryu 
controller supports all versions of  the OpenFlow protocol (1.0 
to 1.5). The component-based approach facilitates the quick 
and easy development as it allows the modification of existing 
components or the addition of new ones. It is a centralized 
controller, available under the Apache 2.0 license model and 
supports multi-threading functionalities. 

B. ONOS 

ONOS [16] is a Java based SDN controller developed in 
2012 under the Apache 2.0 license. It works in a distributed 
fashion and supports multi-threading. It services 
communications using REST and Neutron northbound and 
southbound APIs based on OpenFlow version 1.0 and 1.3. It 
also provides eastbound and westbound APIs for inter-
controller traffic with the Raft protocol. It offers command  
line interface and graphical user interface both simplifying the 
interaction with users towards configuration or deployment of 
new services. ONOS comes with high modularity, 
extensibility and consistency focusing on scalability and high 
performance [17]. 

 
Fig. 1. The general architecture of SDN  
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C. OpenDaylight 

OpenDaylight [18] is also a Java based controller, with 
distributed architecture and multi-threading support that 
appeared in 2013. OpenDaylight utilizes the REST, 
NETCONE, XMPP, and RESTCONF APIs to communicate 
with all available interfaces. It is distinguished from other 
controllers for the plethora of southbound interfaces that it 
supports. OpenFlow 1.0 and 1.3 assists switch-controller 
traffic while Akka or Raft supports inter-controller traffic [7]. 
OpenDaylight is available under the EPL 1.0 license and 
provides command line and graphical user interface. It utilizes 
OSGi bundles which can be deployed as Apache Karaf 
components. ODL provides various "features" that support 
several functionalities (e.g., DLUX supports  graphical user-
friendly topology representation). 

D.  Floodlight 

Floodlight [19] is a Java - implemented, centralized 
controller first developed in 2014. It belongs to the centralized 
SDN controllers and offers multi-threading support. 
Communications with the other two planes is supported by 
REST,  RPC, Java, and Quantum for the northbound API and  
OpenFlow 1.0 and 1.3 for the southbound API. It offers 
command line and web user interface and provides fair 
modularity and good consistency. 

IV. THE COMPARATIVE FRAMEWORK 

A. Methodology  

In this work, the four principles of comparative evaluation 
have been adopted [20]: a) select the controllers for 
comparison, b) decide the level and scope of comparison c) 
define the criteria and metrics that we use as key performance 
indicators d) conduct performance analysis and analyze the 
findings.  

B. The compared controllers 

For this study, we have chosen four different SDN 
controllers: ONOS, Ryu, Floodlight and OpenDaylight. Our 
decision is driven by the popularity and the ranking of these 
controllers according to the research literature [6], [21], [22]. 
We evaluate the latest stable versions of SDN controllers 
except from OpenDaylight. In particular, we used ONOS 
version 2.2 [16], Ryu version 4.34 [14], Floodlight version 
v1.2 [18] and finally an older version of OpenDaylight, 
namely Carbon 0.6.4[18]. We chose the Carbon version as 
newer versions of OpenDaylight do not provide the L2 
switching application necessary for MAC address learning. 

C. The level  and scope of comparison 

We investigate the effectiveness of controllers in regard to 
TCP traffic in data centers. TCP traffic occupies 99.91% of 
the traffic in data centers [23]. It is consisted of long flows 

which are throughput sensitive and queries and small 
messages which are delay sensitive. Supposing the same 
network environment we examine the response of each 
controller for similar cases. All controllers utilize the 
OpenFlow protocol to establish the flow setup process to meet 
the needs for data forwarding. However, it is possibly the 
source of performance issues (bottleneck, latency) [24]. 

D. Evaluation framework 

1) Topologies (Fat-tree  topology) 
Network topology defines the arrangement of network 

components and their interconnection (links) to each other. 
The most common topology in data centers is the Fat-tree  
topology.  

The traditional data center topology is formed by 3 layers, 
namely core (the root), aggregation (the middle ) and access 
(the lowest) layer. The access layer connects the end-devices 
hosts or servers to the network. The most common data center 
topology is the Fat-tree topology. It is used to interconnect 
many cheap commodity switches to establish communication 
in large-scale data networks. A crucial factor of Fat-tree 
topology deployment is the k parameter, which determines the 
number of supported ports of each switch. A k-ary Fat-tree 
topology is formed by k-port switches. Apart from the core 
layer switches, the others are grouped in k different subsets, 
named pods. Each pod also has k interconnected switches and 
an equal number for uplinks and downlinks. The Fat-tree 
topology is an economical and highly scalable solution for 
data centers [25]. The Fat-tree topology provides high 
availability through multiple (depending on the k factor) 
equal-cost paths from the aggregation layer to the access layer. 
This results in fast, deterministic convergence in the event of 
a link or node failure. Fig. 2 illustrates an example of Fat-tree 
topology.  

2) Performance Metrics 
For this comparative study, we define and capture the 

following performance metrics:  

• Latency: Is the sum of the delays introduced by the 
controller, switches, and transmission links. We took 
latency measures using ping which measures the 
round trip time (RTT) between two communication 
end-point. RTT is defined as the time elapsed from the 
packet departure for a destination and back to the 

 
Fig. 2. A k-ary Fat-tree topology (k = 4) 

 
Fig. 3.Various fat tree topologies implemented with k-port switches 

(k = [4, 6, 8, 10]) as are represented by GUI of OpenDaylight. controller. 
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sender. In the Fat-tree topology, the latency is slightly 
increased due to the lookup process in the switches 
routing tables with the size depended on the k 
parameter. Fluctuations in RTT indicate possible 
congestion on the communication network. We 
considered the RTT as the average of the n 
consequent estimations (RTTi) taken by the ping tool 
[26]. 

 RTT=(1/n) RTTi  (1) 

• Throughput: it is defined as the volume of transmitted 
data over a certain time slot between two nodes. In 
relevance to TCP traffic and using the client - server 
model the throughput is obtained by the following 
formula: 

 Throughput= Windowsize/RTT (2) 

 where RTT is the minimum RTT value.  

• Jitter: is defined as the time difference of arrival of 
consecutive packets at the end point of 
communication. Jitter is representative metric of RTT 
variability. Jitter affects the quality of services and the 
decisions of the controller on how to route flows [27]. 
Let Ti the arrival time of the packet i, then, the jitter 
for n consequent packet is calculated as [28]: 

 ������ =  
∑ 	
�

�


 (3) 

3) Use cases  
Our study focusses on custom topologies and more 

specifically we use Fat-tree topologies for various degrees of 
branching (k factor). Table I summarizes the use cases for 
carrying out the experiments. Metrics are obtained for various 
paths of traffic flows between end-hosts. Here we present the 
following scenarios for communication: 

• Scenario 1: two hosts located in the same pod 

• Scenario 2: two hosts located in adjacent pods 

• Scenario 3: two hosts located in furthest pods 

TABLE I.  THE NETORK TOPOLOGY SETTINGS FOR FAT-TREE 

k 
Fat-tree  topology 

Number of switches Number of hosts 

4 20 16 

6 45 54 

8 80 128 

10 125 250 

TABLE II.  SELECTED HOSTS FOR EXPERIMENTS 

k 
Scenario 1 Scenario 2 Scenario 3 

Server Client Server Client Server Client 

4 h1 h4 h1 h8 h1 H16 

6 h1 h6 h1 h12 h1 H54 

8 h1 h8 h1 h16 h1 H128 

10 h1 h10 h1 h20 h1 H250 

We apply all these scenarios for each topology using the 
client-server model for TCP communication. Table II details 
the test scenarios. 

V. PERFORMANCE EVALUATION  

A. The experimental environment  

The experiments were conducted on a Desktop PC with 
the following technical specifications: AMD Ryzen 5 3600 6-
Core Processor at 3.60 GHz, 16GB RAM, and 64 bit operating 
system.  

The controllers’ software was installed on an Ubuntu 
20.04.4 virtual machine. Oracle VM VirtualBox was used for 
the virtual machine. The emulator tool Mininet [29] was used 
for the virtual network topology creation while for the 
measurements iPerf and ping tools are used. IPerf is a network 
tool that generates TCP or UDP traffic. Using the iPerf tool, 
the maximum bandwidth (throughput) that a controller can 
maintain is measured. IPerf is capable of measuring 10Gbps 
connections and higher, as it has the ability to perform 
multiple connections simultaneously.  

Comparative evaluation of controllers' performance is 
carried out through deployment of k sized topologies where k 
is valued between 4 and 10. This is followed by benchmarking 
for TCP throughput, latency (or average delay) and jitter. The 
process is conducted by iterating through the steps below: 

• The controller is initiated. The controller runs on port 
6633 or 6653. In every instance only the evaluated 
controller is running.  

• Using Mininet a Fat-tree  topology is deployed. 
Mininet is remotely connected to the running 
controller using the controller’s IP and port.   

• The benchmarking tests are carried out and the 
metrics are obtained. 

B. Latency Comparison  

For the scenarios described above, we obtained the latency 
for each controller and compare the results using the ping 
network tool. Fig. 5 depicts the measurements collected. The 
results reveal an increase in delay for the Ryu, ODL and 
Floodlight controllers which is proportional to both the k 
parameter and the distance between the two nodes. The Ryu 
controller overperforms the others as it shows the lowest delay 
with Floodlight following. Surprisingly, ONOS' benchmarks 
produce high latency metrics for a k-ary topology where k 
equals to 6. Looking at the analytical metrics in these specific 
cases we observe that the increase in latency is due to Initial 
Ping Delay (IPD). IPD is the time consumed by the SDN 
controller to modify the flow table when the first packet of 
ping is sent. 

C. Throughput Comparison  

Throughput is evaluated using iPerf and conducting tests 
between two host (client and server) as mentioned in Table II. 
For example, in the first use case and scenario 1, on a 4-ary 
Fat-tree topology (k=4), hosts h1 and h4 exchange TCP 
messages. Fig. 5 shows the TCP throughput versus Fat-tree  
branching (k factor). More specifically, Fig. 5(a) presents the 
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measurement throughput between nodes in the same pod for 
all controllers grouped by a factor of k. Likewise,  Fig. 5(b) 
shows the throughput between adjacent pods, and  Fig. 5(c) 
the throughput between farthest pods. Focusing on Fig. 5 (a), 
it can observed that the overall throughput performance of the 
controllers decreases slightly as the k factor increases. Fig. 
5(b) and 5(c) demonstrate a throughput decrease as the 
distance between the two nodes increases. OpenDaylight 
behavior is noticeable due to its stability related to node 
distance and diminishing performance as the k factor 
increases. 

D. Jitter Comparison  

Jitter is also measured using the ping tool. Fig. 6  
represents the time variation at average, as it is calculated by 
using the formula (3). All controllers display acceptable jitter 
values since it ranges up to 2ms and do not impact negatively 
the quality of services. The ODL and Ryu controllers have the 
lower jitter while Floodlight exhibits slightly higher values. 
The last place in the ranking is occupied by the ONOS. It has 
a high average value of 2,1ms if the two hosts are not in the 

same pod and k = 6 which could imply congestion for ONOS 
under specific types of networks.   

E. Result Analysis  

In this study, we compared the performance of ONOS, 
RYU, Floodlight and OpenDaylight in terms of Latency, 
Throughput, and Jitter. For this purpose, we created complex 
topologies, resembling real-world networks, as Fat-tree  
topologies which is used in data centers, using Mininet.   

With the throughput tests, we found that Ryu in general 
outperforms the other controllers and OpenDaylight is unable 
to achieve as good a performance  in large scale topologies as 
the other controllers. This was also observed in [20],[29],[31], 
by the authors.  

At the same time for small deployments OpenDaylight 
exhibits optimal throughput, latency, and jitter. As 
OpenDaylight exhibits low jitter regardless of network size, its 
behavior indicates it could be better suited for quality of service 
oriented network applications such as VoIP.  

 
(a)     (b)         (c) 

Fig. 4. The experimental results for topology throughput when the two hosts located at  (a) same pod, (b) adjacent pods and (c) farthest pods 

 
(a)     (b)         (c) 

Fig. 6. The experimental results for topology jitter when the two hosts located at  (a) same pod, (b) adjacent pods and (c) farthest pods 

 
(a)     (b)         (c) 

Fig. 5. The experimental results for topology latency when the two hosts located at  (a) same pod, (b) adjacent pods and (c) farthest pods 
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ONOS’s metrics on latency and jitter for k equal to 6 is an 
indication of how the topology can impact controller 
performance.  

VI. CONCLUSION AND FUTURE WORK 

We have conducted a comparative study on four well-
known controllers: ONOS, OpenDaylight, Floodlight and 
Ryu. Using the Mininet emulator and common network tools 
(iPerf and ping) as our means, we experimentally investigated 
the performance of these controllers in terms of throughput, 
average latency and jitter on size variations of the Fat-tree 
topology 

We have observed that controller election clearly impacts 
network performance and care must be taken to ensure the 
optimal solution depending on the specifics of each network 
deployment. 

Our future work is planned to carry out more in-depth 
investigation on the controllers and its behavior using more 
specific tools and metrics.  
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