

On the Performance of SDN Controllers in Real

World Topologies

Ioannis Koulouras

Dept. Informatics &

Telecommunications

University of Ioannina

Arta, Greece
koulouras.iwannis@gmail.com

Spiridoula V. Margariti.

Dept. Informatics &

Telecommunications

University of Ioannina

Arta, Greece
smargar@uoi gr

Ilias Bobotsaris

Dept. Informatics &

Telecommunications

University of Ioannina

Arta, Greece
i.bobotsaris @uoi.gr .

Eleftherios Stergiou

Dept. Informatics & Telecommunications

University of Ioannina

Arta, Greece
ster@uoi.gr

Chrysostomos Stylios

Dept. Informatics & Telecommunications

University of Ioannina

Arta, Greece
stylios@uoi.gr

Abstract— Software Defined Networking (SDN) represents a

new paradigm in networking that shifts the traditional

architecture from a fully distributed model to a centralized one.

The central principle is the separation of the data and control

layers. The logic and intelligence of the control layer is moved to

the controller, a software tool, usually open source, used to

develop, standardize, and manage network applications. It

bridges the communication of network applications and the

underlying infrastructure, providing programmable interfaces

and other functionalities. In this work, the controllers Ryu,

ONOS, OpenDalight and Floodlight were evaluated using the

Mininet emulator and the iPerf tool. We focus on the Fat-tree

topology, which is a complex topology widely used in data

centers. The metrics taken are throughput, latency, and Jitter.

The aim is to investigate and compare the performance of the

four controllers, providing in-depth analysis and giving insights

about their behavior and effectiveness.

Keywords— Software defined networking, SDN controllers,

performance evaluation, Fat-tree .

I. INTRODUCTION

These days, the huge volumes of data traffic needs impose
the reconsideration of traditional network operations and
demand innovative solutions to overcome limitations due to
the scale of networks or variations in equipment. Software-
Defined Networking (SDN) is a promising approach on
network implementation and unfolds new opportunities for
solution deployment capable to handle such problems.
Towards this objective, the SDN architecture a) separates the
data plane and control plane providing respectively flexibility
to the forwarding process and intelligence to the routing
process [1], b) centralizes control of all the data plane
elements [2].

Network behavior is defined by the software that is
accommodated on server(s) at a central point beyond the
physical forwarding devices. In contrast with traditional
networks, SDN is implemented on logically centralized
topologies allowing for a global view of the network and
providing central management of network resources and
services [2]. Applications are running on an abstract and high
level, communicate and interact through APIs overcoming the
problems posed from multiple vendors’ networked devices
[3]. These four main characteristics of SDN, programmability,
centralized control, openness, and the decoupling of the data
plane from the control plane enhance and simplify network
functionality, addressing issues in regards to common network

services such as routing, access control, traffic engineering,
bandwidth management, QoS, energy efficiency, security,
reliability and, enforced management policies.

The SDN is vertically divided into three layers, namely an
application layer, a control layer and a data layer as illustrated
in Fig. 1. The data plane includes the network elements and
uses the southbound interface for their communication with
the control plane. OpenFlow is the most common standard to
serve this type of communications [4]. The application plane
accommodates for SDN applications and establishes their
instructions or communication requirements with the control
plane using the northbound interface.

The control plane is the core of the SDN architecture. It is
placed between the other two planes and is responsible of
processing application requests and the exertion of low-level
control over the underlying network devices. All tasks
(routing, topology discovery, load balancing) relative to the
control plane are allocated to a software component, called
SDN controller. It is a centralized or decentralized application
running on one or more servers. The controller aggregates all
the network intelligence while having authority to allow for
centralized management and control, automation, and policy
enforcement in physical and virtual network environments. It
has the responsibility to manage data forwarding in the
infrastructure. The key factor of success in this complex task,
is the performance in terms of throughput, latency, and jitter.
However, as there is a plentitude of open-source available
controllers, choosing the optimum requires intense work [5],
[6].

The companies and organizations, acting in data centers
domain, expect benefits from the adoption of SDN and are
working together towards its development. In data centers,
cheap and commodity switches form complex topologies
(e.g., Fat-tree) over which SDN controllers manage the traffic.

In this work, we demonstrate a comparative study of the
following selected SDN controllers: ONOS, Ryu, Floodlight
and OpenDaylight. We address their performance on Fat-tree
topologies, which wide used in data center.

The contribution of this work is (a) a thorough
investigation of four different SDN controllers, (b) an
experimental comparative study using as key performance
indicators, throughput, latency, and jitter and finally (c) an

978-1-6654-7334-7/22/1.00 ©2022 IEEE 143

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 N

et
w

or
k

Fu
nc

tio
n

Vi
rt

ua
liz

at
io

n
an

d
So

ft
w

ar
e

De
fin

ed
 N

et
w

or
ks

 (N
FV

-S
DN

) |
 9

78
-1

-6
65

4-
73

34
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

N
FV

-S
DN

56
30

2.
20

22
.9

97
47

19

Authorized licensed use limited to: University of Ioannina. Downloaded on February 15,2024 at 09:09:15 UTC from IEEE Xplore. Restrictions apply.

evaluation of controllers’ behavior on real world topologies
used in data center.

The remainder of this paper is organized as follows: In
Section II, we review the related literature on the topic of SDN
controller comparison. In Section III, we describe the
background of the compared controllers. In Section IV, we
present the methodology and evaluation framework. In
Section V, we present the simulations conducted and discuss
the results achieved. Finally, in Section VI, we conclude this
work and discuss future work.

II. RELATED WORK

Having recognized the importance of SDN controllers, the
research community is often engaged in comparative studies
of them. For example, Zhu et al. [7] made a qualitative
comparison of 34 controllers acknowledging how software
aging, controller placement and benchmarking tools impact
the reliability of performance metrics. According to their
research and considering latency and throughput, multi-
threaded controllers, including centralized and distributed
ones (e.g., Floodlight, OpenDaylight and ONOS) perform
better than single-threaded (e.g., Ryu) and are more suitable
for complex environments.

OpenDaylight and ONOS are the two most popular SDN
controllers used for evaluation from researchers. According
to their benchmarking, ONOS outperforms in terms of burst
rate, throughput, round trip time (RTT) and bandwidth, GUI,
clusters, link-up, switch-up, while OpenDaylight performs
better in regards of topology discovery and stability [5], [8].
Li et al. [9] make a point that different controllers have
different advantages and characteristics and thus selection
needs to consider specific application scenarios. They
employed the Mininet emulator and qperf tools with VMware
Workstation as the underlying virtualization platform to show
how Floodlight clearly outperforms Ryu based on bandwidth
and latency.

Lunagariya et al. [10] have compared the performance of
several controllers including Ryu, OpenDaylight, Floodlight
and ONOS, while others[11], [12] focus exactly on these
controllers. All four controllers support multithreading,
virtualization and TLS and are available with REST APIs. By
employing the Mininet emulator, iPerf and ping tools
considering throughput, jitter and latency, on different

network topologies (linear, tree and mesh) with varying
number of connections, researchers conclude on different
results about the controller with the best performance.

Bispo et al. [13], focus on 2 Python based controllers
(POX & Ryu) and 2 Java based controllers (OpenDaylight &
ONOS). They used Cbench in both latency and throughput
mode. Their qualitative comparison was based on i) interface
versatility, ii) GUI, iii) REST API, iv) programming language
v) OpenFlow support, modularity, vi) multithreading support
and vii) documentation and showed OpenDaylight and ONOS
as the most feature rich controllers of the four. The authors
experimental setup utilized Openstack Icehouse and the KVM
hypervisor and their results favour OpenDaylight in most
cases with ONOS following close by.

All the aforementioned studies do not give a clear picture
of the performance of SDN controllers and are mainly limited
to simplified topologies. In contrast, our work investigates the
behavior of SDN controllers and tries to shed light on their
performance in real-world topologies such as Fat-tree used in
data centers, which is not entirely present in terms of
analytical benchmarking in any other work.

III. STATE-OF THE ART OF SDN CONTROLLERS

Although each SDN controller consists of two key
components the core and the interfaces, however, there are
many implementations that differ in the way they are deployed
(e.g., programming language), the number and type of module
and the capabilities. Among them ONOS, Ryu, Floodlight and
OpenDaylight are the four of the most well-known controllers.
All these controllers are open source. Before continuing with
the comparative study, we briefly present them.

A. Ryu

Ryu [14] is a SDN controller fully written in python and
supported by Nippon Telegraph and Telephone (NTT). Its
design is based on components aiming to the improvement of
network agility. Communication down to the data plane and
up to management applications is supported by the
southbound and the northbound REST APIs respectively.
Using various protocols, such as Netconf and OpenFlow, Ryu
directs the actions of the forwarding plane in line with the
rules and policies of management applications [15]. The Ryu
controller supports all versions of the OpenFlow protocol (1.0
to 1.5). The component-based approach facilitates the quick
and easy development as it allows the modification of existing
components or the addition of new ones. It is a centralized
controller, available under the Apache 2.0 license model and
supports multi-threading functionalities.

B. ONOS

ONOS [16] is a Java based SDN controller developed in
2012 under the Apache 2.0 license. It works in a distributed
fashion and supports multi-threading. It services
communications using REST and Neutron northbound and
southbound APIs based on OpenFlow version 1.0 and 1.3. It
also provides eastbound and westbound APIs for inter-
controller traffic with the Raft protocol. It offers command
line interface and graphical user interface both simplifying the
interaction with users towards configuration or deployment of
new services. ONOS comes with high modularity,
extensibility and consistency focusing on scalability and high
performance [17].

Fig. 1. The general architecture of SDN

144

Authorized licensed use limited to: University of Ioannina. Downloaded on February 15,2024 at 09:09:15 UTC from IEEE Xplore. Restrictions apply.

C. OpenDaylight

OpenDaylight [18] is also a Java based controller, with
distributed architecture and multi-threading support that
appeared in 2013. OpenDaylight utilizes the REST,
NETCONE, XMPP, and RESTCONF APIs to communicate
with all available interfaces. It is distinguished from other
controllers for the plethora of southbound interfaces that it
supports. OpenFlow 1.0 and 1.3 assists switch-controller
traffic while Akka or Raft supports inter-controller traffic [7].
OpenDaylight is available under the EPL 1.0 license and
provides command line and graphical user interface. It utilizes
OSGi bundles which can be deployed as Apache Karaf
components. ODL provides various "features" that support
several functionalities (e.g., DLUX supports graphical user-
friendly topology representation).

D. Floodlight

Floodlight [19] is a Java - implemented, centralized
controller first developed in 2014. It belongs to the centralized
SDN controllers and offers multi-threading support.
Communications with the other two planes is supported by
REST, RPC, Java, and Quantum for the northbound API and
OpenFlow 1.0 and 1.3 for the southbound API. It offers
command line and web user interface and provides fair
modularity and good consistency.

IV. THE COMPARATIVE FRAMEWORK

A. Methodology

In this work, the four principles of comparative evaluation
have been adopted [20]: a) select the controllers for
comparison, b) decide the level and scope of comparison c)
define the criteria and metrics that we use as key performance
indicators d) conduct performance analysis and analyze the
findings.

B. The compared controllers

For this study, we have chosen four different SDN
controllers: ONOS, Ryu, Floodlight and OpenDaylight. Our
decision is driven by the popularity and the ranking of these
controllers according to the research literature [6], [21], [22].
We evaluate the latest stable versions of SDN controllers
except from OpenDaylight. In particular, we used ONOS
version 2.2 [16], Ryu version 4.34 [14], Floodlight version
v1.2 [18] and finally an older version of OpenDaylight,
namely Carbon 0.6.4[18]. We chose the Carbon version as
newer versions of OpenDaylight do not provide the L2
switching application necessary for MAC address learning.

C. The level and scope of comparison

We investigate the effectiveness of controllers in regard to
TCP traffic in data centers. TCP traffic occupies 99.91% of
the traffic in data centers [23]. It is consisted of long flows

which are throughput sensitive and queries and small
messages which are delay sensitive. Supposing the same
network environment we examine the response of each
controller for similar cases. All controllers utilize the
OpenFlow protocol to establish the flow setup process to meet
the needs for data forwarding. However, it is possibly the
source of performance issues (bottleneck, latency) [24].

D. Evaluation framework

1) Topologies (Fat-tree topology)
Network topology defines the arrangement of network

components and their interconnection (links) to each other.
The most common topology in data centers is the Fat-tree
topology.

The traditional data center topology is formed by 3 layers,
namely core (the root), aggregation (the middle) and access
(the lowest) layer. The access layer connects the end-devices
hosts or servers to the network. The most common data center
topology is the Fat-tree topology. It is used to interconnect
many cheap commodity switches to establish communication
in large-scale data networks. A crucial factor of Fat-tree
topology deployment is the k parameter, which determines the
number of supported ports of each switch. A k-ary Fat-tree
topology is formed by k-port switches. Apart from the core
layer switches, the others are grouped in k different subsets,
named pods. Each pod also has k interconnected switches and
an equal number for uplinks and downlinks. The Fat-tree
topology is an economical and highly scalable solution for
data centers [25]. The Fat-tree topology provides high
availability through multiple (depending on the k factor)
equal-cost paths from the aggregation layer to the access layer.
This results in fast, deterministic convergence in the event of
a link or node failure. Fig. 2 illustrates an example of Fat-tree
topology.

2) Performance Metrics
For this comparative study, we define and capture the

following performance metrics:

• Latency: Is the sum of the delays introduced by the
controller, switches, and transmission links. We took
latency measures using ping which measures the
round trip time (RTT) between two communication
end-point. RTT is defined as the time elapsed from the
packet departure for a destination and back to the

Fig. 2. A k-ary Fat-tree topology (k = 4)

Fig. 3.Various fat tree topologies implemented with k-port switches

(k = [4, 6, 8, 10]) as are represented by GUI of OpenDaylight. controller.

145

Authorized licensed use limited to: University of Ioannina. Downloaded on February 15,2024 at 09:09:15 UTC from IEEE Xplore. Restrictions apply.

sender. In the Fat-tree topology, the latency is slightly
increased due to the lookup process in the switches
routing tables with the size depended on the k
parameter. Fluctuations in RTT indicate possible
congestion on the communication network. We
considered the RTT as the average of the n
consequent estimations (RTTi) taken by the ping tool
[26].

 RTT=(1/n) RTTi (1)

• Throughput: it is defined as the volume of transmitted
data over a certain time slot between two nodes. In
relevance to TCP traffic and using the client - server
model the throughput is obtained by the following
formula:

 Throughput= Windowsize/RTT (2)

 where RTT is the minimum RTT value.

• Jitter: is defined as the time difference of arrival of
consecutive packets at the end point of
communication. Jitter is representative metric of RTT
variability. Jitter affects the quality of services and the
decisions of the controller on how to route flows [27].
Let Ti the arrival time of the packet i, then, the jitter
for n consequent packet is calculated as [28]:

 ������ =
∑ 	
�

�

 (3)

3) Use cases
Our study focusses on custom topologies and more

specifically we use Fat-tree topologies for various degrees of
branching (k factor). Table I summarizes the use cases for
carrying out the experiments. Metrics are obtained for various
paths of traffic flows between end-hosts. Here we present the
following scenarios for communication:

• Scenario 1: two hosts located in the same pod

• Scenario 2: two hosts located in adjacent pods

• Scenario 3: two hosts located in furthest pods

TABLE I. THE NETORK TOPOLOGY SETTINGS FOR FAT-TREE

k
Fat-tree topology

Number of switches Number of hosts

4 20 16

6 45 54

8 80 128

10 125 250

TABLE II. SELECTED HOSTS FOR EXPERIMENTS

k
Scenario 1 Scenario 2 Scenario 3

Server Client Server Client Server Client

4 h1 h4 h1 h8 h1 H16

6 h1 h6 h1 h12 h1 H54

8 h1 h8 h1 h16 h1 H128

10 h1 h10 h1 h20 h1 H250

We apply all these scenarios for each topology using the
client-server model for TCP communication. Table II details
the test scenarios.

V. PERFORMANCE EVALUATION

A. The experimental environment

The experiments were conducted on a Desktop PC with
the following technical specifications: AMD Ryzen 5 3600 6-
Core Processor at 3.60 GHz, 16GB RAM, and 64 bit operating
system.

The controllers’ software was installed on an Ubuntu
20.04.4 virtual machine. Oracle VM VirtualBox was used for
the virtual machine. The emulator tool Mininet [29] was used
for the virtual network topology creation while for the
measurements iPerf and ping tools are used. IPerf is a network
tool that generates TCP or UDP traffic. Using the iPerf tool,
the maximum bandwidth (throughput) that a controller can
maintain is measured. IPerf is capable of measuring 10Gbps
connections and higher, as it has the ability to perform
multiple connections simultaneously.

Comparative evaluation of controllers' performance is
carried out through deployment of k sized topologies where k
is valued between 4 and 10. This is followed by benchmarking
for TCP throughput, latency (or average delay) and jitter. The
process is conducted by iterating through the steps below:

• The controller is initiated. The controller runs on port
6633 or 6653. In every instance only the evaluated
controller is running.

• Using Mininet a Fat-tree topology is deployed.
Mininet is remotely connected to the running
controller using the controller’s IP and port.

• The benchmarking tests are carried out and the
metrics are obtained.

B. Latency Comparison

For the scenarios described above, we obtained the latency
for each controller and compare the results using the ping
network tool. Fig. 5 depicts the measurements collected. The
results reveal an increase in delay for the Ryu, ODL and
Floodlight controllers which is proportional to both the k
parameter and the distance between the two nodes. The Ryu
controller overperforms the others as it shows the lowest delay
with Floodlight following. Surprisingly, ONOS' benchmarks
produce high latency metrics for a k-ary topology where k
equals to 6. Looking at the analytical metrics in these specific
cases we observe that the increase in latency is due to Initial
Ping Delay (IPD). IPD is the time consumed by the SDN
controller to modify the flow table when the first packet of
ping is sent.

C. Throughput Comparison

Throughput is evaluated using iPerf and conducting tests
between two host (client and server) as mentioned in Table II.
For example, in the first use case and scenario 1, on a 4-ary
Fat-tree topology (k=4), hosts h1 and h4 exchange TCP
messages. Fig. 5 shows the TCP throughput versus Fat-tree
branching (k factor). More specifically, Fig. 5(a) presents the

146

Authorized licensed use limited to: University of Ioannina. Downloaded on February 15,2024 at 09:09:15 UTC from IEEE Xplore. Restrictions apply.

measurement throughput between nodes in the same pod for
all controllers grouped by a factor of k. Likewise, Fig. 5(b)
shows the throughput between adjacent pods, and Fig. 5(c)
the throughput between farthest pods. Focusing on Fig. 5 (a),
it can observed that the overall throughput performance of the
controllers decreases slightly as the k factor increases. Fig.
5(b) and 5(c) demonstrate a throughput decrease as the
distance between the two nodes increases. OpenDaylight
behavior is noticeable due to its stability related to node
distance and diminishing performance as the k factor
increases.

D. Jitter Comparison

Jitter is also measured using the ping tool. Fig. 6
represents the time variation at average, as it is calculated by
using the formula (3). All controllers display acceptable jitter
values since it ranges up to 2ms and do not impact negatively
the quality of services. The ODL and Ryu controllers have the
lower jitter while Floodlight exhibits slightly higher values.
The last place in the ranking is occupied by the ONOS. It has
a high average value of 2,1ms if the two hosts are not in the

same pod and k = 6 which could imply congestion for ONOS
under specific types of networks.

E. Result Analysis

In this study, we compared the performance of ONOS,
RYU, Floodlight and OpenDaylight in terms of Latency,
Throughput, and Jitter. For this purpose, we created complex
topologies, resembling real-world networks, as Fat-tree
topologies which is used in data centers, using Mininet.

With the throughput tests, we found that Ryu in general
outperforms the other controllers and OpenDaylight is unable
to achieve as good a performance in large scale topologies as
the other controllers. This was also observed in [20],[29],[31],
by the authors.

At the same time for small deployments OpenDaylight
exhibits optimal throughput, latency, and jitter. As
OpenDaylight exhibits low jitter regardless of network size, its
behavior indicates it could be better suited for quality of service
oriented network applications such as VoIP.

(a) (b) (c)

Fig. 4. The experimental results for topology throughput when the two hosts located at (a) same pod, (b) adjacent pods and (c) farthest pods

(a) (b) (c)

Fig. 6. The experimental results for topology jitter when the two hosts located at (a) same pod, (b) adjacent pods and (c) farthest pods

(a) (b) (c)

Fig. 5. The experimental results for topology latency when the two hosts located at (a) same pod, (b) adjacent pods and (c) farthest pods

147

Authorized licensed use limited to: University of Ioannina. Downloaded on February 15,2024 at 09:09:15 UTC from IEEE Xplore. Restrictions apply.

ONOS’s metrics on latency and jitter for k equal to 6 is an
indication of how the topology can impact controller
performance.

VI. CONCLUSION AND FUTURE WORK

We have conducted a comparative study on four well-
known controllers: ONOS, OpenDaylight, Floodlight and
Ryu. Using the Mininet emulator and common network tools
(iPerf and ping) as our means, we experimentally investigated
the performance of these controllers in terms of throughput,
average latency and jitter on size variations of the Fat-tree
topology

We have observed that controller election clearly impacts
network performance and care must be taken to ensure the
optimal solution depending on the specifics of each network
deployment.

Our future work is planned to carry out more in-depth
investigation on the controllers and its behavior using more
specific tools and metrics.

ACKNOWLEDGMENT

This research has been co-financed by the European
Regional Development Fund of the European Union and
Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH – CREATE – INNOVATE, project name
“Create a system of recommendations and augmented reality
applications in a hotel" (project code:T1EDK-03745).

REFERENCES

[1] H. Tong, X. Li, Z. Shi, and Y. Tian, “A Novel and Efficient Link
Discovery Mechanism in SDN,” 2020 IEEE 3rd Int. Conf. Electron.
Commun. Eng. ICECE 2020, pp. 97–101, 2020, doi:
10.1109/ICECE51594.2020.9353035.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An
intellectual history of programmable networks,” Comput. Commun.
Rev., vol. 44, no. 2, pp. 87–98, 2014, doi: 10.1145/2602204.2602219.

[3] W. Queiroz, M. A. M. Capretz, and M. Dantas, “An approach for SDN
traffic monitoring based on big data techniques,” J. Netw. Comput.
Appl., vol. 131, no. January, pp. 28–39, 2019, doi:
10.1016/j.jnca.2019.01.016.

[4] N. McKeown et al., “OpenFlow,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008, doi:
10.1145/1355734.1355746.

[5] S. Badotra and S. N. Panda, “Evaluation and comparison of
OpenDaylight and open networking operating system in software-
defined networking,” Cluster Comput., vol. 23, no. 2, pp. 1281–1291,
2020, doi: 10.1007/s10586-019-02996-0.

[6] J. Ali and B. H. Roh, “A Novel Scheme for Controller Selection in
Software-Defined Internet-of-Things (SD-IoT),” Sensors, vol. 22, no.
9, 2022, doi: 10.3390/s22093591.

[7] L. Zhu et al., “SDN Controllers: A Comprehensive Analysis and
Performance Evaluation Study,” ACM Comput. Surv., vol. 53, no. 6,
2021, doi: 10.1145/3421764.

[8] Y. Fan, L. Qing, and H. Qi, “Research and comparative analysis of
performance test on SDN controller,” 2016 1st IEEE Int. Conf.
Comput. Commun. Internet, ICCCI 2016, pp. 207–210, 2016, doi:
10.1109/CCI.2016.7778909.

[9] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, “Performance
Analysis of Floodlight and Ryu SDN Controllers under Mininet
Simulator,” 2020 IEEE/CIC Int. Conf. Commun. China, ICCC Work.
2020, pp. 85–90, 2020, doi:
10.1109/ICCCWorkshops49972.2020.9209935.

[10] D. Lunagariya and B. Goswami, “A comparative performance analysis
of stellar SDN controllers using emulators,” Proc. 2021 1st Int. Conf.
Adv. Electr. Comput. Commun. Sustain. Technol. ICAECT 2021,
2021, doi: 10.1109/ICAECT49130.2021.9392391.

[11] A. K. Arahunashi, S. Neethu, and H. V. Ravish Aradhya, “Performance
Analysis of Various SDN Controllers in Mininet Emulator,” 2019 4th
IEEE Int. Conf. Recent Trends Electron. Information, Commun.
Technol. RTEICT 2019 - Proc., pp. 752–756, 2019, doi:
10.1109/RTEICT46194.2019.9016693.

[12] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation
of the performance of popular SDN controllers,” IFIP Wirel. Days, vol.
2018-April, pp. 54–59, 2018, doi: 10.1109/WD.2018.8361694.

[13] P. Bispo, D. Corujo, and R. L. Aguiar, “A qualitative and quantitative
assessment of SDN controllers,” Proc. - 2017 Int. Young Eng. Forum,
YEF-ECE 2017, no. January 2018, pp. 6–11, 2017, doi: 10.1109/YEF-
ECE.2017.7935632.

[14] “Ryu SDN Framework.” https://ryu-sdn.org/ (accessed Sep. 30, 2022).

[15] Y. Zhang and M. Chen, “Performance evaluation of Software-Defined
Network (SDN) controllers using Dijkstra’s algorithm,” Wirel.
Networks, 2022, doi: 10.1007/s11276-022-03044-3.

[16] “Open Network Operating System (ONOS) SDN Controller for
SDN/NFV Solutions.” https://opennetworking.org/onos/ (accessed
Sep. 30, 2022).

[17] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, “A
comprehensive survey of interface protocols for software defined
networks,” J. Netw. Comput. Appl., vol. 156, pp. 1–30, 2020, doi:
10.1016/j.jnca.2020.102563.

[18] “Home - OpenDaylight.” https://www.OpenDaylight.org/ (accessed
Sep. 30, 2022).

[19] “Floodlight Controller - Confluence.”
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overvi
ew (accessed Sep. 30, 2022).

[20] P. Vartiainen, “On the Principles of Comparative Evaluation,”
Evaluation, vol. 8, no. 3, pp. 359–371, 2002, doi:
10.1177/135638902401462484.

[21] M. M. Elmoslemany, A. S. T. Eldien, and M. M. Selim, “Performance
Analysis in Software Defined Network Controllers,” Proc. ICCES
2020 - 2020 15th Int. Conf. Comput. Eng. Syst., 2020, doi:
10.1109/ICCES51560.2020.9334577.

[22] A. E. S. F. Ahmed and H. A. Elsayed, “Performance Comparison of
SDN Wireless Network Under Floodlight and POX Controllers,” 13th
Int. Conf. Electr. Eng. ICEENG 2022, pp. 91–95, 2022, doi:
10.1109/ICEENG49683.2022.9781874.

[23] M. Alizadeh et al., “Data Center TCP (DCTCP) Mohammad,”
Sigcomm, vol. 40, no. 4, p. 63, 2010, [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1851182.1851192.

[24] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R.
Sherwood, “On controller performance in software-defined networks,”
2nd USENIX Work. Hot Top. Manag. Internet, Cloud, Enterp.
Networks Serv. Hot-ICE 2012, 2012.

[25] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A
comparative analysis of data center network architectures,” 2014 IEEE
Int. Conf. Commun. ICC 2014, pp. 3106–3111, 2014, doi:
10.1109/ICC.2014.6883798.

[26] J. But, U. Keller, D. Kennedy, and G. Armitage, “Passive TCP stream
estimation of RTT and Jitter parameters,” Proc. - Conf. Local Comput.
Networks, LCN, vol. 2005, pp. 433–440, 2005, doi:
10.1109/LCN.2005.101.

[27] J. K. Sojan and K. Haribabu, “Monitoring Jitter in Software Defined
Networks,” Lect. Notes Networks Syst., vol. 450 LNNS, pp. 635–645,
2022, doi: 10.1007/978-3-030-99587-4_54.

[28] A. Rodriguez and J. Qui, “A Comparative Evaluation of ODL and
ONOS Controllers in Software-Defined Network Environments.”

[29] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” Proc. 9th ACM Work. Hot
Top. Networks, Hotnets-9, 2010, doi: 10.1145/1868447.1868466.

[30] A. Azzouni, R. Boutaba, N. T. M. Trang, and G. Pujolle, “SOFTDP:
Secure and efficient OpenFlow topology discovery protocol,”
IEEE/IFIP Netw. Oper. Manag. Symp. Cogn. Manag. a Cyber World,
NOMS 2018, pp. 1–7, 2018, doi: 10.1109/NOMS.2018.8406229.

[31] M. B. Dissanayake, A. L. V Kumari, and C. E. Board, “P Erformance
Comparison of Onos and Odl Controllers in,” vol. 2, no. 3, pp. 94–105,
2021.

148

Authorized licensed use limited to: University of Ioannina. Downloaded on February 15,2024 at 09:09:15 UTC from IEEE Xplore. Restrictions apply.

