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Abstract—The widespread availability of smartphones and 

their high processing power have made them powerful mobile 

tools able to host and run various apps. In addition, wearable 

devices with low cost and accurate sensors gathering various 

physiological data and information are now available. 

Meanwhile, automated activity recognition is a rapidly evolving 

research area directly related to the mobile Health (mHealth) 

field. Rapid advancements in the Human Activity Recognition 

(HAR) field are mainly based on combining smartphones and 

wearable devices to succeed in advancing health tracking. This 

paper presents a mobile app designed and developed for 

monitoring changes in variables related to the physiological 

health status of an individual when he is moving around. The 

app tracks the physiological status of a human along with 

machine learning algorithms able to recognize and identify 

human activity and produce automatic alerts warning of 

dangerous health situations. 

Keywords—Mobile app, Wearables, Machine Learning, 

Human activity recognition, mHealth 

I. INTRODUCTION  

The automated Human Activity Recognition (HAR) field 
is rapidly developing and has attracted scientists' attention. 
HAR is a study field that aims to identify the activities 
performed by an individual. In other words, HAR is the 
modelling of human behaviour [1], [2] so that the automatic 
detection of different activities an individual performs can be 
realized. The field has experienced significant growth over the 
past few years due to its many applications, such as in health 
services, smart homes, autonomous living assisted by the 
environment, monitoring, construction, etc. [3], [4]. 
Monitoring and analyzing human behavior can help promote 
healthier lifestyles (e.g., by encouraging physical activity), 
avoid stressful activities, and detect dangerous situations (e.g., 
falls) [5]. In the field of health care, HAR includes a 
significant number of applications, such as falls detection in 
patients with mobility disorders, information collection 
regarding gait and posture, metabolic energy consumption, 
and the monitoring of physical activity [3]. 

Today, with the technological development and the new 
generations of sensors, it is a straightforward task to record 
bio-signals, and it is possible to design advanced machine 
learning models that use sensor data as input and then 
recognize the human activity while assessing the state of 
human health and drawing automated conclusions and 
warnings [6]. 

As the machine learning models concern, different 
approaches are used, and each one of them presents 
advantages and disadvantages, depending on the problem’s 
nature and restrictions. Thus, it is the engineer’s choice to 
implement and design the most effective model based on the 
needs and requirements imposed. Indeed, deep learning 
approaches [4] dominate the HAR field due to the vast 
amounts of data now available (big data, ΙοΤ, 5G) [7], the high 
computational power, and the impressive prediction levels 
they report. Nevertheless, conventional machine learning 
techniques [4] have not yet become obsolete but are still in 
use, exhibiting remarkable results and are the first choice in 
case deep learning models cannot be applied (restrictions in 
computational cost, limited dataset) [8]. In the last years, 
another classification method -ensemble machine learning- 
has attracted scientists’ interest that leverages the assets of 
different approaches [9]–[11]. Moreover, some interesting 
machine learning approaches taking advantage of the 
symbolic space traits [12] have been applied to HAR problems 
lately [13]–[15], thus, avoiding the need for hand-crafted 
feature extraction.  

At the same time, the rapid development of technology and 
computer science has brought impressive technological results 
in the capabilities of smartphones and wearable devices. 
Today, smartphones’ improved processing power and 
enrichment with a wide range of sensors, such as position 
(GPS), connectivity (Bluetooth and WiFi), light intensity, etc. 
[16], have made them valuable and powerful tools in the hands 
of the individual user. Furthermore, various wearable devices 
such as healthcare devices and activity trackers are equipped 
with multiple precision sensors, providing sensing capabilities 
at motion and direction (accelerometer and gyroscope), heart 
rate, etc. [17]. Also, wearable devices can connect to 
smartphones, which can be used to gather and analyze data   
[18], [19]. One of the significant advantages of smartphones 
and wearable technologies is their ability to collect passive 
data streams. The concept of passive data refers to information 
gathered automatically without the participant's involvement 
[20]. 

Also, the technology improvement has led to the 
development of specific applications that offer the possibility 
of monitoring the health of the individual. A large number of 
medical and health-related apps are available on the market 
today and have made health care more affordable and 
accessible to all [21], [22]. Most of these applications are used 
by health professionals and patients and operate as medical 
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education and teaching, physical and mental health 
improvement, telemedicine, telehealthcare, etc. [21], [23]. 

Today, the widespread availability of smartphones (almost 
6.7 billion worldwide [24], and the high accuracy of the 
sensors of wearable devices [25] have attracted the interest of 
the scientific community, with researchers using them for data 
acquisition in several studies such as social, and mobile health 
(mHealth). In particular, the use of mHealth for in situ 
tracking and direct interventions has shown growing interest 
on both a scientific and commercial level. Lastly, it is common 
for researchers to conduct these mHealth studies by designing 
and developing their own applications, data storage and data 
analysis systems [18]. In this way, researchers gain more 
freedom to customize their research (e.g., collecting data at 
different sampling frequencies from sensors of wearable 
devices). 

Throughout this paper, we will follow the following 
structure. The mobile application that was designed and 
implemented is detailed in Section II. Specifically, in Section 
II.A we present the wearable and sensors that were utilized. In 
Section II.B there is an analysis of the subsystem that 
implements the physiological condition tracking, while in 
Section II.C, we describe an implementation of the HAR 
model using machine learning. In Section II.D the embedded 
GPS tracking system is presented and in Section II.E we refer 
to the various alerts the system may send under conditions. 
The current section is completed with Section II.F with a brief 
description of the web server. Finally, in Section III, we 
conclude the work have been done.  

II. MOBILE APPLICATION 

Within the framework of the TrackMyHealth project [26], 
we developed a system that integrates wearables and machine 
learning algorithms to monitor and support individuals 
(elderly and lonely workers). The diagram of the proposed 
system is shown in Fig. 1.  

 
Fig. 1. Overview of the TrackMyHealth System. 

This system consists of a mobile application that works 
with wearable devices to acquire heart rate and motion data 
via Bluetooth communication protocol. The motion data is 
transferred to a Web server via Retrofit. Retrofit is a type-safe 
library for accessing the Representational state transfer 
(REST) Web APIs [27]. On the Web server, has been 
developed a Flask Web Framework [28] for hosting the 
machine learning model, which implements the HAR. After 
that, the outcome of the model is forwarded to the application, 
which compares the instant heart rate data with the model’s 
result and makes the decision for further actions (e.g., stop 
activity alert). Next, we describe in more detail each one of 
these components.  

A. Wearables and Sensors 

The proposed system uses wearable devices to collect 
motion and heart rate data. The choice of wearable devices 

was based on the characteristics of the sensors, the 
connectivity and battery features of the device, user-
friendliness, and the availability of open-source code. For the 
collection of motion data, the MetaMotionR (MMR) device 
was used [29], and for the collection of heart rate data, the 
OH1 Polar was used [30]. 

MMR consists of built-in Inertial Measurement Unit 
(IMU) sensors that provide continuous real-time motion 
monitoring with an accelerometer and a gyroscope. IMU 
sensors can collect acceleration and angular velocity data. 
Their low purchase cost, the multiple integration possibilities, 
and the simplicity of their implementation have made them 
widely known in various scientific fields (e.g., HAR). [31], 
[32]. Also, it includes sensor fusion that combines the 
measurements of the two sensors. On the other hand, OH1 is 
an optical sensor that monitors heart rate through 
photoplethysmography (PPG) technology. PPG is a low-cost 
technology that makes an optical assessment of blood volume 
changes in the microvasculature with a Light-Emitting Diode 
(LED) and a photodetector (photodiode) [33], [34]. An 
overview of key features of MMR and OH1 devices is 
presented in TABLE I. 

 
Fig. 2. Boards view of MMR and OH1 wearable devices. 

TABLE I.  CHARACTERISTICS OF MMR AND OH1 WEARABLE 

DEVICES. 

Characteristics 

Wearables devices 

MMR OH1 

Sensors 

Type 
3‑axis gyroscope 
& accelerometer 

optical 

Sampling 
rate 

0.001Hz – 100 Hz 1Hz 

Board 

Connectivity Bluetooth LE Bluetooth  

Rechargeabl
e battery 

70-100 mAH 45 mAh 

User-friendly 

Weight 5.67g 5g 

Body 
position 

wrist arm 

API Open-source 

B. Physiological Condition Tracking 

As part of the proposed system, a subsystem was 
implemented for tracking the physiological status of the 
participant utilizing the interaction with the mobile 
application. This system is based on wearable devices MMR 
and OH1, the extracted results of the machine learning model, 
and the user's personal information. In addition, to ensure the 
secure interaction of the user with the application, required the 
completion of the Physical Activity Readiness Questionnaire 
for Everyone (PAR-Q+). This system aims to maximize the 
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benefits and safety of the participant during the use of the 
mobile application. 

Initially, the participant, after logging in to the application, 
is asked to add personal information about their gender and 
age. This information is important for the extraction of the 
user's maximum Heart Rate (HRmax). HRmax is the 
maximum heart rate achieved by an individual who is 
exercising to exhaustion, despite the increasing workload and 
heart rate plateauing [35] and is measured using the following 
equations [36], as is shown in Fig. 3: 

Men: 

����� � 203.7/1 � exp�0.033 � ��� � 104.3���   (1) 

Women: 

����� � 190.2/1 � exp�0.0453 � ��� � 107.5��� (2) 

 
Fig. 3. The first stage of the physiological condition tracking system. 

In the next stage, the user fills the PAR-Q+. The PAR-Q+ 
consists of general and specific questions concerning both the 
general health of the individual and various medical 
conditions. Its use is intended to maximize the participant's 
safety before starting any kind of physical activity [37]. Upon 
failure of the PAR-Q+, the participant is referred to a qualified 
physician or is asked to fill out the electronic Physical Activity 
Readiness Medical Examination (ePARmed-X+) [38] for 
further evaluation as it is shown in the Fig. 4. 

 
Fig. 4. The second stage of the physiological condition tracking system. 

Next, the app asks the participant to record the resting 
Heart Rate (HRrest) using the OH1 wearable device. In the 
general population (non-athlete), where the range of normal 
values is between 60 and 100 bpm (or under 60bpm for 
athletes), an increased heart rate may indicate problematic 
conditions [39], [40]. Therefore, if the participant’s HRrest is 
reported above a threshold (100 bpm), the participant is asked 
to visit a specialist for further elaboration as it is shown in the 
Fig. 5. 

 
Fig. 5. The third stage of the physiological condition tracking system. 

After the successful completion of the previous steps, the 
application records the activity and the instant Heart Rate 
(HRinstant) of the user in real-time using wearable devices. 
The app uses the HRinstant to extract the average Heart Rate 

(HRavg) per minute. HRavg aims to track the physiological 
status of the person concerned. Also, depending on the type of 
activity extracted from the machine learning model, an 
intensity range is defined that will be used to calculate the 
target Heart Rate (HRtarget). HRtarget is widely used as a tool 
for individualized exercise and is measured using the 
Karvonen formula [41]: 

�������� � ������ � ������� � %!"��"�!�#� �
������ (3) 

where the intensity is in the range of [42]: 

• <30% for very light activity. 

• 30% - 49% for light activity. 

• 50% - 69% for moderate activity. 

• 70% - 89% for vigorous activity. 

Finally, useful conclusions can be extracted about the 
current status that a user experiences during their interaction 
with the application. The conclusions are exported by 
comparing each time the HRavg with the HRtarget. In case the 
HRavg value is bigger of the max HRtarget value, the 
application alerts the user to stop the activity. In this way, the 
application can record at any time the normal or abnormal 
state of the participant as the figure below displays. 

 

Fig. 6. The final stage of the physiological condition tracking system. 

C. Machine Learning model  

The activity recognition system bears at its core a Machine 
Learning (ML) model. Machine learning is the study of 
computational algorithms that can improve themselves 
through experience [43], [44]. Implementing a machine 
learning model aims to predict the status/activity in which a 
person finds himself at a particular time.  The ML model aims 
to predict the following six activities: 

• Downstairs 

• Upstairs 

• Sitting 

• Standing 

• Walking 

• Jogging 

The building of a machine learning model entails specific 
steps depending on the approach the engineer chooses to 
apply. In a nutshell, here, we implemented a supervised 
machine learning model, which means that the exploited data 
are labelled (bear a label that indicates the class/category in 
which an instance belongs) and compose the dataset of the 
problem. Supervised learning is the machine learning process 
where the model "learns" (through training) a function that is 
based on input-output pairs [45]. Supervised learning refers to 
learning a function appropriate to the problem under 
examination. This function receives input variables (X) and 
assigns them  to an output variable (Y): 
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Y = f(X). 

Generally, the used dataset can be divided into training and 
testing datasets. The ratio of the above varies, but it is usually 
tuned to 2:8 (i.e., 20% testing and 80% training datasets, 
respectively) [46].  

Fig. 7 depicts the steps we followed for constructing our 
model. First, we obtain our data from the application. In fact, 
our data are signals that are received from the accelerometer 
and gyroscope embedded into the MMR device. We note, that 
our signals are three-dimensional signals (x-axis, y-axis, z-
axis) of acceleration and angular velocity, respectively. In the 
next step, we preprocess our data; e.g., we remove void 
records, synchronize the data, apply signal filtering, and 
finally, we standardize them. The data segmentation step 
follows. Here, we use the overlapping sliding windows 
approach to prepare our data for processing by the classifier. 
Afterward, the so-called feature extraction step takes place. 
By this, we manually extract features from the time and 
frequency domain to best describe the nature and behaviour of 
the signals (data) utilized  [47]–[53]. In the final stage, we 
apply a classification algorithm. To this end, we applied two 
different algorithms: k-Nearest Neighbours and Random 
Forests and evaluated the results using some common metrics 
(accuracy, sensitivity).  

Via the adjustment of the values of the parameters of the 
model and via a trial-and-error process, we achieved the 
optimal predictive ability of the model. The model then was 
tested in real-time streams of data, and again new adjustments 
were realized to optimise the results.   

 
Fig. 7. The stages of building the machine learning model. 

D. GPS tracking 

In the case of the TrackMyHealth project, geolocation 
plays a crucial role as it is utilized to ceaselessly monitor the 
supervised person's exact position. This is the case for both the 
elderly and the ailing people, as well as for the lone workers. 
The logic behind geolocation in the proposed system is real-
time locating, especially in the case of fall detection. In this 
case, the supervisor will be able to obtain information about 
the exact location of the user when he/she receives an S.O.S 
alert message from the supervised person's device. 

There are several technologies that can help determine the 
real geographical location of items of interest, such as GPS 
(Global Positioning System), Bluetooth, WiFi and network-
based tracking. In our system, we leveraged the GPS 
technology, as it is the one that is mostly used in general. The 
tracking system in the TrackMyHealth project is not just a way 
to track the location of each user but is an essential tool in the 
direction of fully staying informed and consequently 
managing all the situations that the integrated system is about 
to deal with. The proper design and the correct and complete 
development of the system are the basis of success in terms of 
meeting the requirements set.  

The GPS tracking system in the TrackMyHealth system 
includes the involvement of the system clients (web & mobile 

applications), as well as the API (Application Programming 
Interface) server. In this system, users (patients and lonely 
employees) provide information about their location in the 
system and this, in turn, undertakes the task of regularly 
informing the supervisors about their location. 

However, there is a limitation that acts as a safety valve; 
that is, the supervised person should have accepted that a 
supervisor has access to his/her location data. In order to do 
this, a connection must have been established between the 
two; to this end, the user should have accepted the request for 
supervision from the supervisor. In any other case, the 
supervisor will not be able to have any authorization from the 
system to access the user's data and, consequently, the 
location-related data. 

The system uses tokens (special identifiers that give access 
to data) that can identify whether the specific token 
corresponds to a user who is connected (supervisor) with 
another user (patient, elderly, lonely worker) or if not. Fig. 8 
illustrates this process that is integrated into the 
TrackMyHealth system. 

 
Fig. 8. GPS tracking system on the TrackMyHealth system. 

In more detail, the client (supervised person's mobile app) 
has an uninterrupted GPS tracking service. GPS locations are 
not constantly sent but rather at regular intervals, which 
prevents the API server from operating on the edge by 
managing many simultaneous clients. In the case of all the 
clients continuously sending their location-related data, there 
would be a strong possibility of having a slow service from 
the server and consequently poor user experience or even non-
detection of critical data. In addition, such an approach has a 
positive impact in the direction of battery saving; battery 
consumption is lower compared to uninterrupted sending. As 
API regards, when it receives the coordinates from the users, 
it saves them in appropriate fields of the corresponding table 
of the database. 

In turn, clients (supervisors and caregivers) request from 
the system the most recent location of the people they 
supervise at regular intervals (for smaller battery consumption 
reasons). 

The logic behind making "calls" at regular intervals is that 
in this way, we ensure the server's smooth operation, 
congestion avoidance, latency spikes & throughput drops that 
consequently lead to a bad user experience. In other words, the 
supervisor's concern is not knowing the supervised person's 
location every time but at regular intervals so that he/she can 
intervene if something beyond the ordinary occurs. 
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GPS data (latitude & longitude) is accompanied by the 
time and date the location was received. In the database behind 
the API, the data are accessible only to authorized users. That 
is, the user requesting access to another user's location data 
must have a valid token (ID via which the API comprehends 
if the request comes from someone who has access to the 
system and not from someone else who just somehow is aware 
of the endpoint and may have malicious intent). 

In addition, the system gains knowledge of whether the 
authorized user has obtained the consent of a supervisor, i.e. 
let him have the token. In case he is not connected to a 
supervisor, the system refuses to provide data of the specific 
user and, consequently, location data. As a result, the integrity 
and security of the users and the system are guaranteed.   

E. Alerts 

To ensure the participant's safety, the proposed system 
includes automated alert mechanisms. These mechanisms 
include a text and an audio message and are displayed on the 
mobile phone as push notifications. Such notifications are 
used to provide timely updates to smartphone applications and 
typically assume the role of event reminder, user prompting, 
situation prevention, etc. [54]. 

In our case, push notifications hold the role of situation 
prevention and are activated whenever the application 
perceives some kind of abnormal state. Specifically, the 
application displays alert messages to the participants in the 
following situations: 

• When they fail to complete the PAR-Q+ questionnaire, 
suggest visiting a physician or continuing by 
completing the ePARmed-X+ online test. 

• When the heart rate at rest exceeds 100bpm or is less 
than 60bpm (if he is not an athlete in the latter case), 
suggest visiting a physician. 

• When the average heart rate exceeds the upper limit of 
the target heart rate, suggest stopping any activity. 

F. Web Server 

In order for the exported model to be tested in real-time 
with data taken in situ, it was necessary to develop a web 
server. The purpose of this server was to host the machine 
learning model. In practice, this means that the server is 
responsible for receiving the motion data sent from the 
mobile application, importing this data into the model and 
finally sending the extracted status back to the application. 

The development of the server was carried out via Flask. 
Flask is a very simple yet highly extensible Web Framework 
written in Python, with multiple libraries, packages and 
modules for machine learning actions. Lastly, for the 
communication between mobile smartphone and server was 
to use the Retrofit technology. 

III. CONCLUSIONS 

In this study, we described the overall architecture and the 
proposed methodology for tracking human activity and 
identifying the health situation of the monitoring subject. 
There are designed and developed state-of-art machine 
learning methods to realize the HAR based on the data 
gathered by sensors embedded in two wearable devices. We 
have developed and presented a user-friendly mobile app 
functioning as the intermediate agent for exchanging 

information between the sensors and the web server that hosts 
and run the machine learning model. The individual’s health 
status during daily activity is monitored in real-time. At the 
same time, notifications and alerts are sent and illustrated to 
the app on the user’s smartphone and his/her supervisor’s 
monitoring device in case of exceeding some physiological 
health values, which means that the human is in a possible 
critical health situation. To this end, the developed system's 
ultimate goal is to promote individuals’ health and well-being 
via the ceaseless tracking of their physical condition while 
performing various daily activities. 

Our future work will include many  health physiological 
variables gathered by wearable sensors and to investigate and 
propose advanced learning algorithms with outstanding 
performance on identifying human activity and health status. 
In addition, we plan to develop an integrated system that will 
be embedded and run locally on the smartphone that will 
transmit only warning and diagnostic reports.  
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