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Abstract— This paper deals with the problem of identifying 

and recognizing everyday human activities. The main goal is to 

compare a variety of implemented classification models founded 

on diverse machine learning approaches; one that utilizes 

features extracted from the time and frequency domain and 

three others that take advantage of the attributes of the symbolic 

space in order to extract conclusions regarding the performance 

and the potential usefulness of each of them.  To guarantee the 

impartiality of the comparison, we used the signals contained in 

a free accessible dataset, which are subjected to the same 

preprocessing, and divided into equal time-length windows. The 

Nearest Neighour classifier is applied to compare the four 

approaches. 

 

I. INTRODUCTION 

Nowadays, time-series data are generated and gathered at 
an unprecedented rate due to the general use of smartphones, 
sensors, RFID, and other devices [1], and in general, due to the 
rise and broad penetration of the Internet of Things in industry, 
business, medicine, and everyday life. There are many diverse 
applications such as medical data analysis, human activity 
recognition, and many others. Time-series data analysis assists 
in understanding system operation and improving our ability 
to gain insight, perception, and prediction of the evolution of 
various existences and states in the real world [2]. Usually, 
these data are always high-dimensional and have a high 
volume. Thus, researchers propose many dimensionality 
reduction methods to represent raw time series [3] effectively. 
Data representation in a lower-dimensional space provides a  
meaningful yet compact representation while maintaining the 
original, inherent information central to storing and mining 
these massive data [4]. Researchers have been developing 
many representation techniques for time series. The Symbolic 
Aggregate Approximation (SAX) by Lin et al. [5] is of 
particular interest. This technique segments a time series into 
intervals represented by their mean value, the so-called 
Piecewise Aggregate Approximation (PAA), and then it 
discretizes each mean value by mapping it to a discrete 
symbol. Nevertheless, the SAX method suffers from two 
significant drawbacks: first, two time series with totally 
different shapes may be mapped to the exact SAX 
representation, and secondly, it may lose some important 
features [2], [3].  

Many variations of the SAX method have been 
implemented to deal with this innate defection of the SAX. We 
refer to the most recent. Entropy-based Symbolic Aggregate 
approXimation (EN_SAX) improves the original SAX by 
capturing an additional characteristic in a segment using the 
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time series entropy [3]. Probabilistic  SAX  (pSAX) [4]  is 
based on a  Kernel Density Estimator (KDE) to estimate the 
density function of the data source, coupled with a Lloyd-Max 
quantizer for computing optimal discretization intervals. The 
clustering SAX (cSAX) [4] relies on the mean-shift clustering 
method to produce descriptive symbolic sequences, which are 
more appropriate for high-level data analysis tasks. Two recent 
variations of SAX that attempt to incorporate information 
related to the deterministic behavior of time series to increase 
the representation accuracy are sSAX and tSAX [6]. The 
former is aware of the season of a time series by assuming the 
existence of a seasonal component, while the latter is aware of 
the trend of a time series and captures this behavior in a trend 
component. Finally, HAX (Hexadecimal Aggregate 
approXimation) is a times series representation method to 
reduce its dimensionality and establish a similarity measure 
between two-time series objects [2]. In the current work, our 
objective is to test different machine learning approaches with 
emphasis on SAX variations that are already introduced in 
previous publications.  

The rest of this paper is structured as follows. Section II 
describes the data set and the preprocessing stage. In section 
III, we describe the machine learning approaches we 
implemented. In section III.A, we explain the feature 
extraction approach, and the SAX method in section III.B. 
Next, in III.B.1) and III.B.2), we present two variations of 
SAX. In section IV, we demonstrate the comparative 
classification results.  Furthermore, in section V, we draw 
some conclusions. 

II. DATA AND PREPROCESSING 

We tested all the implemented machine learning approaches 

on the same dataset extracted from the publicly available web 

database, the RealWorld (HAR) [7]. We utilized the signals 

produced from the accelerometer and the device's gyroscope 

(a smartphone mounted on the subjects' body); that 

correspond to the triaxial linear acceleration and angular 

velocity. The subjects performed eight different activities for 

roughly 10 minutes. The activities are: climbing stairs down 

and up, jumping, lying, standing, sitting, running/jogging, and 

walking. The sampling rate was set at 50 Hz, while the 

amount of data was equally distributed regarding the subject's 

gender. 
Before applying any machine learning approach, we first 

preprocess [8] the raw data of both the accelerometer and 
gyroscope, separately. Therefore, we applied filters to remove 
the unwanted noise: in sequence, a fifth-order median filter 
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and a fifth-order low-pass Butterworth filter with a 20 Hz 
cutoff frequency. Then we applied the z-score normalization 
(mean value of zero and standard deviation value equal to one). 
The processed signals can be compared; in other words, we 
can apply machine learning algorithms to remove the original 
signals' distortions.  Finally, we segmented the filtered and z-
normalized signals into sliding time windows of the same 
duration (2.56 sec) overlapped at 50% percentage. 

After this step, we apply the machine learning algorithms 
in two different directions. We are experimenting with one 
supervised method based on feature extraction and another 
semi-supervised method based on the symbolic representation 
of time series. 

III. APPLIED MACHINE LEARNING APPROACHES  

A. Feature Extraction 

Signals can be regarded as a time series, and corresponding 
measures can describe them. These measures stand for the 
features of a signal and represent the most distinct 
characteristics of a signal's nature. Features are obtained after 
transforming the signals or by statistically processing them. 
The selection of the best features (i.e., the most distinctive 
characteristics that provide valuable information to distinguish 
one signal from another) is crucial and relies much on the 
researcher's experience in understanding the nature of the 
undertaken problem. On the one hand, the selection of the best 
features aims to maximize the classification accuracy and, on 
the other hand, minimize the system's complexity.  

The features most commonly used for human activity 
recognition problems fall into three sub-categories: those 
belonging to the time domain, those belonging to the 
frequency domain, and those combining the two fields 
mentioned above and derived after applying the Discrete 
Transformation Wavelet (Discrete Wavelet Transform - 
DWT). TABLE I presents the features that we used here 
alongside a short description of them. The reader can refer to 
the bibliography provided for more information [9]–[18]. 

TABLE I.  THE LIST OF FEATURES EXTRACTED FROM THE TIME AND 

FREQUENCY DOMAIN 

No. Feature Meaning 

1 min The minimum amplitude value of a signal   

2 max The maximum amplitude value of a signal   

3 mean The mean amplitude value of a signal   

4 
bandpower 

The average power within a frequency range of a 

signal 

5 zero-

crossing rate 

The rate at which a signal changes from positive 

to negative and vice versa 

6 
variance 

The averaged power of the signal's random 

deviations expressed as power [19] 

7 
kurtosis 

The peakedness of the probability density 
function of the amplitude of a time series [20] 

8 
skewness 

The symmetry of the probability density function 

of the amplitude of a time series [20] 

9 root-mean-
square 

The square root of the mean square. It is related 
to the power of a signal 

10 
median 

frequency 

The frequency at which the signal's power 

spectrum is divided into two regions with an 
equal integrated power [21]  

11 
entropy 

A measure of the uncertainty of a random 

process 

12 euclidean 
norm 

The square root of a signal's energy  

13 
mean abs 

The mean value of the absolute amplitude values 
of a signal 

14 
sum 

The summing of all the amplitude values of a 

signal.  

15 total power The total power of all the frequencies of a signal 

 

We implemented a straightforward supervised machine 
learning algorithm, where every feature is computed in every 
time window that the signal is divided. Ultimately, we obtain 
the table of features of the implemented supervised machine 
learning method.  

B. Symbolic Aggregate Approximation 

Lin et al. [5] introduced the SAX method to describe a 
procedure that enables the symbolic representation of time 
series. First of all, the dimensionality reduction of the problem 
is realised by applying the PAA technique [5], [22], [23]. The 
latter has direct positive implications in the speed and 
efficiency of an applied algorithm (complexity and time 
reduction are achieved). Then, we transform the real number 
space to symbolic space, where a variety of distance measures 
can be used (e.g., Euclidean, Manhattan, Minkowski) for 
comparing thse symbolic series.  

 All-in-all, the procedure is described in formula (1), where 
the dimensionality reduction and symbolic transformation 
phases are demonstrated. 

 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛} 𝑋′ =  {𝑥1′, 𝑥2′, … , 𝑥𝑚′𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑚}𝑚 < 𝑛  
where 𝑋 is the processed time series of length 𝑛, 𝑋′ is the 
length-reduced time series of length 𝑚, 𝑆 is the corresponding 
symbolic series, and 𝑥𝑖 ′ is calculated by Equation (2). 

 𝑥𝑖′ =  
𝑚

𝑛
∑ 𝑥𝑗

𝑛

𝑚
𝑖

𝑗=
𝑛

𝑚
 (𝑖−1)+1

 (2) 

We highly recommend that the interested reader consult 
the step-by-step analysis described in [24] to understand the 
method thoroughly. The process is comprehensibly depicted 
in Figure 1.  

 
Figure 1. Processed signal, PAA technique, breakpoint lines that define 

ranges of values, and finally, the symbols are illustrated all together. 

After extracting a symbolic series, we compute the so-
called Intelligent Icons [25] that represent the frequency of 
occurrence of a group of symbols (called words) within a 
window having the meaning of a frequency distribution table. 
This table forms the table of features of this semi-supervised 
machine learning approach. Once again, it is recommended the 
reader refer to our past work [24].  
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1) Multichannel SAX Intelligent Icons 

Multichannel SAX Intelligent Icons [24] is a variation of 
the Intelligent Icons that offers the omni-dimensional 
integration of information nested in every one-dimension 
symbolic series. Let us consider a three-dimensional signal 
(e.g., velocity). We apply the SAX method as described in 
III.B for each dimension, which results in obtaining three 
symbolic series. The differentiation from the formerly 
established Intelligent Icons extraction method is that we now 
search for groups of symbols (words) where each one of them 
comes from the corresponding symbolic series. Figure 2 
coherently explains the procedure. Ultimately, we construct 
the frequency distribution table that refers to these words. The 
latter, alongside the table extracted in III.B, comprise the table 
of features of this approach.  

 
Figure 2. Words consist of one symbol from every dimension for 

computing multichannel intelligent icon 

2) Slopewise Aggregate Approximation SAX 

The Slopewise Aggregate Approximation (SAA SAX) 
[26] is a variation of PAA. Instead of calculating the mean 
value of the values of datapoints in every segment, we 
calculate the mean value of the slopes of the lines formed by 
connecting every point to the first point of each segment. 
Consequently, the initial time series is transformed to angle 
values series, as is shown in formula (3).  

𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛}  𝛩′ =  {𝜃1′, 𝜃2′, … , 𝜃𝑚′}, 𝑚 < 𝑛 (3) 

where 𝜃𝑖′ is the average angle in every segment.  

 
Figure 3. Every segment of the time series is replaced with a vector that 

has its initial point at the first point of the segment and forms an angle with the 
horizontal axis equal to 𝜃𝑖′. Red lines are the slope approximations, and the 
continuous black line is the signal. 

This process has the advantage of avoiding losing useful 
information regarding the shape and fluctuation of the time 
series after the dimensionality reduction process. One can 
easily observe this fact by comparing Figure 1 and Figure 3. 
Figure 3 better describes the trend of the time series.  

Then, we transform the values of the angles to symbols, and 
we extract the Intelligent Icons as in III.B. The latter, alongside 
the table extracted in III.B, comprise the table of features of 
this approach. 

IV. RESULTS 

Each one of the implemented approaches generates a 
different set of features. We randomly separate the initial 
dataset into a training dataset and a testing one. The training 
dataset includes the randomly extracted 80% of the features of 
every class, while the remaining 20% comprises the testing 
dataset. We employed a 1-Nearest Neighbour classifier to 
calculate each model's prediction accuracy and sensitivity. The 
execution of the Nearest Neighbour algorithm was repeated 
ten times in order for the results to be the least unbiased and 
prone to validation set's partialities. TABLE II depicts the 
average classification accuracy of the four models, whereas 
TABLE III displays the average values of the sensitivity, 
respectively. The results of the last three models are obtained 
from our past work [26]. Figure 4, graphically demonstrates 
the differences in the performance of each model regarding 
every activity to be recognised.  

TABLE II.  COMPARATIVE TABLE BETWEEN THE FOUR UNDER-STUDY 

MACHINE LEARNING APPROACHES IN TERMS OF ACCURACY 

Accuracy (%) 

Feature 

extraction 
SAX 

Multichannel 

SAX 
SAA SAX 

81.32 90.13 92.39 96.00 

TABLE III.  COMPARATIVE TABLE BETWEEN THE FOUR UNDER-STUDY 

MACHINE LEARNING APPROACHES IN TERMS OF SENSITIVITY 

ACTIVITIES 
Sensitivity (%) 

Feature 

extraction 
SAX 

Multichannel 

SAX 
SAA SAX 

Downstairs 61.53 92.51 95.70 97.28 

Upstairs 77.88 92.47 94.70 96.11 

Jumping 65.63 95.89 96.89 96.76 

Lying 91.58 89.92 92.10 96.81 

Running 91.52 97.19 97.69 98.66 

Sitting 82.42 80.20 83.87 92.66 

Standing 80.65 81.62 85.13 92.20 

Walking 81.28 96.11 97.22 98.15 

MEAN 

VALUE 
79.06 90.74 92.91 96.08 

 

 
Figure 4. Bar chart indicating the performance of each developed machine 

learning model in terms of each class' sensitivity rates. 

The first model exhibits the poorest results in terms of 
efficiency. On the contrary, the implementations based on 
symbolic representations demonstrate a significantly high 
classification rate. Regarding specific activities, it is 
noteworthy to refer to "Downstairs" and "Jumping," where an 
increase of thirty percentage units is met with the symbolic 
representations. "Upstairs" performance also seems to be 
considerably boosted by the latter.  

40
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90

100

Comparative chart for each class' sensitivity rate

Classic model SAX Multichannel SAX SAA SAX
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On the other hand, SAA SAX seems to improve the 
recognition performance for all the activities, even for those 
presenting a somewhat moderate performance among the other 
two symbolic representations approaches. 

V. CONCLUSION 

In the current study, we focused on comparing the 

performance of four classification models using the same 

dataset as a benchmark for rendering our work impartial, and 

simultaneously all the parameters defining the model were set 

at the same value. Our goal was to indicate the usefulness and 

merit of working with the symbolic representation of time 

series. Our intention was not to search for the optimal 

performance using the best classifier but rather to test the 

different approaches using the same classifier.  

There are some innate weaknesses regarding such 

implementations, such as the need to define parameters; 

therefore, there is a need to investigate the optimum 

parameters' values. However, these methods' advantages 

make their further study and experimenting on them worth it  
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