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Abstract: Universities play an essential role in preparing human resources for the industry of the
future. By providing the proper knowledge, they can ensure that graduates will be able to adapt
to the ever-changing industrial sector. However, to achieve this, the courses provided by academia
must cover the current and future industrial needs by considering the trends in scientific research
and emerging technologies such as Artificial Intelligence (AI), Internet of Things (IoT), and Edge
Computing (EC). This work presents the survey results conducted among academics to assess the
current state of university courses, regarding the level of knowledge and skills provided to students
about the Internet of Things, Artificial Intelligence, and Edge Computing. The novelty of the work
is that (a) the research was carried out in several European countries, (b) the current curricula
of universities from different countries were analyzed, and (c) the results present the teachers’
perspective. To conduct the research, the analysis of the relevant literature took place initially to
explore the issues of the presented subject, which will increasingly concern the industry in the near
future. Based on the literature review results and analysis of the universities’ curricula involved in
this study, a questionnaire was prepared and shared with academics. The outcomes of the analysis
reveal the areas that require more attention from scholars and possibly modernization of curricula.

Keywords: Internet of Things; Artificial Intelligence; Edge Computing; knowledge transfer

1. Introduction

Since the foundation of the University of Bologna, considered to be the first university
in the world, in 1088 [1], educational institutions and advanced research centers [2] have
played a key role in preparing gifted minds to meet the challenges of society. Such institu-
tions have been referred [3] to as world knowledge repositories, sources of new discoveries
that supply professional staff and engage in public debates. Communities of professors
and researchers that belong to such institutions are considered [4] to be leaders in their
fields of education, research, and technology, capable of preparing students for demanding
positions both in academic and psychological terms.

Universities have traditionally assumed this enormous responsibility that society has
placed on them. A prime example of the efforts made by academia and researchers to drive
change is their mission to [5] achieve the United Nations’ Sustainable Development Goals
(SDGs) [6]. The SDGs, which are a continuation of the Millennium Development Goals
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(MDGs) [7,8], address vital global challenges such as social cohesion, economic prosperity,
and the protection of the environment to create a more sustainable planet and a brighter
future for all. The SDGs define a framework [5,9] of common objectives, which can be
divided into three general categories: (1) well-being, (2) environment, and (3) economy. In
all three categories, universities are classified as institutions that play a fundamental role.
In well-being, access to good quality education is considered [5,10] a crucial factor for sus-
tainable development and a prerequisite for reaching the other objectives. Concerning the
environment, universities are referred [5,11] to as institutions where vital research is carried
out to enable us to understand natural phenomena and discover valuable knowledge from
multiple fields and talents that will help us find solutions to the challenges of this constantly
developing world. There is an increasing demand for highly qualified professionals (in
digitalization, automation, and globalization) in the economy, and higher education [5,12]
is regarded as a catalyst for innovation, as it facilitates international collaboration and
contributes to more remarkable sustainable growth. Universities have become vital agents
in any SDGs’ promotion and/or implementation initiative.

While universities continue to produce highly qualified, well-grounded graduates,
and work to keep their study programs up-to-date, the Information and Communication
Technologies (ICTs) sector keeps moving forward with several ground-breaking innovations
and improvements which aim to make our day-to-day lives more manageable. In this way,
the digitalization and exploitation of new technologies [13] have enabled us to transform
traditional industries into smart factories and intelligent manufacturing environments [14].
Industry 4.0, or the fourth industrial revolution, offers new levels of organization along
the entire value chain of the life cycle of products [15] which is itself making tremendous
progress [16]. In this new industrial context [16], design principles such as decentralization,
real-time capabilities, or virtualization, which go hand in hand with augmented and
virtual reality, robotic automation and industrialization, big data analytics, cloud data, and
computing or cybersecurity, have become the fundamental pillars of such a revolution. All
of these factors contribute to the creation of an industry based on a set of interconnected
systems that are capable of making decisions with little or no human intervention [17].

In this current industrial revolution, the three technological pillars are [18–20]: Internet
of Things (IoT), Edge Computing (EC), and Artificial Intelligence (AI). Firstly, the Internet
of Things provides us with the mechanisms needed to enable a dynamic, global network of
heterogeneous objects based on standard communication protocols [14] that interact and
cooperate to reach a common goal [21]. This multi-device integration and interconnection
in a widely distributed network elevates the scope of traditional communication [22] from
human-human to human-human, human-thing and thing-thing or Machine-to-Machine
(M2M). Secondly, Edge Computing is a computational paradigm designed to split the
computation process of the devices that are physically close to data generation points
instead of sending the whole bulk of data to a remote entity. This makes it possible to
address drawbacks such as latency, battery consumption, Wi-Fi availability, security, and
privacy [23]. Finally, artificial intelligence facilitates automatic data analysis to extract
knowledge models, a clear advantage in decision-making and optimization processes. The
different AI methods analyze and extract actionable insights from all generated data [24],
thus providing competitive advantages in manufacturing processes [25].

Industry 4.0, first named as such by the German government in 2011, is no longer a
futuristic vision, but it has become a standard process for more and more industrial pro-
cesses over time. The current industrial revolution is in full force, and there is an apparent
demand for qualified professionals that are able and willing to respond to the needs and
opportunities which arise in this new generation of industrial processes. However, do
current university programs cover all the theoretical and practical aspects of Industry 4.0 to
enable professionals to operate effectively in this paradigm? In the work [26], it was shown
that technologies such as EC or IoT have a positive impact on the achievements of specific
SDGs. Which areas (AI, IoT, EC) are more and which are less taught? What methods are
used in teaching AI, IoT, and EC? How much do the real problems of the industry affect the
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educational teaching process? What are the academic needs in the field of AI, IoT, and EC
and what could support the teaching process? Projects, practicals, and case studies should
not only focus on current needs but also look to the future, considering current trends in
research and taking advantage of market opportunities to solve real-life challenges (such as
predictive maintenance [27]).

This paper aims to present a study carried out in a university educational community
on how knowledge of IoT, EC, and AI is transferred in the teaching process and how
students acquire such knowledge from the academic teachers’ point of view. To achieve
this, a 7-stage methodology process is followed: (1) literature review, (2) university courses
review, (3) defining the research questions, (4) questionnaire development, (5) survey,
(6) survey results from quantitative and qualitative analysis, and (7) conclusions and
development of recommendations. The review of the literature describes reaction of
universities to the challenges of Industry 4.0. The university courses review contains
information about actual training programs of selected universities in the field of AI, IoT,
and EC. The questionnaires are prepared based on the extended Likert scale during the
first phase. A series of multiple-choice questions with predefined answers is formulated.
Once the questions have been determined, the survey phase is initiated, where a group of
academic representatives distributed in over 17 countries participates. Once completed
surveys have been collected, the results are analyzed to detect areas that require attention
and possibly modernize the curricula. Finally, conclusions are drawn and recommendations
are made based on the results obtained.

The main motivation that seeded this research comes from the document released on
14th June 2018 by the European AI Alliance [28]. This report discussed the competitiveness
of the EU in Artificial Intelligence and declared that it is necessary to support the knowledge
transfer between academic and productive sectors to enable a practical and widespread
use of AI and Machine Learning (ML). From this document, it can be inferred that it is
universities’ responsibility to (1) train a new generation of experts and (2) to increase the col-
lective knowledge while sustaining the European educational offer by providing students
and companies with training materials and strategies regularly updated. Additionally,
according to the literature, the knowledge distribution of Industry 4.0 technologies (i.e., AI,
IoT, and Edge Computing) around Europe is uneven [29–32]. This work aims to fight these
circumstances by providing updated evidence of this situation nowadays in some regions
of Europe and identifying those Industry 4.0 areas of the curricula that shall be upgraded.

The remainder of this paper is organized as follows. Section 2 presents the literature
review in university training programs and Industry 4.0 digital technologies. Section 3
describes the research methodology followed to conduct the study. Section 4 discusses
the results of the pre-empirical stage of the work. Section 5 shows the results of the study.
Section 6 answers the research questions. Section 7 presents the recommendations derived
from the analysis of the obtained results. Finally, Section 8 concludes the paper focusing on
this work’s limitations and future research directions.

2. Literature Review

This section contains results of the literature review concerning response of universities
to the issues related to the Industry 4.0 and digital technologies used in Industry 4.0.

2.1. Universities Response to Industry 4.0 Challenges

Industry 4.0 poses new challenges to university education and academics have re-
sponded with great interest by proposing applications and frameworks in which 4.0 can
update the educational offer. Some works focus on the possibilities of a 4.0 transformation
of university education itself, thus implementing an Industry 4.0-type experience in teach-
ing activities or promoting innovation in the educational process. In this direction, [33]
addresses the practical applications of Big Data analysis and IoT technologies to improve
the delivery of higher education courses. Therefore, the work presents the use of 4.0
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technologies to improve education (quality assurance purposes, data collection, a digital
platform that uses these technologies, etc.).

Instead, other works focus on the new requirements or subjects to include in higher
education curricula, perhaps providing frameworks or case studies. Götting et al. [29]
regards the development of curricula within the 4.0 paradigm. Specifically, the work
evaluates two study programs of the university of applied sciences Emden/Leer using the
Reference Architecture Model for Industry 4.0 (RAMI4.0). The authors mainly focused on
proposing this methodology to evaluate study programs concerning Industry 4.0. Another
generic framework is proposed by Coşkun et al. In [34], presenting a framework for
Industry 4.0 education to be applied at the Turkish German University of Istanbul. The
framework considers three components (curriculum, laboratory, and student club) adapted
to the 4.0 vision. The proposal for the curriculum component includes new study modules
or changes to the existing modules. In [35], Mian et al. acknowledges the absence of
design and implementation strategies in university education to adapt to the Industry 4.0
paradigm. Indeed few studies are addressing real scenarios that contemplate the possibility
of updating course programs, especially from the point of view of their stakeholders
(professors, researchers, and students). Therefore, the authors use a combined methodology
of SWOT (Strengths, Weaknesses, Opportunities, Threats) and AHP (Analytics Hierarchy
Process) analysis to investigate the stances of university stakeholders about the adaptation
of university programs to Industry 4.0, focusing on how an Industry 4.0 transformation can
be planned in universities: allocation of dedicated funds, staff training, but also updating
curricula and industrial collaborations. A practical approach to upgrade the educational
offer of universities within the 4.0 context is given by the work of Wanyama et al. [36] in
which two sets of equipment for Industry 4.0 teaching support are presented, together with
examples of project-based learning experiences.

There are also proposals for specific solutions adapted to fields and domains other
than Engineering where Industry 4.0 poses new challenges, such as Life Sciences (food
production, plant and animal sciences, etc.) and Tourism. The latter case concerns the use
of 4.0 standard technologies (IoT, Big Data analysis, Virtual Reality) applied to the tourism
sector. In [37], Bilotta et al. presents the course design and delivers results at the Course
Degree in Tourism Science of the University of Calabria. The use of 4.0 technologies in
Life Sciences is addressed by in [38] where is provided a general framework to support
education in the adaptation to Industry 4.0 context and is presented the case study of an
academic course design and customization at Wageningen University in the Netherlands.

Alongside these adoption proposals, it is possible to analyze the current status of the
education sector linked to Industry 4.0 by observing the perceived needs or expectations
of college students and what the universities offer them in their training process. In this
direction, in [30] Oliveira and Sommer surveyed 733 college students from Brazil and
Germany about their awareness of the current industrial context and their perception of
preparedness. The study highlights a higher awareness about the topic Industry 4.0 and
its related technologies in German students and a discrepancy between the perceived
preparation in Industry 4.0 (I4.0) between first semester and last semester students (while
in Brazil, there were no differences).

In [32], Paśko et al. surveyed 563 students mainly from European countries about their
knowledge and skills in the area of IoT, AI, and EC. The authors concluded that students
are familiar with AI technologies while they have a lack of education in the field of EC.
Moreover, students have better theoretical knowledge compared to the skills of practical
application of technologies in industry.

In [31], the authors present the results of a questionnaire-based survey developed to
analyze the situation of three Italian universities regarding the readiness of its students
to work in a 4.0 context. The analysis of the 433 questionnaires collected in the study
emphasized the need for a broader knowledge of the foundations of Industry 4.0 and a
possible revision of the courses that teach technical topics with the possibility of integrating
the new teaching methodologies prompted by Education 4.0.
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The investigation of the state of I4.0 readiness and awareness is also addressed in [39]
where Tinmaz and Lee study this topic in the context of South Korean ICT students.
Although the authors observe that the students interviewed in this study showed at least
a limited knowledge about I4.0 and its implications, the results underline that a deeper
understanding of this topics is needed, especially in finding the involvement and integration
with the training activities in their curricula.

On the other hand, it may be necessary to understand the perceptions of the academics
in implementing I4.0 in teaching and what students think about Industry 4.0 in the learning
process. In [40] the authors performed qualitative research on 33 stakeholders involved in
education to explore the perceptions of the teaching staff about the I4.0 readiness of the
education sector (meaning not only universities) in South Africa. Oke and Fernandes found
a general lack of exploitation of 4.0 technologies in teaching and learning processes and
that the current curricula do not provide the skills required for I4.0.

The fourth industrial revolution demands transformation in engineering curricula
structure to provide the future workforce with the skills required to operate in this new
environment. Within this topic, Ref. [41] examines what the possible implications of I4.0 are
in the development of university programs in South Africa. Through a literature review, the
analysis of industrial engineering curricula and a questionnaire-based survey conducted
among 10 universities, the authors observed that: universities need a better alignment with
I4.0 and increase the interdisciplinarity of their courses; the principles of I4.0 should be
included more in teaching modules and the material in order to meet companies’ needs in
terms of required skill set.

The need for change invests in the topics covered in university courses and the teaching
approach itself. In [42], the authors employ the systematic literature review method to
investigate the current state of engineering education in the I4.0 context, particularly
concerning additive manufacturing. Motyl and Filippi note that more active teaching
involving direct participation (such as in project-based learning) is necessary; nonetheless,
not always well welcomed by the teaching staff.

As observed in the literature, there is a high interest in Industry 4.0 challenges in the
academic world. However, many studies on Industry 4.0 readiness from a higher education
perspective come from non-EU countries [34,35,39–41]. Those assessing in Europe the level
of preparedness of students for I4.0 may need a broader European view, as they focus on
individual countries such as Germany [29,30] and Italy [31] or cover only a few European
countries [32]. Moreover, such studies may need updating since, in the meantime, the
requested skills and university programs may have been changed. Finally, survey-based
studies have been carried out primarily on students [30–32,39], often leaving out the role
of teachers and instructors (with the exceptions of [35,40]) and what they think of the
current courses they teach, and if these courses are providing a good 4.0 training to their
students that they can become the next workforce in the industry. Therefore, in this study,
we propose a perspective on the current state of European universities courses related to
the I4.0 context and its technologies and how teachers think university courses need to
be upgraded.

2.2. Technologies Related to AI, IoT, and EC Required in Industry 4.0

To determine which technologies related to AI, IoT, and EC are required by the
Industry 4.0 authors of this work used review articles. Xu et al. in [43], Peres et al. in [44],
and Mabkhot et al. in [26] identified key technologies for the Industry 4.0: Industrial
Internet of Things, Big Data and analytics, cloud computing, simulations, augmented
reality, additive manufacturing, horizontal and vertical system integration, autonomous
robots, cybersecurity. Zheng et al. in [45] presented a review of digital technologies in
industry 4.0 applied in the manufacturing context. They concluded that blockchain is not
as widely discussed in the domain of I4.0. This issue was targeted in [46] where Moosavi
et al. conducted a systematic review through bibliometric and network analysis to show
how blockchain can improve supply chain management. Additionally, the review of the
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newest application works indicates that technologies such as fuzzy systems, optimization
or IoT are find practical in particular fields of Industry 4.0: Fallahpour et al. in [47] shows
an application of a fuzzy inference system in supply chain management, Yuan et al. in [48]
presents solving a scheduling problems with the use of a fruit fly optimization algorithm,
and work of Salehi-Amiri et al. [49] contains an example of combining optimization
algorithms with applications of IoT-based devices to improve a waste management system.

3. Work Methodology

This section presents the research methodology. The general scheme of the procedure
is discussed as well as the literature and universities curricula review plan, rules of the
research questions definition, principles of building the survey and sample selection criteria,
and the survey results analysis plan.

3.1. General Description of the Methodology

The research methodology schema expressed as the activity diagram of the UML
1.5 [50,51] is shown in the Figure 1. The methodology is an adaptation of a standard
empirical research model that is described in the literature [52].

1. Literature review of universities’ response to industry 4.0 challenges and technologies
used by the industry 4.0.

2. Training programs review to identify content dedicated to AI, IoT, EC.
3. Definition of the research questions.
4. Designing the questionnaire for academics to collect information about the actual

state of teaching AI, EC, IoT.
5. Conducting the survey among university teachers.
6. Analysis of data collected in surveys.
7. Drawing conclusions about academics’ needs and recommendations on training

programs changes.

3.2. Literature Review Methodology

The analysis and review of the State of the Art were done utilizing research papers
dealing with the reception of Industry 4.0 in higher education. For this reason, databases
such as Google Scholar, Scopus and ScienceDirect were utilized, focusing on the following
keywords: “Industry 4.0” AND “education” OR “university”; to narrow the search was
later added: “survey” OR “questionnaire” AND “curriculum”.

The second literature review process was to identify these topics of AI, IoT, and
EC, which are used by Industry 4.0. The mentioned earlier bibliographic databases were
queried for the keywords: “systematic literature review” AND “Industry 4.0” AND “IoT”
AND “EC” AND “AI”. Then selected works from 2021 and 2022 were reviewed in terms of
practical applications of digital technologies in Industry 4.0.

3.3. Review of Selected Educational Programs—Methodology

The assessment of the actual state of university training programs can lead to the
consideration of how those training programs can be further developed according to what
academics find helpful in properly training students. The source of data for training
programs were universities belonging to the PLANET4 project consortium [53]: Università
di Pisa (Italy), Universitat Ramon Llull (Spain), University of Ioannina (Greece), Rzeszów
University of Technology (Poland). The review of training programs of these schools was
performed in November 2020. For data collection, the following structure was designed:

• university name,
• program name,
• specialization (optional),
• semester,
• course name,
• BSc/MSc,
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• module name,
• area: one of AI and ML, IIoT, EC,
• intended learning outcomes (ILO) connected with AI and ML, IIoT, EC,
• teaching and learning activities connected with AI and ML, IIoT, EC,
• used software and infrastructure,
• teaching methods and techniques.

The output data collection contains selected records. The selection criteria were as
follows: the course description must contain topics from the field of AI, IoT, and EC, which
are used in Industry 4.0. The required technologies were identified based on a literature
review (see Section 4.1). The results of the universities curricula review are shown in the
Section 4.2.

Figure 1. UML activity diagram of work methodology.
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3.4. Definition of the Research Questions

The analysis of the curricula and the literature review results showed that the following
areas could be explored:

• the presence of real industrial problems in the curricula,
• level of teaching topics related to AI, IoT, EC,
• level of the application of various development tools in the teaching process,
• teaching methods,
• difficulties in the teaching process.

3.5. Development of the Questionnaire

The questionnaire developed and used in the research consists of open questions
and questions with predefined answers based on an extended Likert scale [54] with the
following answers: not at all, to a small extent, to some extent, to a moderate extent, to
a great extent, and to a very great extent. An atypical six-point scale was used in the
research. The answer “not at all” has been added to a five-point scale to clearly highlight
those topics that are not covered at all in the educational process. Thus, the median value
(“to a moderate extent”) has shifted to the right. This may have led the respondents to
find this answer positive rather than mediocre. The results were analyzed, taking this into
account. The questionnaire aimed to assess to what extent Industry 4.0 topics are covered
in EU higher education (HE). The following explanation was added to the answers to help
respondents choose the proper answer:

1. To a small extent—Theory only
2. To some extent—Theory and exercises
3. To a moderate extent—Theory and practical examples
4. To a great extent—Theory and practical example based on real data
5. To a very great extent—Theory and practical application

The structure of the questionnaire is as follows:

• General questions covering the country (or countries) where the teacher is teaching
and his/her experience,

• AI-related questions,
• IoT-related questions,
• EC-related questions.

Questions in the studied areas related to:

• Topics,
• Tools and software/environment,
• Applications,
• Learning techniques,
• Difficulties in teaching,
• Needs.

The received answers were analyzed to answer the Research Questions (RQs).

3.6. The Sample Selection Method and Survey Plan

As the qualitative and quantitative analyzes were planned, the minimum sample
size was chosen as 40 according to the literature recommendations [55,56]. The authors
planned to conduct the survey among 30 academics from the countries of universities
included in the Planet4 consortium, and among 10 academics from other countries. The
first version of the survey was put to a test trial. Subsequently, adjustments were made,
and the final version of the survey was published. The survey contained closed-ended
questions presented in Tables 4–27, questions about country of the participant, field of
teaching, teaching experience, and open-ended questions about software used in teaching
AI, types of projects related to EC, and difficulties in teaching.
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3.7. Results Qualitative and Quantitative Analysis—Methodology

The received answers were reviewed in the first step to check their quality. Next,
the quantitative and qualitative analyses were conducted. First, a general analysis of the
obtained results was carried out, taking into account all three areas of research: Artificial In-
telligence (AI), Internet of Things (IoT), and Edge Computing (EC). Then, each research area
was analyzed individually. Only data from questionnaires where interviewees confirmed
that they teach a course with contents related to AI, IoT, or EC were considered.

Qualitative analysis was performed to answer questions about theoretical and practical
issues related to AI, IoT, and EC in university training programs.

Quantitative analysis was performed to investigate the degree to which the teaching
topics are related to theory, data processing techniques, programming tools, and practical
applications of AI, IoT, and EC.

4. Results of the Information Sources Review

The following subsections contain the results of the pre-empirical stage of the work.
The summary of the literature review as well as details of courses review and research
questions are presented.

4.1. State of the Art Analysis Results

Thanks to a thematic analysis of the appropriate found papers already presented in
the literature review, the following conclusions can be drawn: researches concern countries
outside the EU or describe the internal situation in selected EU countries; it is worthwhile to
update researches due to changes in the university curricula; the point of view of academics
should be more taken into account. Detailed results of the literature review were presented
in the Section 2.1.

The papers [26,43–49] were selected as the source of information about these technolo-
gies related to AI, IoT, and EC, which are required by the Industry 4.0. The Section 2.2
details the results.

4.2. Courses Review Results

In this section the results of the courses review are presented. Figure 2 shows the
number of courses for each country.

The courses are part of twenty-six bachelor’s degree and thirty-eight master’s degree
programs in which partners and associate partners from the PLANET4 consortium are
involved, for a total of sixty-four courses. As these data come from several countries
worldwide, it could be considered a significant sample to infer the current situation of
university training programs.

The semesters in which the AI, IoT, and EC courses are delivered in bachelor’s and
master’s degrees are both presented in Figure 3. The data collected shows a large difference
in the semester of delivery of the courses related to Industry 4.0 between bachelor’s degree
(median = 6, minimum = 3, maximum = 8, first quartile = 5, third quartile = 7) and master’s
degree (median = 1, minimum = 1, maximum = 3, first quartile = 1, third quartile = 2). Since
the bachelor’s degree in all the countries of the selected universities lasts three to four years,
it can be observed that all the courses are preferably delivered at the end of the degree
program, whereas in the master’s degree this type of courses are offered in the beginning
of the degree programme.

The number of AI, IoT, and EC university training programs analyzed is presented
in Figure 4. The most taught discipline is AI (78% of courses), where IIoT and EC are less
taught. Observing how the disciplines are taught together, IIoT and EC are frequently
addressed in courses where another discipline is delivered.



Sensors 2022, 22, 2496 10 of 34

0 5 10 15 20 25 30

Poland

Italy

Spain

Greece

30

7

19

8

Number of curses per universities’ country

C
ou

nt
ry

Figure 2. Number of courses per universities’ country.

BSc MSc

1

2

3

4

5

6

7

8

Degree course

Se
m

es
te

r
of

de
liv

er
y

Figure 3. Semesters in which the courses are delivered.

0% 20% 40% 60% 80% 100%

AI

IoT

EC

AI and IoT

AI and EC

IoT and EC

AI and IoT and EC

Percentage of courses

C
at

eg
or

y

yes no no response

78% 20% 2%

28% 70% 2%

22% 77% 1%

11% 88% 1%

8% 91% 1%

16% 82% 2%

5% 94% 1%

Figure 4. Percent of university AI, IoT, and EC training programs (total 64).

The main programming languages for AI, IoT, and EC courses are presented in Table 1.
In the AI area, the selected courses use more Python, Matlab and R programming languages,
while in the IoT area, R programming language is used more often and in the EC area the
courses use mainly Python programming language.
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Table 1. Programming languages used in AI, IoT, and EC courses.

Programming
Language

AI Courses IoT Courses EC Courses

Number Percentage Number Percentage Number Percentage

C or C++ 1 2% 1 7% 0 0%
Python 7 13% 4 27% 4 36%

Java 1 2% 1 7% 1 9%
Matlab 8 15% 1 7% 0 0%
Prolog 1 2% 0 0% 0 0%

R 6 11% 1 7% 1 9%
SQL 3 6% 0 0% 0 0%

No data 27 50% 7 47% 5 45%

The main software applications, environment, or services used in the analyzed courses
are presented in Table 2. The main environment used in the AI area courses is Matlab, but
there is also significant variability in the software used. There is little evidence to show a
preference in environment choice in the IoT and EC area courses, although Azure services
and Arduino SDK are mainly used. Teaching methodologies applied in the selected training
are presented in Table 3.

Table 2. Software and environments used in AI, IoT, and EC courses.

Software/
Environment

AI Courses IoT Courses EC Courses

Number Percentage Number Percentage Number Percentage

Aitech Sphinx 5 8% 0 0% 0 0%
Statistica 2 3% 0 0% 0 0%
Matlab 8 14% 1 8% 0 0%

Fuzzy logic toolbox 3 5% 0 0% 0 0%
Tableu 1 2% 1 8% 1 8%

Azure services 0 0% 2 15% 2 17%
Prolog 1 2% 0 0% 0 0%

PyTorch 1 2% 0 0% 1 8%
Arduino SDK 0 0% 2 15% 1 8%

Octave 3 5% 0 0% 0 0%
Tensorflow 2 3% 0 0% 1 8%

Docker 0 0% 0 0% 1 8%
IBM SPSS 1 2% 0 0% 0 0%
No data 32 54% 7 54% 5 42%

Table 3. Teaching methodologies of AI, IoT, and EC courses.

Software/
Environment

AI Courses IoT Courses EC Courses

Number Percentage Number Percentage Number Percentage

Lectures 39 46% 35 41% 36 42%
Lab activity 28 33% 27 31% 27 32%

Problem-based learning 1 1% 0 0% 0 0%
Project-based learning 11 13% 18 21% 16 19%

No data 6 7% 6 7% 6 7%

4.3. Research Questions

The main goal of the work was to evaluate how the knowledge from the field of AI, IoT,
and EC required by Industry 4.0 is transferred to students during the university teaching
process. For this work, the following research questions were defined:

RQ1: Which areas (AI, IoT, EC) are more and which are less taught?

RQ2: What topics and tools in the field of AI are taught and at what level?
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RQ3: What topics and tools in the field of IoT are taught and at what level?

RQ4: What topics and tools in the field of EC are taught and at what level?

RQ5: What methods are used in the teaching process related to the investigated area?

RQ6: How much are the real industrial problems met in the teaching process?

RQ7: What are the academic needs in the field of AI. IoT and EC and what could support
the teaching process?

The phrased research questions enable us to assess what and how is taught in the
analyzed areas. Additionally, it was important for the authors whether the teaching
process includes references to real industrial problems that can be solved using AI, IoT, and
EC technologies.

5. Results of the Survey

This section presents the results of the data collection process. First, we show a general
description of the survey participants. The following subsections contain answers to the
questions related to AI, IoT, and EC.

5.1. Survey Demographics

The questionnaire was distributed to the academics using two channels: named
invitations sent to selected persons and public announcements on the Internet requesting
to fill in the survey. One hundred forty-four (i.e., 144) persons filled in the questionnaire.
Fifty-eight participants answered that they do not teach AI nor IoT or EC. 86 responses
were used in further analyzes. They represent 17 countries (Figure 5). The higher number
of academics represents Poland (16), Italy (14), and Greece (13).
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Figure 5. The number of academics from countries surveyed.

5.2. General Overview

The number of academics teaching AI, IoT, and EC is presented in Figure 6. Regarding
the teaching of edge computing, three academics did not answer. Most of them (80% of
respondents) teach artificial intelligence, while edge computing is the least taught research
discipline. The teaching experience of the questionnaire respondents is shown in Figure 7.
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Figure 7. Academics’ teaching experience (86 answers in total).

About 50% of academics teach more than 20 years. The youngest placement persons
who teach less than 10 years make up 27.9% of all answers; 22.1% of answers belong to the
third category—teaching experience from 10 to 20 years.

5.3. Results Related to AI

Table 4 contains the answers to the question about disciplines used in teaching AI. The
most used disciplines are computer science, mathematics and logic, while the philosophy
of mind and linguistics are the least used disciplines.

Table 5 presents information about areas of AI that are taught by academics. The
most commonly taught areas are machine learning, deep learning, data mining, and
computational intelligence, while the least common are cognitive computing, natural
language processing, and computer vision.

Table 4. Disciplines of AI in teaching, 100% = 69.

To What Extent Do You
Teach the Following

Disciplines in the
Educational Process

of AI?

Not at All To a Small
Extent

To Some
Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No Answer

Philosophy of mind 44.9% 30.4% 13.0% 5.8% 1.4% 0.0% 4.3%
Cognitive modeling 31.9% 31.9% 20.3% 2.9% 7.2% 1.4% 4.3%

Mathematics 14.5% 14.5% 26.1% 21.7% 10.1% 11.6% 1.4%
Logic 8.7% 31.9% 20.3% 15.9% 10.1% 8.7% 4.3%

Linguistics 37.7% 30.4% 8.7% 11.6% 2.9% 1.4% 7.2%
Computer science 4.3% 8.7% 7.2% 10.1% 34.8% 34.8% 0.0%
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Table 5. Areas of AI in teaching, 100% = 69.

To What Extent Do You
Teach the Following

AI Areas?
Not at All To a Small

Extent
To Some

Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No
Answer

Machine Learning 2.9% 10.1% 15.9% 20.3% 26.1% 23.2% 1.4%
Deep Learning 21.7% 18.8% 8.7% 17.4% 17.4% 14.5% 1.4%

Data mining 11.6% 20.3% 18.8% 15.9% 20.3% 8.7% 4.3%
Computational intelligence 13.0% 17.4% 15.9% 20.3% 15.9% 11.6% 5.8%

Natural language processing 43.5% 18.8% 14.5% 11.6% 4.3% 2.9% 4.3%
Computer vision 39.1% 13.0% 15.9% 10.1% 11.6% 8.7% 1.4%

Cognitive computing 42.0% 24.6% 17.4% 8.7% 1.4% 1.4% 4.3%

Table 6 shows answers to the question about teaching machine learning techniques
used in artificial intelligence. Supervised and unsupervised learning techniques are taught
at most, while reinforcement learning and semi-supervised learning are not popular.

Table 6. Basic Machine Learning techniques in teaching, 100% = 69.

To What Extent Do You
Teach the Basic Machine

Learning Techniques?
Not at All To a Small

Extent
To Some

Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No
Answer

Supervised learning 8.7% 8.7% 8.7% 20.3% 21.7% 31.9% 0.0%
Semi-supervised learning 27.5% 21.7% 11.6% 17.4% 10.1% 8.7% 2.9%

Unsupervised learning 8.7% 21.7% 10.1% 17.4% 23.2% 17.4% 1.4%
Reinforcement learning 26.1% 30.4% 10.1% 17.4% 7.2% 5.8% 2.9%

Information about teaching deep learning models is presented in Table 7. Collected
data show that models contained in the question are not taught often. The most popular is
the convolution neural network which has 40% answers pointing out a small contribution in
teaching. This characteristic is even higher on the other models, omitted from the teaching
process of 45% up to 67% of academics. Answers may indicate that academics are teaching
other models than those presented in the questionnaire.

Table 7. Major Deep Learning models in teaching, 100% = 69.

To What Extent Do You Teach the
Major Deep Learning Models?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Convolution neural network 23.2% 17.4% 7.2% 18.8% 18.8% 13.0% 1.4%
Recurrent neural network 24.6% 23.2% 8.7% 21.7% 11.6% 10.1% 0.0%

Transformer 47.8% 18.8% 14.5% 11.6% 4.3% 0.0% 2.9%
Generative adversarial network (GAN) 50.7% 17.4% 10.1% 8.7% 7.2% 1.4% 4.3%

Table 8 presents answers to the question about teaching the phases of the data mining
process. Business understanding and deployment are skipped in the teaching process
as arises from the answers. The first mentioned phases are related to general business
management, while data mining is more bound to computer science. Academics who come
from IT disciplines may not be management experts. Deployment of data mining solutions
in a business requires conducting specific R&D work, which may be why this topic is not
popular in teaching.
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Table 8. Data mining phases, 100% = 69.

To What Extent Do You
Teach the Following Data

Mining Phases
(CRISP-DM)?

Not at All To a Small
Extent

To Some
Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No
Answer

Business understanding 42.0% 20.3% 7.2% 14.5% 13.0% 0.0% 2.9%
Data understanding 14.5% 13.0% 15.9% 20.3% 23.2% 8.7% 4.3%

Data preparation 14.5% 11.6% 23.2% 14.5% 20.3% 13.0% 2.9%
Modeling 5.8% 10.1% 20.3% 24.6% 18.8% 17.4% 2.9%

Evaluation 13.0% 8.7% 17.4% 21.7% 20.3% 14.5% 4.3%
Deployment 21.7% 23.2% 17.4% 14.5% 15.9% 1.4% 5.8%

Table 9 contains answers to the question concerning three main techniques of com-
putational intelligence (CI). Data show that teaching of CI focuses mainly on neural net-
works. Fuzzy systems and genetic algorithms make a more negligible contribution to
teaching programs.

Table 9. Computational intelligence issues, 100% = 69.

To What Extent Do You
Teach Computational
Intelligence Issues?

Not at All To a Small
Extent

To Some
Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No
Answer

Fuzzy systems 39.1% 21.7% 10.1% 11.6% 7.2% 5.8% 4.3%
Neural networks 7.2% 13.0% 14.5% 18.8% 23.2% 23.2% 0.0%

Genetic algorithms 30.4% 20.3% 11.6% 13.0% 8.7% 10.1% 5.8%

Data from Table 10 are consistent with Table 5. Academics attach little importance to
natural language processing (NLP), so NLP techniques are taught to a small extent.

Table 10. Natural language processing issues, 100% = 69.

To What Extent Do You Teach
Natural Language Processing

Issues?
Not at All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Speech recognition 62.3% 11.6% 10.1% 8.7% 1.4% 2.9% 2.9%
Natural language generation 66.7% 13.0% 7.2% 4.3% 4.3% 1.4% 2.9%
Natural language translation 68.1% 14.5% 7.2% 2.9% 2.9% 1.4% 2.9%

According to Table 5, computer vision and cognitive computing are faintly present in
teaching. So the techniques used in these areas of AI are also seldom discussed, as shown
in Tables 11 and 12. Some methods of computer vision appear in teaching.

Table 11. Computer vision issues, 100% = 69.

To What Extent Do You Teach
Computer Vision Issues? Not at All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Image classification 34.8% 11.6% 14.5% 10.1% 13.0% 15.9% 0.0%
Object localization and detection 40.6% 17.4% 5.8% 15.9% 11.6% 5.8% 2.9%

Image segmentation 44.9% 11.6% 13.0% 5.8% 13.0% 10.1% 1.4%
Domain adaptation 60.9% 14.5% 7.2% 8.7% 1.4% 4.3% 2.9%

Neural style transfer 63.8% 14.5% 7.2% 7.2% 4.3% 1.4% 1.4%
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Table 12. Cognitive computing issues, 100% = 69.

To What Extent Do You Teach
Cognitive Computing Issues?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Interactive task learning 52.2% 21.7% 7.2% 5.8% 8.7% 0.0% 4.3%
Game playing agents 58.0% 15.9% 11.6% 4.3% 8.7% 0.0% 1.4%

Meta-algorithms in cognitive
computing 58.0% 29.0% 5.8% 1.4% 2.9% 0.0% 2.9%

Data contained in Table 13 concludes that the most popular programming languages
for AI applications are high-level programming languages: Python and Matlab.

Table 13. Programming languages for AI applications, 100% = 69.

To What Extent Do You
Teach the Following

Programming Languages
for AI Applications?

Not at All To a Small
Extent

To Some
Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No
Answer

C or C++ 50.7% 8.7% 8.7% 10.1% 8.7% 7.2% 5.8%
Python 8.7% 23.2% 13.0% 14.5% 15.9% 23.2% 1.4%

Lisp 73.9% 7.2% 2.9% 1.4% 4.3% 0.0% 10.1%
Java 49.3% 11.6% 8.7% 11.6% 4.3% 4.3% 10.1%

Matlab 37.7% 10.1% 5.8% 14.5% 8.7% 15.9% 7.2%
Prolog 63.8% 4.3% 2.9% 5.8% 7.2% 5.8% 10.1%

R 63.8% 13.0% 4.3% 4.3% 1.4% 1.4% 11.6%

Other mentioned programming languages used in AI teaching are: (1) mentioned
once—Agent-Oriented programming languages (AgentSpeak, DALI), Julia, CLIPS, IDEF,
UML, Scala, SQL, Kotlin (Android); (2) mentioned twice—C#, Javascript.

Table 14 shows that academics use no universal software package to teach AI. Other
mentioned programming languages are: Apache Spark, BPMN, DTREG Predictive Model-
ing Software, EXSYS Professional, Google Colaboratory, IBM SPSS Modeler, Infor Coleman,
Intellij IDE, Jade, Jupyter, Keras, Knowledge Extraction based on Evolutionary Learning,
Minitab, Natural Language Toolkit, Netbeans, Node.js, NumPy, NY Dataset, Pandas, Post-
greSQL, Protégé, Pytorch, Rapidminer, Robot Operating System, Scikit-learn, Self-written
programs and algorithms, Sicstus Prolog, Spade, Tensorflow, Unity, Visual Studio, Waikato
Environment for Knowledge Analysis, YOLO: Real-Time Object Detection. We can see that
teachers work with standard programming environments (IntelliJ, Netbeans), specialized
AI systems (YOLO, IBM SPSS Modeler, Tensorflow), or write their software. Teachers use
varieties of programming languages and environments. According to Table 14, MS Excel is
a widely used tool.

Optimization, computer vision, and anomaly detection are the leading AI applications
that are taught by academics, as shown in Table 15. Analyzing the mentioned table, we
can say that the least discussed issues are deliveries, cognitive systems, and supply chain
management. Additional listed AI applications are as follows:

• Semantic web search,
• Unity,
• Smart environments,
• Cooperation and Negotiation among agents in Multi-Agent Systems,
• Churn prediction, business management,
• Text mining, data mining, machine translation, AI in humanities,
• Image translation, uncertainty modeling, manifold modeling, ensembles of NN,

Bayesian networks etc.,
• Biometric person identification, viral evolution prediction, remote sensing,
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• Numerous visual online demonstrators of methods,
• Medical diagnosis,
• Rule-based expert systems,
• Programming robots,
• Medical imaging, satellite imaging,
• Computer Aided Process Planning in Machining,
• Human-computer interaction, gesture and sign language recognition,
• IoT,
• Model-based diagnosis, Personal assistants,
• Modern Control Theory and Applications,
• Energy Systems,
• General Problem Solving,
• Arduino IDE.

Some answers can be classified as a computer vision application (medical and satellite
imaging, gesture and sign language recognition, image translation).

Table 14. Software/environment in AI teaching, 100% = 69.

To What Extent Do You Use
the Following

Software/Environment to
Teach AI?

Not at All To a Small
Extent

To Some
Extent

To a
Moderate

Extent

To a Great
Extent

To a Very
Great
Extent

No
Answer

AITECH SPHINX 81.2% 2.9% 0.0% 1.4% 1.4% 0.0% 13.0%
Statistica 71.0% 4.3% 1.4% 2.9% 4.3% 1.4% 14.5%
Matlab 34.8% 11.6% 8.7% 10.1% 11.6% 17.4% 5.8%

MS Excel 36.2% 21.7% 10.1% 8.7% 8.7% 2.9% 11.6%
Scilab 75.4% 7.2% 1.4% 2.9% 0.0% 1.4% 11.6%

RStudio 66.7% 8.7% 1.4% 2.9% 2.9% 1.4% 15.9%
SWI Prolog 63.8% 10.1% 2.9% 1.4% 7.2% 4.3% 10.1%
PyCharm 58.0% 13.0% 5.8% 5.8% 4.3% 4.3% 8.7%

Spyder 58.0% 10.1% 2.9% 1.4% 10.1% 2.9% 14.5%
Visual Studio Code 52.2% 8.7% 5.8% 11.6% 5.8% 2.9% 13.0%

Table 15. Teaching the applications of AI, 100% = 69.

To What Extent Do You Teach AI in
the Following Applications?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Manufacturing processes monitoring 44.9% 13.0% 13.0% 10.1% 5.8% 7.2% 5.8%
Deliveries 65.2% 4.3% 13.0% 1.4% 2.9% 4.3% 8.7%

Computer vision 44.9% 13.0% 13.0% 10.1% 5.8% 7.2% 5.8%
Scheduling problems 65.2% 4.3% 13.0% 1.4% 2.9% 4.3% 8.7%

Predictive maintenance 42.0% 7.2% 15.9% 4.3% 10.1% 14.5% 5.8%
Quality problems 40.6% 13.0% 14.5% 14.5% 5.8% 1.4% 10.1%

Supply chains management 42.0% 15.9% 13.0% 11.6% 4.3% 5.8% 7.2%
Anomaly detection 46.4% 11.6% 11.6% 17.4% 1.4% 2.9% 8.7%

Optimization 47.8% 18.8% 7.2% 7.2% 4.3% 1.4% 13.0%
Cognitive systems 31.9% 11.6% 18.8% 10.1% 15.9% 2.9% 8.7%

Autonomous systems 34.8% 23.2% 8.7% 5.8% 13.0% 8.7% 5.8%
Robots 40.6% 13.0% 11.6% 7.2% 10.1% 11.6% 5.8%

Table 16 presents learning techniques used in teaching AI. The primary learning
technique is a lecture, while problem-based learning and workshops are seldom used.
E-learning seems to be also quite popular. The reason could be the lockdown caused by the
COVID-19 pandemic.
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Table 16. Learning techniques in AI teaching, 100% = 69.

To What Extent Do You Use the
Following Learning Techniques to

Teach AI?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Lectures 0.0% 5.8% 10.1% 15.9% 36.2% 31.9% 0.0%
Labs 8.7% 4.3% 17.4% 14.5% 31.9% 20.3% 2.9%

Workshops 0.0% 5.8% 10.1% 15.9% 36.2% 31.9% 0.0%
Problem based learning 18.8% 2.9% 15.9% 13.0% 24.6% 20.3% 4.3%

E-learning 18.8% 8.7% 10.1% 14.5% 21.7% 21.7% 4.3%
Project Based Learning (team work) 33.3% 10.1% 11.6% 14.5% 11.6% 10.1% 8.7%

Project Based Learning
(individual work) 8.7% 4.3% 17.4% 14.5% 31.9% 20.3% 2.9%

5.4. Results Related to Internet of Things

This section contains the questions and the participants’ answers regarding Internet of
Things; 31 academics declared teaching IoT, which is 45% of the number of persons devoted
to AI. Fifteen teachers claim to be professionals in both AI and IoT (17% of the questionnaire
participants). Moreover, only two are experts in all of the three examined domains.

The goal of the first queries is to investigate which areas of IoT are the subject of
teaching (Table 17). Collected data show that too little effort is made to teach security
problems (searching for vulnerabilities, basic network attacks, cybersecurity).

Table 17. Teaching topics in the area of IoT, 100% = 31.

To What Extent Do You Teach the
Following Topics in the Area of IoT?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

General introduction to IoT 6.5% 3.2% 16.1% 32.3% 22.6% 16.1% 3.2%
Application scenarios of IoT 9.7% 9.7% 16.1% 16.1% 25.8% 16.1% 6.5%

IoT architecture 12.9% 9.7% 22.6% 19.4% 25.8% 6.5% 3.2%
IoT deployment 22.6% 16.1% 16.1% 12.9% 19.4% 6.5% 6.5%
IoT components 16.1% 16.1% 19.4% 12.9% 19.4% 12.9% 3.2%

M2M industrial IoT protocols 35.5% 16.1% 3.2% 19.4% 16.1% 6.5% 3.2%
Sensors 6.5% 22.6% 9.7% 22.6% 12.9% 16.1% 9.7%

Application development 16.1% 22.6% 12.9% 6.5% 19.4% 16.1% 6.5%
IoT maintenance 29.0% 32.3% 16.1% 3.2% 9.7% 3.2% 6.5%

Computer Networking 38.7% 19.4% 9.7% 9.7% 9.7% 9.7% 3.2%
Distributed processing in IoT networks 35.5% 9.7% 22.6% 19.4% 6.5% 3.2% 3.2%

Data analytics 25.8% 9.7% 9.7% 25.8% 12.9% 9.7% 6.5%
Cloud computing 25.8% 16.1% 19.4% 6.5% 16.1% 12.9% 3.2%

Databases development 22.6% 25.8% 9.7% 16.1% 9.7% 9.7% 6.5%
Data transfer protocols 29.0% 16.1% 12.9% 16.1% 16.1% 0.0% 9.7%

Knowledge management 32.3% 9.7% 12.9% 12.9% 22.6% 3.2% 6.5%
Cybersecurity 35.5% 22.6% 9.7% 12.9% 12.9% 3.2% 3.2%
Cryptography 54.8% 16.1% 3.2% 12.9% 3.2% 0.0% 9.7%

Basic network attacks 48.4% 22.6% 3.2% 9.7% 3.2% 6.5% 6.5%
Real time operating systems 38.7% 19.4% 9.7% 16.1% 9.7% 0.0% 6.5%
Searching for vulnerabilities 58.1% 12.9% 0.0% 12.9% 9.7% 0.0% 6.5%

Computer Networking 41.9% 16.1% 3.2% 16.1% 9.7% 9.7% 3.2%
IoT communication terminals

and gateways 29.0% 16.1% 16.1% 19.4% 12.9% 0.0% 6.5%

Table 18 contains answers to questions about teaching context IoT. Results point to
the fact that teachers could pay more attention to the issues concerning market behavior
and deliveries.
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Table 18. Context of Teaching the IoT, 100% = 31.

To What Extent Do You Teach IoT
in the Following Context? Not at All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Quality problems 38.7% 12.9% 22.6% 3.2% 9.7% 6.5% 6.5%
Machine condition monitoring 32.3% 22.6% 3.2% 12.9% 16.1% 6.5% 6.5%

Robotics 41.9% 9.7% 6.5% 12.9% 12.9% 12.9% 3.2%
Deliveries 48.4% 12.9% 12.9% 6.5% 6.5% 6.5% 6.5%

Market behavior 58.1% 12.9% 3.2% 9.7% 6.5% 3.2% 6.5%
Data management 19.4% 12.9% 16.1% 29.0% 12.9% 3.2% 6.5%

Support decision-making 25.8% 12.9% 12.9% 19.4% 22.6% 3.2% 3.2%
Process parameters monitoring 29.0% 12.9% 3.2% 12.9% 22.6% 9.7% 9.7%

Logistics 29.0% 19.4% 16.1% 9.7% 12.9% 6.5% 6.5%

Data presented in Table 19 shows how academics teach the application of IoT in
different technologies. The conclusion arising from these data is that more pressure should
be put on teaching topics concerning the deployment of IoT products and technologies in
the production environment (containers, SaaS, PaaS, IaaS).

Table 19. Teaching applications of IoT in different technologies, 100% = 31.

To What Extent Do You Teach IoT in
the Following Techniques?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Data processing and transformation 9.7% 16.1% 22.6% 22.6% 16.1% 6.5% 6.5%
Data display 25.8% 9.7% 22.6% 12.9% 12.9% 9.7% 6.5%

Industrial automation 32.3% 9.7% 25.8% 6.5% 9.7% 9.7% 6.5%
Anomaly detection 38.7% 16.1% 6.5% 12.9% 16.1% 3.2% 6.5%

IaaS (Infrastructure as a Service) 51.6% 16.1% 6.5% 6.5% 6.5% 9.7% 3.2%
PaaS (Platform as a Service 41.9% 19.4% 12.9% 6.5% 12.9% 3.2% 3.2%
SaaS (Software as a Service) 45.2% 16.1% 9.7% 6.5% 16.1% 3.2% 3.2%

Application Programming Interface 32.3% 9.7% 16.1% 16.1% 9.7% 9.7% 6.5%
Digital twins 32.3% 19.4% 12.9% 12.9% 9.7% 6.5% 6.5%

Big data management 32.3% 19.4% 22.6% 6.5% 9.7% 3.2% 6.5%
Containers and orchestrators (Docker,

Swarm, Kubernetes, EKS. . . ) 54.8% 9.7% 9.7% 9.7% 6.5% 3.2% 6.5%

Table 20 presents learning techniques used in teaching IoT. The primary learning
technique is the lecture, while problem based-learning and workshops are seldom used.
E-learning also seems to be quite popular. The reason could be the lockdown caused by the
COVID-19 pandemic.

Table 20. Learning techniques in IoT Teaching, 100% = 31.

To What Extent Do You Use the
Following Learning Tools to

Teach IoT?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Lectures 0.0% 9.7% 12.9% 19.4% 25.8% 32.3% 0.0%
Labs 25.8% 3.2% 9.7% 9.7% 29.0% 19.4% 3.2%

Workshops 29.0% 6.5% 19.4% 16.1% 6.5% 12.9% 9.7%
Problem Based Learning 35.5% 9.7% 12.9% 3.2% 19.4% 12.9% 6.5%

E-learning 29.0% 6.5% 16.1% 16.1% 6.5% 16.1% 9.7%
Project Based Learning (team work) 22.6% 9.7% 9.7% 9.7% 19.4% 25.8% 3.2%

Project Based Learning
(individual work) 16.1% 6.5% 22.6% 19.4% 12.9% 19.4% 3.2%
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Arduino is the most popular platform used in IoT teaching, as shown in Table 21.
Academics also teach applications of cloud services in the IoT area.

The high level of answers “not at all” to the question of application of Map Reduce
model denotes that IoT is probably treated as a technology for developing intelligent
sensors and processing data gathered by these sensors, and maybe, for this reason, it is not
in the teaching program of interviewed academics.

Table 21. Software/technology in IoT teaching, 100% = 31.

To What Extent Do You Use the
Following Software/Technology to

Teach IoT?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

MapReduce 67.7% 12.9% 6.5% 3.2% 3.2% 0.0% 6.5%
AWS Lambda 77.4% 6.5% 0.0% 6.5% 0.0% 3.2% 6.5%

Azure functions 61.3% 16.1% 9.7% 0.0% 3.2% 3.2% 6.5%
Arduino IoT 38.7% 6.5% 16.1% 0.0% 16.1% 19.4% 3.2%

Cloud Services & Serverless
Technologies (AWS, GCP, DigitalOcean,

Linode)
45.2% 9.7% 6.5% 3.2% 25.8% 3.2% 6.5%

5.5. Results Related to EC

Only eight persons replied to the questionnaire concerning edge computing. Therefore,
it is difficult to draw reliable conclusions from such a small number of responses. Therefore,
we will only present the responses obtained.

Table 22 informs that just like in the case of IoT, privacy and security are the topics
that could be more present in the study courses.

Table 22. Teaching topics in the area of edge computing, 100% = 8.

To What Extent Do You Teach the
Following Topics in the Area of

Edge Computing?
Not at All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

General concepts 0.0% 12.5% 12.5% 12.5% 25.0% 37.5% 0.0%
Privacy and security 12.5% 25.0% 12.5% 0.0% 37.5% 12.5% 0.0%

Scalability and reliability 0.0% 12.5% 25.0% 25.0% 12.5% 25.0% 0.0%
Speed and efficiency 0.0% 0.0% 25.0% 12.5% 37.5% 25.0% 0.0%

Applications 0.0% 0.0% 12.5% 25.0% 25.0% 37.5% 0.0%

Table 23 presents an overview of technologies used in the EC implementations. Other
mentioned technologies are as follows: AWS EC2 (low level), Azure (low level), Hadoop
(low level), Smart TV, and Playstation 5 Edge Computing. Academics teach these technolo-
gies equally.

Table 23. Technologies used in Edge Computing implementation, 100% = 8.

To What Extent Do You Teach the
Following Technologies Used in

Edge Computing Implementation?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Mobile Edge Computing 12.5% 37.5% 12.5% 12.5% 0.0% 25.0% 0.0%
Fog computing 25.0% 25.0% 12.5% 0.0% 12.5% 12.5% 12.5%

Micro data centers 25.0% 12.5% 25.0% 12.5% 12.5% 12.5% 0.0%
Container technology 12.5% 25.0% 12.5% 12.5% 12.5% 12.5% 12.5%

Azure edge 62.5% 25.0% 0.0% 0.0% 0.0% 0.0% 12.5%
Service composition and service

oriented computing 12.5% 12.5% 25.0% 25.0% 0.0% 25.0% 0.0%
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Table 24 presents algorithms and techniques. They are taught to an equal degree.

Table 24. Algorithms/techniques used in Edge Computing implementation, 100% = 8.

To What Extent Do You Teach the
Following Algorithms/Techniques

Used in Edge Computing
Implementation?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Distributed computing 0.0% 12.5% 37.5% 0.0% 25.0% 25.0% 0.0%
Distributed storage 12.5% 12.5% 37.5% 0.0% 25.0% 12.5% 0.0%

Reliability and fault tolerance 12.5% 25.0% 25.0% 0.0% 25.0% 12.5% 0.0%
Containerization 12.5% 37.5% 0.0% 0.0% 12.5% 25.0% 12.5%
Energy efficiency 12.5% 37.5% 0.0% 12.5% 12.5% 25.0% 0.0%
Data replication 12.5% 25.0% 12.5% 0.0% 12.5% 37.5% 0.0%

Efficiently collecting, aggregating, and
moving data 0.0% 37.5% 12.5% 0.0% 25.0% 25.0% 0.0%

Others 37.5% 0.0% 12.5% 25.0% 0.0% 12.5% 12.5%

Academics claim that students have practical skills in edge computing (see Table 25).
They do not use hardware/software platforms shown in Table 26. The EC topics are related
to the IoT. A popular IoT platform is Arduino (see Table 21), so it is possible that students
in edge computing projects also use Arduino. Other software/environments indicated
in the questionnaires as used in teaching. Edge Computing is Mobile Edge Computing
and Docker.

Table 25. Students’ skills in Edge Computing, 100% = 8.

To What Extent Your Students. . . Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

identify the challenges of edge
computing? 0.0% 37.5% 37.5% 0.0% 25.0% 0.0% 0

design an edge computing
architecture? 25.0% 25.0% 12.5% 12.5% 12.5% 12.5% 0

describe differences between edge, fog,
cloud and pervasive computing? 12.5% 25.0% 25.0% 12.5% 25.0% 0.0% 0

implement SW solutions using
edge-computing middlewares? 25.0% 25.0% 25.0% 12.5% 0.0% 12.5% 0

understand the strengths and
weaknesses of an EC architecture? 0.0% 37.5% 12.5% 25.0% 12.5% 12.5% 0

develop an edge computing project? 25.0% 25.0% 12.5% 12.5% 0.0% 25.0% 0
read papers related to edge

computing? 12.5% 37.5% 25.0% 0.0% 12.5% 12.5% 0

do data analytics in edge computing
environments? 25.0% 37.5% 12.5% 12.5% 12.5% 0.0% 0

Table 26. Hardware/software EC enabling platforms used by students, 100% = 8.

To What Extent Do Your Students
Use Hardware/Software Enabling

Edge Computing Platforms?
Not at All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

FPGAs 25.0% 37.5% 0.0% 12.5% 12.5% 0.0% 12.5%
Edge accelerators 25.0% 50.0% 0.0% 12.5% 0.0% 0.0% 12.5%
Azure IoT Edge 75.0% 12.5% 0.0% 0.0% 0.0% 0.0% 12.5%

AWS IoT Greengrass 62.5% 0.0% 12.5% 12.5% 0.0% 0.0% 12.5%
RTOS 62.5% 12.5% 12.5% 0.0% 0.0% 0.0% 12.5%
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Data shown in the Table 27 suggests that the edge computing issues are taught in
various applications. Moreover, teachers admit that they are implemented the following
projects related to edge computing:

• Conversational Agent,
• Supervised Electronic Exam System, which focuses on identity recognition and exam

security and starts in smartphones before clouding the data,
• Network optimization (in the context of performance and energy), mobile edge computing,
• E-health,
• Video streaming projects,
• Resilience in smart cities,
• Intelligent sensor systems in geosciences & health areas,
• FPGA based devices for intelligent signal processing.

Table 27. Teaching applications of Edge Computing, 100% = 8.

To What Extent Do You Teach Edge
Computing in the Following

Applications?

Not at
All

To a
Small
Extent

To Some
Extent

To a
Moderate

Extent

To a
Great
Extent

To a Very
Great
Extent

No
Answer

Autonomous machines 50.0% 0.0% 25.0% 12.5% 0.0% 12.5% 0.0%
Augmented reality 62.5% 25.0% 0.0% 0.0% 0.0% 12.5% 0.0%

Mobile agents (e.g., drones) 62.5% 0.0% 0.0% 25.0% 12.5% 0.0% 0.0%
Autonomous products 25.0% 25.0% 37.5% 0.0% 0.0% 12.5% 0.0%

Autonomy in energy networks 62.5% 25.0% 0.0% 12.5% 0.0% 0.0% 0.0%
Facial recognition algorithms 62.5% 12.5% 0.0% 0.0% 0.0% 25.0% 0.0%

Smart cities 25.0% 25.0% 25.0% 0.0% 0.0% 25.0% 0.0%
Industry 4.0 37.5% 25.0% 0.0% 12.5% 12.5% 12.5% 0.0%

Autonomous production
planning system 50.0% 37.5% 0.0% 0.0% 12.5% 0.0% 0.0%

Teachers indicated the most difficult in teaching Edge Computing are:

• Different Ecosystems.
• The various specification and resolutions of smartphones and internet connection.
• Motivating students for designing and implementing even such smaller models.
• Designing significant lab activities.
• Accessing to available technology freely.
• Deployment,
• Students tend to have a poor background in hardware design.

Answering the question about what may facilitate the teaching process of Edge Com-
puting, the teachers answered:

• Both, internship and joint projects could be effective to motivate students.
• Maybe limited but free access to well-known platforms may facilitate the teaching

process of Edge Computing.
• Joint projects with other institutions in academia or industry. Having free licensing

for students.
• Industrial use cases.

Answers to questions concerning difficulties and potential facilitations point to the
fact that edge computing is a new discipline and academics need cooperation with industry
to develop suitable study courses.

To summarize, it needs to be underlined that the presented analysis is performed
based on only eight answers coming from academics who teach Edge Computing, while
75 teachers answered that they do not teach Edge Computing.

6. Discussion

This section provides an overview of the research results and answers to the re-
search questions.
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Regarding the first research question (RQ1), from the presented survey results (see
Figure 6), it can be concluded that AI is the most taught. In 80% of questionnaires, teachers
indicated that they teach issues related to AI; 36% of teachers indicated that they teach
IoT, and only 9% of teachers indicated that they teach EC. The reason why so few teachers
teach EC-related topics may be that edge computing is a new domain of science, as Figure 8
shows (see [57]). Therefore, academics still have not adapted learning programs to the
new knowledge.
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Figure 8. Number of publications per year concerning EC (based on data from [57]).

Regarding the second research question (RQ2) the research results (see Figure 6)
showed that 80% of academics who participated have included AI teaching in their courses,
resulting in this scientific field being much more widespread in curricula than IoT and EC.
This is also evidenced by the fact that 78% of the total courses are AI-related (Figure 4). The
teaching process of AI is based mainly on concepts and principles of computer science,
mathematics, and logic (Table 4). In addition, most taught AI subsets are machine learning
(mainly supervised and unsupervised learning), deep learning, data mining, and compu-
tational intelligence (Table 5). Furthermore, in improving students’ practical skills, the
most taught programming languages for AI solutions deployment are Python and Matlab
(Table 13). At the same time, more attention has been paid to optimization problems,
computer vision, and anomaly detection for application areas (Table 15).

We have compared the results which we have obtained with other published works.
For example, the authors of [58] investigated the courses offered at the undergraduate
and postgraduate level by highly-rated schools such as Carnegie Mellon University, Mas-
sachusetts Institute of Technology (MIT), and University of California– Berkeley. According
to this study, these universities teach an average of 10 AI-related courses, with a greater
emphasis on machine learning (three courses per university), computer vision (two courses
per university), natural language processing (two courses per university), and robotics
(two courses per university). At the same time, each school offers at least one introductory
AI course and advanced courses like knowledge representation and automated reasoning.
However, contrary to the results of our questionnaire, deep learning is only offered at seven
of the 20 top-ranked schools, with the rest having included some deep learning topics in
their machine learning lectures.

A similar study was conducted by Cadoli and Carizzi, who did a questionnaire-based
survey about teaching AI in Italian universities [59]. Collecting data from members of
the Italian Association for Artificial Intelligence (AI * IA) and colleagues, the authors
investigated the number of AI courses taught in Italian higher education, the number
of students participating in them, and the educational level we encounter most of them.
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According to the paper results, AI courses are offered at 19 of the 80 universities, with
73 courses total. The 42 courses deal exclusively with AI topics and applications, while
the remaining 31 contain some relevant sections (to be precise, AI topics cover half of the
syllabus in these courses). Moreover, AI lectures are found at all higher education (HE)
levels (undergraduate, Master, and Ph.D.), with most of them taught in the postgraduate
program. Universities in Italy focus mainly on the basics of Artificial Intelligence, robotics,
automated machine learning, automated reasoning, and knowledge engineering. As it is
presented in [59], 3000 Italian students attend AI-related courses each year. This may be
due to recent advances in artificial intelligence, which have influenced student participation
in such courses.

The thorough search of the relevant literature yielded one more comprehensive re-
search work in which the Brazilian public universities’ approach in AI and its subjects
was investigated [60]. Explicitly analyzing the curriculum of 25 universities, the number
of courses related to the AI knowledge area was recorded (20 required and 30 elective
courses). At the same time, the topics to which more attention is given were identified. As
stated by the authors, machine learning, heuristic search, neural networks, and knowledge-
based/expert systems are the most popular research areas, unlike computer vision, where
it is not mentioned anywhere. Several professors also mention fuzzy logic without however
much deepening being done. Finally, an essential piece of information extracted from this
study is that most professors have difficulty finding practical examples, probably due to
the still little practical use of AI in industry or because enterprises are reluctant to share
information about AI applications. Hence, students do not learn enough techniques and
methods to implement AI applications, which is a significant barrier to implementing
Industry 4.0.

The results of the research were able to give us an answer to the third research question
(RQ3). Specifically, in the case of IoT, according to the questionnaire results presented
in Figure 6, we can observe fewer academic professionals than AI (36% of the survey
respondents is devoted to IoT, compared to 80% AI teachers). In addition to this, as shown
in Table 17, most curricula include IoT fundamentals and application scenarios, where IoT
technologies are employed without referring extensively to industrial case studies. From
the same table, we can conclude that teaching programs could contain more security issues,
while more emphasis could be placed on market behavior and deliveries (Table 18). In
addition, according to Table 19, universities should focus more on subjects concerning the
deployment of IoT products and technologies in the production environment (containers,
SaaS, PaaS, IaaS).

These results largely agree with similar surveys that have been conducted. Similar
research results were presented in [61], where the authors explored the IoT curriculum
offered by five out of the top public and private Malaysian universities. According to their
results, only the top two private universities (Asia Pacific University of Technology and
Innovation (APU) and INTI University) have included IoT courses in their undergraduate
programs. INTI International University offers a Bachelor (BSc) of Computer Science
(Hons) major in Cloud Computing, which deepens in areas such as machine-to-machine
(M2M) communications, Cloud Computing and Virtualization, Routing Protocols and
Concepts, Cloud Security, and others. On the other hand, APU also offers BSc (Hons)
in Information Technology, where the fundamentals of IoT such as networking, wireless
sensors, architectures, and network protocols have been integrated along with concepts
like localization and routing, and energy harvesting are taught.

Other researchers in China have concluded similar analyzes and results. Du, et al. [62],
investigates the undergraduate curricula in IoT Engineering in China. As reported in
this article, since 2011, almost all Chinese universities have merged IoT courses on their
academic programs (i.e., biased coverage mode) or developed a complete degree program
(i.e., full coverage). In the first case, the universities focus on specific IoT technologies
exploiting knowledge from broader disciplines such as Computer Science (CS), Electron-
ics Engineering (EE), Communication Engineering, and Automation Engineering. These
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courses emphasize IoT sensing and control technologies, like sensors, RFID, microcom-
puters, embedded systems, IoT networking, IoT wireless communications, information
sensing, and processing. Regarding the second group of universities, fundamental courses
inherited either from CS or EE or both are taught as well as new courses such as “Intro-
duction to IoT”, “IoT sensing technology”, “IoT control system and technology” and “IoT
systems integration and application”.

Regarding the fourth research question (RQ4), EC is weakly presented in teaching
programs since 22% of the reviewed university courses contain topics devoted to EC (see
Figure 4) while only 9% of the interviewed academics teach EC (see Figure 6). Precisely,
academics teach to a great or to a very great extent EC general concept, EC applications
as well as EC speed and efficiency (see Table 22). Technologies used in EC computing
implementations such as Mobile Edge Computing, Fog computing, Service composition
and service-oriented computing, Micro data centers, and Container technology are taught
equally. At the same time, the Azure edge is discussed the least concerning other tech-
nologies (Table 23). We also did not find related works in the literature that deal with the
inclusion of EC-related topics in higher education curricula. Consequently, researchers
need to identify the industry needs for EC knowledge and develop related study courses to
introduce relevant topics into the curricula.

Regarding the fifth research question (RQ5), the primary teaching method is lectures,
then project-based learning with teamwork. The least used technique is problem-based
learning since teachers have a low understanding of real industrial problems that could
be analyzed with students. The mentioned conclusions result from data presented in
Tables 3, 16 and 20.

Regarding the sixth research question (RQ6), according to the researchers’ responses,
the educational process does not focus on teaching how industrial problems can be solved
with AI, IoT, or EC. Specifically, the majority of educators do not focus on teaching AI
techniques for applications in deliveries, cognitive systems, supply chain management, and
quality problems. Respectively, as far as IoT is concerned, a high percentage of academics
have not included the teaching of IoT application in market behavior, deliveries, robotics,
quality problems, and machine condition monitoring in their courses. Given the EC, the
number of academics teaching it is not adequate. Besides, it is also worth noting that there
is not a sufficient number of practical courses where students can apply these technologies
properly in universities to prepare for the labor market. Therefore, the universities and
institutions have to bridge the gap between theory and practice, as well as develop a
modern curriculum with relevant courses that can meet the real market and industry needs.

However, apart from the results of this study, similar conclusions have emerged from
other relevant research. For example, the report [63] of the European Commission on
skills for Industry 4.0 argues that the current educational programs insufficiently address
critical areas such as modeling and simulation of manufacturing processes, equipment
running, troubleshooting, integration skills, quality management, emergency management,
industrial hygiene, risk assessment. Additionally, most academics do not have prior
experience in the industry, thus not delivering experience-led teaching [64]. However, a
significant barrier to implementing new teaching methodologies is the lack of adequate
capital and regular funding of educational institutes.

The universities and institutions have to build connections between theory and practice
and develop a modern curriculum with the most relevant courses that meet the real needs
of the market and industry. At the same time, in the context of the educational process’
alignment with the industrial needs, academics should collaborate with engineers from
industry on project-based learning approaches while bringing industrial practitioners into
universities to conduct lectures that will improve students’ practical skills. Nevertheless,
to achieve all of the above, there must be adequate financial support from government
agencies in educational institutions.

Regarding the last research question (RQ7), teachers need support with examples of
the practical application of AI, IoT, and EC, and they need in particular:
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1. Examples of computer vision, natural language processing and cognitive computing
applications in the industry.

2. Examples of applications of generative adversarial networks and transformer to solve
practical problems from industry.

3. Bound data mining to industry examples to show the importance of business under-
standing and deployment phases.

4. Examples of applications of fuzzy systems and genetic algorithms in computational
intelligence.

5. Examples of natural language processing application.
6. Examples of applications of computer vision and cognitive computing in Industry 4.0.
7. Examples of applications AI in cognitive systems, supply chains management, deliv-

ery in Industry 4.0.
8. Examples of AI applications in Industry 4.0 which can be used for workshops and

problem - based learning.
9. Examples of security issues related to Internet of Things.
10. Examples of issues concerning market behavior and deliveries in the IoT context.
11. Examples of current deployment of IoT products and technologies in the production

environment.
12. Examples of IoT applications in Industry 4.0 which can be used for workshops and

problem - based learning.
13. Examples of processing data gathered by intelligent sensors in IoT area.
14. Examples of edge computing possible applications in industry.

Industrial examples of AI, IoT, and EC can also support academics in better un-
derstanding of the topics to be better prepared for the teaching process. It should be
emphasized that the discussed technologies are new, and in many cases, teachers must
learn them by themselves before they start teaching students. Therefore, academics need
to collaborate with industry so that teachers understand what the new technologies can
be used for. Besides, teaching by example always produces the best results. Additionally,
teachers need comprehensive support in the literature describing applications examples of
the discussed technologies in solving practical problems.

7. Recommendations

The proposed research methodology has provided a global vision of the IoT, AI and
EC knowledge and skills being taught in academic institutions around Europe (and not
only), which was the study’s object. The collection and analysis of the data from the surveys
have given us answers to the research questions discussed in the previous section. These
findings highlight the need for certain aspects of the study to be addressed by academics
to offer better training for future Industry 4.0 workers. This section discusses potential
solutions and strategies to respond to our study’s needs, obstacles, and opportunities.

As shown in the previous sections, most of the existing study programs do not cur-
rently cover the pillars of Industry 4.0 (Artificial Intelligence, Internet of Things, and Edge
Computing) evenly. In particular, the IoT and EC are considerably studied less than AI. Not
surprisingly, this finding—which was already identified in the surveys conducted—also
appears when analyzing the interest over time of these three topics in Google Trends.

As shown in Figure 9, since 2011, the number of Google queries about “AI” has been
considerably higher than the number of queries involving “IoT” and/or “EC”. This is most
probably related to the maturity and real-world impact of these terms: while AI has been
used since the 1960s [65], the terms Internet of Things and Edge Computing were coined
almost 40 years later [20,66]. It is safe to say that nowadays, EC and IoT are still evolving
and finding their place in the industrial market.
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Figure 9. Interest over time in the terms “Internet of Things”, “Artificial Intelligence”, and “Edge
Computing” according to Google Trends. Data Source: Google Trends (https://trends.google.com/
trends), access date: 1 February 2022.

This “ever-evolving” trend hinders the incorporation of these topics (i.e., IoT and EC)
in academic curricula as what may happen is that by the time new curricula have been
updated and approved, the recently added topics may be outdated. In other words, in the
time required to prepare new content, train faculty members and obtain approval and/or
accreditation, the newly incorporated content is no longer applicable or useful for students.
Therefore, several techniques related to IoT and EC methods or areas (such as cybersecurity
in the context of IT, market and delivery behavior in the IoT, current IoT products and
technologies, or an analysis of IoT sensors’ data processing) are not adequately covered
in the contents. Neglecting these crucial topics in the contents of the subjects implies the
omission of exercises, case studies, practical cases, etc. (such as references to computer
vision, natural language processing, cognitive computing, generative adversarial networks,
and IoT applications), which would contribute to effectively training students to address
the challenges posed by Industry 4.0 successfully.

To cover this need, the authors of this paper propose that the continuous improvement
processes—that are in charge of reviewing and updating contents in higher education study
programs—focus more specifically on: (1) empowering collaboration models with external
agents, (2) adapting the technological infrastructure, and (3) training of the teaching faculty.
These three strategies are interrelated: while the first two may directly influence each
other’s evolution, they could also influence the third one.

To properly develop collaboration with external agents, especially with former stu-
dents [67], employers and stakeholders from different industry sectors [68–70] are con-
sidered vital. This strategy creates effective opportunities to design curriculum, identify
strengths/weaknesses, determine to what extent skills being taught meet real-world needs,
discover current/future trends, and even innovate and develop new teaching dynam-
ics. Furthermore, apart from contributing to the design and definition/refinement of
contents [67], such strategies can derive into workshops, class projects [71], case studies,
challenges such as a Final Thesis with expert mentoring [72], internship opportunities,
etc. This clearly shows how concepts can be incorporated into real-world scenarios and
how representatives from the fourth industrial revolution can be involved in the training
of future workers. In [71], the project-based industries are presented as dynamics that
provide specific benefits in terms of knowledge and understanding business needs. They
enable knowledge and skills to be applied in a professional environment. Knowledge and
technology transfer are encouraged simultaneously, thus promoting industrial innovation.
In [69], the benefits and motivations for both parties involved, the University and industry,
are described in financial, technological, and strategic terms:

https://trends.google.com/trends
https://trends.google.com/trends
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• For universities, the availability of new funding, the use of new infrastructures or
materials, the possibility of incorporating professional experience and new options to
offer a more practical learning methodology.

• For companies, cost reduction, risk sharing, access to new resources, headhunting,
bringing naive, fresh views (i.e., from students) to existing projects, and gaining a
more accurate vision of technological trends.

Universities have to consider that the benefits brought about by such collaborations
could lead to changes in the official definition of study programs and the planning and
description of teaching duties. The official definition could be subject to modification
due to the remodeling of certain aspects of the program, such as specific competencies,
modules, course and subject content, content describers, marking criteria and assessment
guides, training activities, and/or teaching methodologies. In terms of responsibilities,
obstacles to a new form of cooperation would undoubtedly arise, requiring time and effort
to be overcome. For example, the industry may favor developing work in a specific area.
At the same time, the universities may opt for another area, the industry may restrict
access to specific information that teaching faculty may deem necessary for the creation
of an effective learning methodology, or there could be discrepancies in the time scales
envisioned by one of the two parties [69]. These factors motivate the creation of long-
term collaboration agreements between industry and universities—without forgetting the
necessary confidentiality clauses and non-disclosure agreements to protect companies’
Intellectual Property.

The intrinsic characteristics (e.g., lack of standardization, heterogeneity, maintainabil-
ity) of the required infrastructure for teaching the concepts associated with Industry 4.0
(IoT, AI, and EC) may initially be barriers for universities. While acquiring AI knowledge
and its practical application may seem feasible through well-known software libraries (e.g.,
PyTorch, TensorFlow, sci-kit-learn, weka) and general-purpose computers, the IoT requires
certain elements and technologies which are not readily available. In the case of IoT, the key
elements [73] to develop knowledge and skills are: Identification, Sensing, Communication,
Computation, Services, and Semantics, which require technology such as sensors, wear-
ables, actuators, Arduino, Raspberry Pi, or Intel Galil. In light of this, universities must
invest in the specific design of their laboratories [74,75]. For example, in [74], various phases
of the creation of an introductory IoT laboratory are exemplified, while [75] shows the
results of a project based on the design of IoT exercises which incorporate the use of a wide
range of devices (such as Arduino, Voting machine, plane spotter, temperature monitor,
object tracking). In [73], an IoT laboratory is created (with Arduino, sensors, transducers,
actuators) to enable the practical teaching of several concepts of different subjects (such
as computer architecture and distributed systems). Similarly, in [76], the use of Virtual
Reality technology is presented in an application for mobile devices to facilitate a better
and more adequate understanding of the functionalities of Raspberry Pi. In order to obtain
the financial resources needed to invest in such equipment, the universities should consider
the advantages that working with industrial companies, institutions, and government
administration can bring in terms of access to resources/infrastructure, grants, and new
sources of funding. Notwithstanding, IoT and EC pose several challenges when conceiving
a hands-on learning environment for practical training in these areas. First and foremost,
these are transversal topics that cover different knowledge areas traditionally set apart in
engineering curricula [77]. This approach limits the capability of classic academic programs
to deliver in-depth knowledge in this area. For instance, IoT covers concepts ranging
from computer engineering to telecommunications engineering, including electronics and
cybersecurity. Similarly, EC covers concepts ranging from computer science to telecom-
munications engineering, including DevOps or computer engineering. These concepts are
difficult to find in undergraduate programs where students focus on a single discipline
(e.g., computer engineering). Second, despite the latest efforts to use Virtual Reality in IoT
training, the conception of a virtual lab in EC and/or IoT is still far from reality. Especially
compared to AI, it is possible to set up a powerful and low-cost training environment
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in less than five minutes [78] with little (or no) technical knowledge regarding hardware
configuration or software package installation. Deploying and maintaining an IoT and/or
EC laboratory would require a wide span of knowledge that might be difficult to find. Last
but not least, as far as budgets are concerned, IoT and EC devices are exposed to real-world
inclemency (e.g., students that apply wrong voltages). Although this also happens in any
other type of laboratory. Fixing the catastrophes of the real-world inclemency in an IoT
laboratory is considerably harder for students than rebooting a computer, deploying a disk
image on a hard drive, or even replacing a general-purpose computer (IoT devices, such
as Raspberry Pi, may take months to be delivered). Indeed, academic programs cannot
afford laboratory downtimes. This situation motivates the need of conceiving a (virtual) IoT
and/or EC laboratory in which interdisciplinary students can learn, experiment, and inno-
vate safely and effectively, fostering cross-layer interactions between students that would
make them better suited to address present and future Industry 4.0 real-world demands.

Proper training of the teaching faculty is of paramount importance when responding
to these needs. Teacher training goes hand-in-hand with the incorporation of new content
and vice-versa. Better prepared teachers could, in turn, create and develop more innovative
content. Once again, the challenge that needs to be addressed is the ever-evolving nature
of the concepts associated with AI, IoT, and EC. That is, during the time that it takes to
prepare new content for teacher training and train the teaching staff, these contents might
become outdated. Therefore, it is necessary to develop an agile methodology that can keep
up with the pace of this evolution and effectively deliver the content to students. In this
regard, we envisage the need for a strong collaboration between industry partners—who
are aware of market needs—research scientists—who are aware of the latest technology
achievements—and academics—who are aware of the most effective pathways to convey
knowledge to students.

Notwithstanding, it is worth considering that the recommendations discussed in
this section might not be applicable for all universities worldwide. Industry 4.0 training
requires a unique ecosystem in which companies (offering novel problems and challenges),
academic institutions (continuously adapting their curricula to meet market demands), and
students (willing to solve real-world problems) actively interact. For those environments
in which this ecosystem is unfeasible, this section provides a modest pathway toward
the definition of future improvement actions. In addition, the digitization of modern
education may contribute to fighting this situation. The authors, within the framework
of the Erasmus+ PLANET4 project, propose a blended (i.e., online + face-to-face) training
course that integrates AI in Industry 4.0, with a focus on the AC, EC, and IoT technologies,
including: (1) e-learning courses on the theory of AI and ML on the Edge Technologies,
(2) hands-on workshop for solving real industrial challenges, and (3) Innovation and
Change Management in Industry 4.0 training workshops. The training aspects are described
in more detail in Section 8.2.

8. Conclusions

This sections discusses the limitations of the presented research and proposes some
future work directions to extend this work.

8.1. Work Limitations

The first limitation identified in this work can be derived from Figures 2 and 5. That
is, collected data cover selected countries from Europe. This is because we have found
that it is unfeasible to reach the personnel associated with AI, IoT, and EC teaching areas
from all the universities reliably and efficiently. We have seen that several universities do
not publicly share the instructors’ (or Program Coordinators) names/email addresses on
their course programs’ websites, or the available data placed there are wrong/misleading.
Maybe, this could be motivated by the constant role changes in terms of training activities
to which academic staff is exposed. Also, the number of interviewed academics from the
same university is relatively small, which might give partial or biased views of the reality.
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This is because the knowledge areas (i.e., AI, IoT, EC) are very specific and, thus, there is
typically a small amount of personnel associated with them. However, we believe that
the amount of data that we have collected for this work can capture the current status
of Higher Education regarding these scientific fields. At the same time, one can see that
the geographical distribution of academics is not uniform. Knowing that the quality of
education differs significantly from country to country, it can quickly be concluded that
the research results are not trustworthy. However, analyzing them, we have seen similar
trends between data from different countries, which endorses the reliability of this study.

Similarly, we have examined training programs from selected universities in Europe.
Again, up-to-date syllabus details regarding these programs are often unavailable on public
websites. We understand that some universities see their syllabus as their Intellectual Prop-
erty and, thus, are averse to sharing this information in an out-of-control way, fearing other
universities to copy their training programs. However, we believe that a training program
is far more than a course syllabus and involves teaching methodologies, instructor skill set,
available facilities (e.g., laboratories), university added-value services, etc. Therefore, we
think that making the information related to training programs publicly available would
improve similar training programs from different universities (i.e., competency) and would
ease the exchange of students among universities.

This leads to the following limitation of this work. As envisaged in Figure 9, Artificial
Intelligence, Internet of Things, and Edge Computing are fields under constant evolution.
Day to day, new algorithms, technologies, and use-cases emerge as promising alternatives
to the current developments achieved so far. Typically, these advancements shape the
evolution of training programs. Therefore, the results presented in this work are limited to
showing the current picture of training in AI, IoT, and EC nowadays. Nonetheless, these
results should be taken as a starting point to build training programs for shaping the future
professionals of Industry 4.0.

8.2. Future Research

In order to address the limitations identified in the previous section, we propose a
two-fold approach. On the one hand, the number of universities involved in this research
could be increased by taking advantage of already existing communication channels, such
as the Erasmus+ framework, which connects training centers all over Europe. On the
other hand, setting up a virtual environment in which educational institutions would be
encouraged to upload the details—maybe in standardized public repositories—of their
training programs would ease the task of mapping academics and their skills.

In this work, we have explored the current role of academics in transferring knowledge
and skills on Artificial Intelligence, Internet of Things, and Edge Computing for Industry
4.0. In terms of hard skills, we have identified that IoT and EC are covered with less
emphasis than AI (see Figures 4 and 6). In terms of soft skills, we have seen that the field
of Innovation and Change Management (I&CM) (i.e., properly managing the adoption
of innovative solutions to reshape industrial processes) is not broadly incorporated. This
conclusion comes from the observation that topics related to AI, IoT, and EC are not related
to I&CM topics in university training programs. Therefore, it might be interesting to
develop a multidisciplinary training program in which students (from both academia and
industry) gain the necessary skills to bring value to Industry 4.0. Specifically, this course
could start with an Innovation and Change Management workshop in which groups of
students would (1) propose innovative ideas to solve Industry 4.0 challenges, (2) learn to
distinguish what is innovative, and (3) come up with the best way to implement—from a
perspective of both management and technical—these innovations in the industrial process.
Next, students would learn all the necessary skills to bring the latest achievements in AI,
IoT, and EC to real-world Industry 4.0 use-cases. This part should be split into two sections:
the first one aimed to train the technology fundamentals, and the second part aimed to
develop hands-on experience with these technologies. Finally, the course could end up
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with a Final Project mentored by an industry expert that would bring her/his insights and
experience to the student.

To sum up, this work considers the challenge of Industry 4.0 training from the aca-
demics (partial) perspective. Conducting similar research from the industrial and students’
points of view could contribute to obtaining (and complementary) a holistic view of the
whole situation. This would enable practitioners to draw broad conclusions that would
encompass the main stakeholders of training in Industry 4.0.
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