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Abstract— In this work, we introduce the Slopewise Aggregate 

Approximation (SAA), an innovative variation of the Piecewise 

Aggregate Approximation. The Slopewise Aggregate 

Approximation (SAA) is used as a novel core step for the Symbolic 

Aggregate Approximation method. SAA efficiently describes the 

trend at a time series signal since it incorporates information 

regarding the shape and fluctuation of the time series while 

simultaneously achieving the problem’s dimensionality reduction. 

Then, by applying the discretization technique, the problem is 

transformed into a symbolic space problem, and the Intelligent 

Icons are the features that come out and feed a Near Neighbour 

classifier for a Human Activity Recognition problem. The results 

achieved by the proposed method are directly compared to two 

relevant past implementations and exhibit a considerable increase 

in classification metrics.  

Keywords—Piecewise Aggregate Approximation, Symbolic 

Aggregate Approximation, Slopewise Aggregate Approximation, 

Intelligent Icons, Classification 

I. INTRODUCTION 

The Symbolic Aggregate Approximation (SAX) method is 
mainly an approach that transforms time series into symbols [1] 
and offers various advantages, such as the dimensionality 
reduction of the problem, which is achieved by implementing 
the Piecewise Aggregate Approximation technique. The SAX 
method [2] has met with wide approval due to its comparative 
advantages and intuitive nature; therefore, many researchers 
have dealt with it over time. As a result, various interesting 
variations have been developed that aim at optimizing the 
method. It is reasonable for the SAX method to have certain 
flaws. For example, on the one hand, there is a need for defining 
several parameters that affect the final result; on the other hand, 
the method bears an innate defect, namely the ability to provide 
information regarding abrupt changes in the data values of the 
initial time series. The latter is of particular importance, 
especially in cases where these changes correspond to patterns 
of behaviour that describe critical information about the under 
examination time series. 

Time series appear in many fields,  economic data are 
characterised by sharp fluctuations that are of significant 
importance for analyzing these data. A solution to this problem 
was proposed by introducing the ESAX [3], [4]. In addition to 

the symbol for the mean value, two more symbols were added 
that describe the maximum and the minimum value of a 
segment, respectively. Li et al. [5] suggested the TSX, which 
introduces three more symbols to represent a segment, to 
address the same issue. The first represents the slope of the line 
that joins the initial to the endpoint. The other two symbols 
describe the maximum distance of the points above and below 
this line. The TFSAX method [6] adds just one additional 
symbol representing the slope of the line joining the initial to the 
endpoint. 

The iSAX [7] is not exactly a variant but rather a superset of 
the SAX method, as it is a representation that supports the 
indexing of large data sets and can index up to one hundred 
million time series. In a later study [1], the authors showed that 
up to one billion time series could be indexed. Pham et al. [8] 
suggested αSAX and iαSAX. The first is a combination of the 
SAX algorithm and the k-means algorithm and addresses SAX's 
high dependence on the Gaussian distribution of time series. On 
the other hand, the iαSAX is nothing more than the iSAX-like 
indexing algorithm following the αSAX method. The SFA [9] 
relies on discretization through the discrete Fourier transform as 
it provides a statistically significant tighter lower bound and the 
ability to describe the signal more comprehensively due to the 
transition in the frequency domain. 

The GASAX [10] was proposed for the determination of 
boundary points using a genetic algorithm. GASAX’s goal is to 
find the nearly optimal distribution of breakpoints without 
assuming any particular distribution of the time series. Although 
the GASAX works well on both normalised and non-normalised 
time series data, appropriate control parameters must be 
specified, and it fails to include information about the current 
time series trend. Next, we find the 1d-SAX [11]. It essentially 
calculates the slope of the line of least squares (linear regression) 
in each segment and combines this value with the mean value of 
the segment so that, in the end, a single symbol emerges. In this 
way, the increase of complexity is avoided, as happens with 
other SAX variants, which add additional symbols. The TrSAX 
[12] is based on calculating the slope of the line of least squares 
in each segment; however, it assigns this value to an additional 
symbol.  
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The SAX-EFG algorithm [13] combines the SAX with a 
technique for producing features based on an evolutionary 
algorithm named EFG, which was used to generate particular 
attributes for classifying DNA sequences. Accordingly, the 
SAX-EFG uses patterns derived from SAX as building blocks 
to construct more complex features. The SAX-TD [14] also 
attempts to address the problem of losing the time series trend 
by calculating the deviations of the distances of the initial and 
the endpoints from the mean value between successive segments 
of the time series. The TSAX also deals with maintaining the 
trend of the time series. The TFSA [15] focuses on preserving 
most of the trend characteristics and patterns of the original time 
series. 

Zan & Yamana [16] proposed the SAX_SD, which adds an 
additional feature: a statistical measure, the standard deviation, 
and displays the distribution of points in each part of the time 
series. The APAA / ASAX method [17] uses a non-fixed 
segment size but an adaptable one to events of interest of the 
time series to avoid interrupting or prolonging them. The SAX-
BD [18] combines the advantages of the ESAX and the SAX-
TD using weighted boundary distance as a new distance measure 
to obtain a new time series representation. Finally, one of the 
most recent bibliographic references is the SAX-TM [19], which 
uses transition matrices to maintain information describing the 
time series trend. 

The Multichannel SAX Intelligent Icons [20] is an extension 
of SAX that can be applied in multichannel signals. In particular, 
it creates a spatial correlation of the inherited information in all 
dimensions, and so it provides extra features for distinguishing 
the human activities, a fact that leads to increased accuracy and 
sensitivity of the model.  

The remaining of the paper is structured as follows. Section 
II presents the main steps of the proposed methodology along 
with the existing one.  Section III briefly presents the steps for 
the original implementation of the SAX method and the 
extraction of the Intelligent Icons. In section IV, we introduce 
our innovative Slopewise Aggregate Approximation (SAA). In 
section V we give all the necessary information regarding the 
dataset used and the signals utilized, while in Section VI, we 
refer to the essential preprocessing that the signals underwent to 
be prepared to apply our method on them. Section VII provides 
all the classification results that came out after implementing the 
method, and finally, Section VIII concludes the paper with 
directions for future work. 

II.  OVERALL METHOD 

Fig. 1 presents the overall methodology. It illustrates where 
the proposed SAA is introduced to substitute the PAA.  The 
overall method consists of the following steps, as shown in Fig. 
1. In the first place, we use the raw signals, and the 
preprocessing stage takes place, which consists of applying 
noise removal filters for signal smoothing and the 
standardization technique. The data segmentation step follows 
by applying the sliding window technique that leads to an 
ensemble of windows. Afterwards, the process proceeds in 
parallel for comparison reasons. To elaborate, we apply the well-
known Piecewise Aggregate Approximation to reduce the 
dimensions of the problem, and in parallel, we apply the 
proposed technique, the Slopewise Aggregate Approximation 

(SAA). The discretization step comes next for each of the two 
paths, where a string of symbols represents every window of the 
signal. The feature extraction step consists of combining the 
intelligent icons as they were produced from each of the two 
approaches. The last step is classification. A KNN classifier is 
employed to predict the class of the inputs and ultimately 
evaluate the performance of our model.  

Fig. 1 The overall SAX method indicating the introduction of the proposed 
SAA 

III. CLASSICAL APPROACH   

A. The Symbolic Aggregate Approximation (SAX) method 

The SAX method was first established by Lin et al. [2]. It 
constitutes an approach that allows the symbolic representation 
of time series. Utilizing this methodology, we achieve to reduce 
the dimensions of a problem, which is of paramount importance 
considering its effect on the speed and efficiency of the 
employed algorithms. Moreover, several distance measures can 
be used (e.g., Euclidean, Manhattan, Minkowski) to compare the 
symbolic series (in the symbolic space) related to the distance 
measures of the initial time series. Besides, the existence of 
lower bounding is guaranteed by applying these distance 
measures [2]. As a result, a reduction in complexity and time 
required to calculate the distance is achieved. 

SAX method can be applied to time series of any length, 
while it can be implemented easily, with limited requirements 
for computational resources and memory capacity. Finally, it 
should be noted that its application does not require access to all 
database data, which makes it a viable option for processing and 
managing time series as streaming data [21]. 

The SAX method consists of the following steps: 

• Piecewise Aggregate Approximation 

• Discretization 

1) Piecewise Aggregate Approximation (PAA) 

The PAA is a technique that aims to reduce the dimensions 
of the problem [2], [22]. The main idea behind its application is 
to calculate the mean value of a set of points that make up a 
segment of the time series and finally replace that segment with 
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the calculated average value. In this way, we achieve the 
dimensionality and noise reduction of the problem while 
maintaining the trend of the time series. 

More specifically, with this technique, a time series 𝑋𝑋  of 
length 𝑛𝑛 is transformed into another time series 𝑋𝑋′ of length 𝑚𝑚, 
where 𝑚𝑚 < 𝑛𝑛.  𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}    𝑋𝑋′ =  {𝑥𝑥1′, 𝑥𝑥2′, … , 𝑥𝑥𝑚𝑚′}, 𝑚𝑚 < 𝑛𝑛, 

where 𝑥𝑥𝑖𝑖′ is calculated by the formula (1), which describes the 
calculation of mean value.   𝑥𝑥𝑖𝑖′ =  

𝑚𝑚𝑛𝑛 ∑ 𝑥𝑥𝑗𝑗𝑛𝑛𝑚𝑚𝑖𝑖𝑗𝑗=𝑛𝑛𝑚𝑚 (𝑖𝑖−1)+1   (1) 

In other words, to reduce the dimension from 𝑛𝑛 to 𝑚𝑚, we 
first divide the time series into 𝑚𝑚 equally-sized segments, and 
secondly, we calculate the mean value of each of the segments 𝑚𝑚, thus compressing the initial time series by a factor 𝑛𝑛/𝑚𝑚. The 
sequence resulting from the calculated mean values (called PAA 
coefficients) is the Piecewise Aggregate Approximation of the 
initial time series. 

2) Discretization 

At the discretization stage, which is the core of the SAX 
method, we essentially assign a symbol to each of the 𝑚𝑚 
segments (i.e., the PAA coefficients). 𝑋𝑋′ =  {𝑥𝑥1′, 𝑥𝑥2′, … , 𝑥𝑥𝑚𝑚′}    𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑚𝑚}, 

where 𝑋𝑋′is the time series of length 𝑚𝑚 as it resulted after the 
application of PAA, and 𝑆𝑆 is a string of symbols of length 𝑚𝑚 that 
will occur after the application of the discretization step. 

To do this, we first select the size of the alphabet, being 
symbolized as 𝜶𝜶. In other words, we choose how many symbols 
will be available. E.g., if 𝜶𝜶 =  3 (i.e., the size of the alphabet is 
equal to 3), then each segment can be represented by one of the 
'a’, ‘b’, ‘c’ symbols. If we choose an alphabet size 𝜶𝜶 =  𝑝𝑝, 𝑝𝑝 ∈ℕ,𝑝𝑝 ≥ 3, then let us consider the alphabet 𝛢𝛢 which will consist 
of the following symbols: 𝛢𝛢 = {𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, … ,𝛼𝛼𝑝𝑝}. 

Each symbol should have an equal probability of occurrence. 
Such a condition is ensured because we first normalize the time 
series; hence it follows the normal distribution [46]. Based on 
the alphabet size, we separate the space of real numbers in as 
many value areas as the size of the alphabet we chose. The 
breakpoints define the range of values of an area 𝛽𝛽𝑖𝑖 , with 𝑖𝑖 =
1, 2, … ,𝑝𝑝 − 1 , as they are obtained from the lookup normal 
distribution table (see Fig. 2) so that each area satisfies the 
condition for a value to have the same probability of belonging 
to one of them [23], [24]. More specifically, the area below the 
normal distribution curve between the values  𝛽𝛽𝑖𝑖  and 𝛽𝛽𝑖𝑖+1  is 
equal to 1/𝛼𝛼 [21]. 

 

Fig. 2 Lookup normal distribution table that contains the breakpoints 𝛽𝛽𝑖𝑖 
 At this point, we proceed to the transformation of real values 

to symbols consulting the formula (2). The overall process is 
depicted in Fig. 3 with application to a one-dimensional signal. 

𝑠𝑠𝑖𝑖 =  ⎩⎨
⎧ 𝑎𝑎1, 𝑖𝑖𝑖𝑖 {𝑥𝑥𝑖𝑖′ ∈ (−∞,𝛽𝛽1]𝑎𝑎2, 𝑖𝑖𝑖𝑖 {𝑥𝑥𝑖𝑖′ ∈ (𝛽𝛽1,𝛽𝛽2]

 ⋮𝑎𝑎𝑝𝑝, 𝑖𝑖𝑖𝑖 {𝑥𝑥𝑖𝑖′ ∈ (𝛽𝛽𝑝𝑝−1, +∞)⎭⎬
⎫

, where 𝑖𝑖 =  1, 2, … ,𝑚𝑚  (2) 

 

 

 

 

 

 

 

Intelligent icons 

“Intelligent icons” is a method that displays the results after 
applying the discretization step [25]. In this way, we calculate 
the frequency of occurrence of a symbol or group of symbols 
(called words) within a window by creating approximations of 
the underlying probability mass functions [26]. The words can 
be of different lengths, and the choice of length (let us define it 
as 𝑳𝑳) relies on the design, the resources availability, and the 
objectives of the researcher. In any case, the latter should pursue 
a balance between the model’s prediction accuracy and the 
computational cost required to calculate the intelligent icons. 

The steps followed for calculating the intelligent icons are: 

• We compute all the possible combinations of alphabet 
symbols that form all the possible words. The number 
of all the combinations is 𝜶𝜶𝐿𝐿. Therefore, if we choose 𝜶𝜶 = 3 and 𝑳𝑳 = 2, the number of all the possible words 
is 32 = 9, which are presented in TABLE I.  

TABLE I. The possible words that are formed after choosing 𝜶𝜶 = 3 and 𝑳𝑳 = 2 

aa ba ca 

ab bb cb 

ac bc cc 

b b c a a a …  

Fig. 3 Signal transformation from real numbers space to symbolic space 
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• Upon the completion of the discretization stage, a 
string of symbols is produced. For every word, we find 
the number of its appearances in the string. 

• Create a table that depicts in the corresponding position 
of TABLE I the frequency of occurrence of every 
word, as shown in Fig. 4.  

 

Fig. 4 The specific intelligent icon is calculated from the string ‘bbcaaacbbbb’. 
Each number shows the frequency of occurrence of the word that lies in the 
corresponding cell of TABLE I. 

IV. SLOPEWISE AGGREGATE APPROXIMATION 

Here, we introduce the Slopewise Aggregate Approximation 
(SAA) being a variation of the PAA technique. Unlike PAA that 
takes into account just the mean values of data points in every 
segment, SAA represents the time series trend by incorporating 
information related to the slope of a line that describes a 
segment. The proposed procedure is explained in more detail: 

Consider a data point as a point A in the cartesian 
coordinates system, which comprises an x-value (i.e., the value 
on the horizontal axis that in our case is time) and a y-value (i.e., 
the value on the vertical axis that in our case is the value that a 
quantity takes, e.g., linear acceleration or angular velocity). If 
we connect it with another point B in the above system, a vector 𝐴𝐴𝐴𝐴�����⃗  is formed (see Fig. 5), which is described by its magnitude 
and its direction. To define the direction of the vector, we 
calculate its slope, from which we can easily calculate the angle 𝜃𝜃 that the vector forms with the horizontal axis. 

 

Fig. 5 A vector 𝐴𝐴𝐴𝐴����⃗  in the cartesian coordinates system. A and B are the data 
points of the under-study time series.  

As it happens in PAA, the time series 𝑋𝑋  of length 𝑛𝑛  is 
divided into 𝑚𝑚 segments and finally is transformed into another 
time series 𝛩𝛩′ of length 𝑚𝑚, where 𝑚𝑚 < 𝑛𝑛.  

𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}    𝛩𝛩′ =  {𝜃𝜃1′,𝜃𝜃2′, … ,𝜃𝜃𝑚𝑚′}, 𝑚𝑚 < 𝑛𝑛. 

In short, with our technique, we transform the initial time 
series to angle values series. To do this, we connect the first 
point of each segment (this one will be the initial point of the 
vector) with all the other points (these will be the terminal 
points) of this segment to form vectors. Thus, we obtain vectors 
as follows:  

1st point  2nd point,  

1st point  3rd point,  

1st point  ………… 

1st point  last point of the segment. 

 To avoid losing the continuity of the signal, we form a 
different vector where the initial point is the first point of the 
current segment, and the terminal point is the first point of the 
next segment. Every vector forms an angle with the horizontal 
axis. Fig. 6 illustrates the above-mentioned.  

 
Fig. 6 By connecting every data point (asterisk *) in a segment with the first 
one within this segment, we form vectors indicated by the coloured lines. We 
calculate the angle 𝜃𝜃𝑖𝑖𝑗𝑗 that each vector forms with the horizontal axis (𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏𝑖𝑖). 

We calculate the angles of all the aforementioned vectors 
using the formulas that follow. We compute the following 
angles (in radians) examining the 𝑖𝑖 – segment that comprises 𝑛𝑛/𝑚𝑚 data points.   𝜃𝜃𝑖𝑖1 = tan−1(

𝑦𝑦𝑖𝑖2−𝑦𝑦𝑖𝑖1𝑥𝑥𝑖𝑖2−𝑥𝑥𝑖𝑖1), 𝜃𝜃𝑖𝑖2 = tan−1(
𝑦𝑦𝑖𝑖3−𝑦𝑦𝑖𝑖1𝑥𝑥𝑖𝑖3−𝑥𝑥𝑖𝑖1), 

………, 𝜃𝜃𝑖𝑖 𝑛𝑛𝑚𝑚 = tan−1(
𝑦𝑦(𝑖𝑖+1)1 − 𝑦𝑦𝑖𝑖1𝑥𝑥(𝑖𝑖+1)1 − 𝑥𝑥𝑖𝑖1) 

where: 𝜃𝜃𝑖𝑖1 is the angle of the vector that is determined from the 1st 
point (𝑥𝑥𝑖𝑖1 ,𝑦𝑦𝑖𝑖1) to the 2nd one (𝑥𝑥𝑖𝑖2 ,𝑦𝑦𝑖𝑖2),   

 𝜃𝜃𝑖𝑖2 is the angle of the vector that is determined from the 1st 
point (𝑥𝑥𝑖𝑖1 ,𝑦𝑦𝑖𝑖1) to the 3rd one (𝑥𝑥𝑖𝑖3 ,𝑦𝑦𝑖𝑖3),  

……, 
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𝜃𝜃𝑖𝑖𝑛𝑛𝑚𝑚 is the angle of the vector that is determined from the 1st 

point ( 𝑥𝑥𝑖𝑖1 ,𝑦𝑦𝑖𝑖1)  to the 1st one of the next segment 
(𝑥𝑥(𝑖𝑖+1)1 ,𝑦𝑦(𝑖𝑖+1)1). 

Then we compute the mean value of the angles in every 
segment according to the formula (3). 𝜃𝜃𝑖𝑖′ =  

𝑚𝑚𝑛𝑛 ∑ 𝜗𝜗𝑖𝑖𝑗𝑗𝑛𝑛𝑚𝑚𝑗𝑗=1   (3) 

 Now we proceed to the final step of the proposed technique. 
We replace every segment of the time series with a vector that 
has its initial point at the first point of the segment and forms an 
angle with the horizontal axis equal to 𝜃𝜃𝑖𝑖′, as it is depicted in 
Fig. 7. Thus, with this process, not only do we achieve the 
dimensionality reduction of the problem, but also we succeed in 
maintaining the trend of the time series, something evident by 
comparing the time series (black line) to the ensemble of the 
vectors formed (Fig. 7).  

 
Fig. 7 Every segment of the time series is replaced with a vector that has its 
initial point at the first point of the segment and forms an angle with the 
horizontal axis equal to 𝜃𝜃𝑖𝑖′. Red lines are the slope approximations, and the 
continuous black line is the signal.  

In a nutshell, the transformation stages that took place are: 𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}    𝛩𝛩 =  {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛}  

 𝛩𝛩′ =  {𝜃𝜃1′,𝜃𝜃2′, … ,𝜃𝜃𝑚𝑚′},  𝑚𝑚 < 𝑛𝑛. 

Then, the discretization step of the SAX method can be 
applied, which is followed by the intelligent icons extraction, 
which has been presented in detail in sections III.A.2 and III.B 
of the current document. The reader can find a comprehensive 
analysis in applying the steps of the SAX method in [20]. 

V. DATA SET USED 

The proposed method is tested with signals (which are time 
series) from a publicly available web database, the RealWorld 
(HAR) [27], that contains signals recorded by fifteen subjects 
(age 31.9±12.4, height 173.1±6.9, weight 74.1±13.8, eight 
males and seven females), who performed eight different 

activities: climbing stairs down and up, jumping, lying, 
standing, sitting, running/jogging, and walking. Here, we only 
utilized the signals produced from the accelerometer and the 
gyroscope of the device (triaxial linear acceleration and angular 
velocity). The sampling rate was set at 50 Hz. Every subject 
performed each activity roughly for 10 minutes except for 
jumping due to the physical exertion (~1.7 minutes). Concerning 
gender, the amount of data is equally distributed.  

VI. PREPROCESSING 

Raw data should undergo a preprocessing procedure in 
order for us to be able to apply the proposed method. The first 
step in the preprocessing phase is synchronizing sensor data, as 
the instants of gyroscope recordings increasingly deviate from 
those from the accelerometer as time passes.  

The filtering step is necessary to remove the unwanted noise 
and make the signal smoother without, of course, losing any 
critical points. In this direction, we applied a fifth-order median 
filter [28] and a fifth-order low-pass Butterworth filter with a 
20 Hz cutoff frequency [29], [30]. 

We then applied z-score normalization to the signal with a 
mean value of zero and a standard deviation value of one, since 
it is meaningless to compare time series with different offsets 
and amplitudes [24]. By this, we achieve to remove the 
distortions, namely the offset translation and the amplitude 
scaling, that has a negative impact on the results of the activity 
recognition tasks [31]. 

A. Data segmentation 

A common technique that is applied for signal segmentation 
in classification problems for activity recognition is the “sliding 
windows” technique [32], [33]. Therefore, we segmented the 
filtered and z-normalized signals into sliding windows of the 
same duration 𝑇𝑇  (we chose 2.56 seconds). The windows are 
segmented successively with 50% overlapping percentage. 
Considering that the sampling rate of the signal is 50 Hz, we can 
easily calculate the number of data points that comprise a 
window, that is, 50 Hz * 2.56 sec = 128 data points. Fig. 8 
illustrates the shape of the signal at one specific window and the 
corresponding data points.  

 

Fig. 8 One window of 128 data points (=2.56 sec) of the linear acceleration 
signal at x-dimension.  
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Then, we are able to implement our proposed method in 
every time window of each signal, namely the SAA technique, 
followed by the discretization stage, and finally, the extraction 
of the intelligent icons.  

VII. RESULTS 

The table of features that functions as the input to a classifier 
is composed of the intelligent icons produced after the SAX 
implementation. We employed a 1-Nearest Neighbour classifier 
in order to examine the prediction accuracy and sensitivity of the 
model. We point out that our goal is not to achieve the best 
scores of classification metrics (so we do not focus on finding 
the best classifier) but rather to compare the proposed SAA 
method with existing ones. Thus, we conduct a two-direction 
comparison; that is, comparing the proposed method with: 

• SAX [2] 

• Multichannel SAX Intelligent Icons [20]. 

Both of them have been implemented in [20]. For that 
reason, to be absolutely fair, we used the exact same signals and 
parameters’ values in all implementations, which are depicted in 
TABLE II.  

TABLE II. The values of the parameters that are used in all the 
implementations. 

Window duration 𝑇𝑇 2.56 sec 

Data points/window 𝑛𝑛 128 

Segments/window 𝑚𝑚 32 

Alphabet size 𝒂𝒂 4 

Word length 𝑳𝑳 3 

  Just like in [20], we randomly separated the table of 
features to obtain a training dataset and a testing dataset. The 
training dataset consists of randomly extracted 80% of the 
features of every class, and the remaining 20% constitutes the 
testing dataset. 

We repeated the execution of the Nearest Neighbour 
algorithm ten times, and TABLE III depicts the average 
classification accuracy of the three models along with the 
relevant standard deviation (STD). The results of the first two 
models are obtained from [20].       

TABLE III  The comparison table of the accuracy values that each one of the 
models under examination achieved.  

ACCURACY (%) 

SAX Multichannel SAX SAA SAX 

MEAN STD MEAN STD MEAN STD 

90.13 0.20 92.39 0.24 96.00 0.19 

 
Table II shows that the proposed SAA-SAX method 

surpasses both the classical SAX and the Multichannel SAX. 
SAA-SAX achieves better results in terms of accuracy while it 
exhibits the lowest standard deviation value. 

Figure 9 (Fig. 9a, Fig. 9b, Fig. 9c) presents the confusion 
matrices that are extracted after the repetition of the KNN 
classifier ten times.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Total confusion matrix of the three methods: SAX (a), Multichannel 
SAX (b), and SAA SAX (c). The last two columns display the percentage of 
correctly and incorrectly classified observations for each predicted class. The last 
two rows display the percentage of correctly and incorrectly classified 
observations for each true class. 
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TABLE IV depicts the average and standard deviation 
values of True Positive Rates (TPR) (or sensitivity) for the three 
approaches for each activity after the ten repetitions.   

TABLE IV Total comparative table between our method and single-channel 
intelligent icons approach 

 
T P R (%) ± STD (%) 

SAX 
Multichannel 

SAX 
SAA  
SAX 

Climbing 
down 

92.51 ± 0.88 95.70 ± 0.63 97.28 ± 0.26 

Climbing up 92.47 ± 1.04 94.70 ± 0.98 96.11 ± 0.94 

Jumping 95.89 ± 1.18 96.89 ± 0.91 96.76 ± 1.11 

Lying 89.92 ± 0.74 92.10 ± 0.37 96.81 ± 0.48 

Running 97.19 ± 0.44 97.69 ± 0.46 98.66 ± 0.20 

Sitting 80.20 ± 0.75 83.87 ± 0.59 92.66 ± 0.81 

Standing 81.62 ± 1.03 85.13 ± 0.91 92.20 ± 0.51 

Walking 96.11 ± 0.50 97.22 ± 0.33 98.15 ± 0.43 

MEAN 90.74 ± 0.82 92.91 ± 0.65 96.08± 0.59 

Table IV proves that SAA SAX scores the best in terms of 
the model’s sensitivity and each activity’s sensitivity (only 
“Jumping” keeps the score at the same level), exhibiting a 
notable increase. In addition, the standard deviation of the 
observed values is kept low to acceptable levels, indicating the 
robustness of the model. 

The most remarkable increase in the results is observed in 
the activities “Sitting” and “Standing”, which are 92.66% and 
92.20%, respectively. For these activities, SAA SAX improves 
the classification sensitivity by 10% in comparison to SAX and 
Multichannel SAX. This is very useful, considering that 
distinguishing these two activities is a common problem in 
Human Activity Recognition tasks, and they are often described 
as non-dynamic activities [29]. Nevertheless, there are leakages 
between the two above mentioned activities, as shown in Fig. 
9c. However, they are limited to a great extent compared to the 
other two approaches. Another noteworthy observation 
concerns the activity “Lying”, where the sensitivity increases by 
about 5%.  

VIII. CONCLUSIONS 

This study introduces the Slopeewise Aggregate 
Approximation (SAA) as a variation of the Piecewise Aggregate 
Approximation (PAA). Instead of extracting information related 
to the mean value of a set of data points, SAA achieves to 
capture the trend of the signal (time series) by, in a sense, 
calculating the rate of change of the signal. Then the results are 
discretized by assigning a symbol to each value, and finally, the 
Intelligent Icons are extracted.  

The proposed approach SAA-SAX is successfully applied 
and tested to a Human Activity Recognition classification 
problem.  

 The results of our experiments, which are obtained after 
performing the Nearest Neighbour classification, indicate that 
the proposed approach achieves a substantial increase in 

accuracy and sensitivity rates compared to the classical SAX and 
Multichannel SAX demonstrated in [20]. Significantly, static 
activities, such as “sitting”, “standing”, and “lying” that exhibit 
difficulty in correctly classifying them, are benefited the most 
from the proposed SAA-SAX method.  

An issue significant to mention concerns the pre-definition 
of the set of parameters whose values directly affect the final 
result. Here, we used the parameters' values of the previous work 
[20] to compare the proposed SAA-SAX.   

To sum up, we proposed the SAA-SAX, a novel variation of 
SAX that achieves and integrates information regarding the 
trend and shape of the under examination signal. The algorithm 
is simple to implement, yet intuitive, which has a positive impact 
on computational and complexity costs. 
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