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Abstract—In this work, we introduce the Multichannel 

Intelligent Icons, a novel method for producing and presenting 

essential patterns of multidimensional bio-signals. The proposed 

approach is an extension of Symbolic Aggregate Approximation 

(SAX) along with an innovative variation of Intelligent Icons. The 

innovation on the approach stands on the grounds of creating a 

spatial correlation of the inherited information in all dimensions 

and so it provides extra features for distinguishing the human 

activities. The proposed model is testing on Human Activity 

recorded data and for the classification purposes a Nearest 

Neighbour classifier is applied. The achieved results are compared 

with the case of applying single-channel intelligent icons approach 

and it is inferred a noteworthy increase in terms of accuracy and 

sensitivity with the proposed approach.   

Keywords—Human Activity Recognition, Symbolic Aggregate 

Approximation, Multichannel Intelligent Icons, Classification. 

I. INTRODUCTION 

In recent years there has been a great deal of interest in 
analyzing and monitoring peoples’ daily activities so that to 
better understand their health conditions, provide help in times 
of need and/or prevent serious health problems [1]. Promoting 
healthier lifestyles (e.g. encouraging exercising), preventing 
stressful activities, detecting anomalous human behaviors (e.g. 
fall detection) or tracking health conditions (e.g. mobility 
worsening due to ageing or illnesses) are some of the various 
cases that profit from monitoring and inference of human health 
behavior [1]. Everyday human activity behavior modeling is 
implemented through a process called Human Activity 
Recognition (HAR) [2]. HAR is defined as the automatic 
detection of any everyday physical activities. The daily activities 
such as walking, running, sitting, lifting, climbing stairs up and 
down, cycling, etc. are easily identified using sensors that gather 
the various signals describing any human movement [1]. 

Researchers divide activities into static, dynamic, and 
transitional. Static activities are those whose the posture is stable 
for a period of time such as standing. Dynamic activities include 
physical movement such as walking. Transitional activities are 
restricted to changing between static activities, e.g. the transition 
between standing and sitting [3]. 

HAR is mainly distinguished in two types: video-based HAR 
and sensor-based HAR. The first one analyzes videos containing 
human motions captured with camera [4], whereas sensor-based 
HAR take advantage of sensors such as an accelerometer, 

gyroscope, sound sensors, etc. Due to the rapid growth of sensor 
technology, sensor-based HAR is constantly gaining ground [5]. 

One of the main directions to design and develop models 
capable of recognizing human activity is the usage of machine 
learning methods. Machine learning methods seem to offer 
better results in the extraction of information and in the 
recognition of an activity compared to the techniques derived 
from mathematics and statistics [6]. The solutions proposed 
based on machine learning algorithms range from the shallow 
algorithms to the deep learning algorithms lately [7]. 

Shallow algorithms manually configure the data 
segmentation, the noise reduction, the feature extraction and 
feature selection steps, while deep learning algorithms are able 
to implement all the above mentioned automatically. This 
resulted in the increase of the efficiency of classification models 
and the reduction of the human influence on HAR solutions. The 
main issue for both is the need of high  computational resources 
related to memory and processing, especially for applying deep 
neural networks [5, 7].  

The attempts to represent time series as symbols arose from 
the fact that the conversion of real signals into discrete ones 
gives to the researchers the opportunity to make use of the vast 
wealth of algorithms that have been implemented to handle 
similar representations [8]. Furthermore, symbolic 
representation algorithms allow a massive amount of data to be 
reduced down to a reasonable and representative number of 
symbols [9]. This contributes in the reduction of the complexity 
and computational cost of HAR solutions. 

Symbolic Aggregate Approximation (SAX) method is an 
approach that allows the transformation of time series into 
symbols [9]. With this technique, the dimensionality of the 
problem is reduced, which positively affects the speed and 
efficiency of the machine learning algorithms used [10]. In 
addition, distance measures (in the symbolic space) can be used 
in correspondence to the distance measures of the original time 
series [9]. Finally, with the applied method for calculating the 
Euclidean distance there is a lower bounding guarantee [11]. A 
further step of SAX that has been introduced is intelligent icons 
technique for allowing lite-weight visualization and data mining 
[12]. 

Some applications of SAX  that we came across during the 
literature review, include the diagnosis of  rolling element 
bearings [13] and the automated detection of phasic activity 



during sleep [14], while another one takes into account the 
measurement uncertainty of the method [15].  

In this work we introduce a novel method for constructing 
the intelligent icons in the case of multi-dimensional signals. 
While the single-channel method [12] builds one matrix for each 
dimension, the proposed approach simultaneously takes into 
account all the dimensions and creates the relevant matrix. Thus, 
the signal is described more effectively as the information is 
derived from all dimensions. We will demonstrate that our 
method presents better results in a HAR classification problem 
in comparison to the single-channel SAX approach.  

The rest of this paper is organized as follows. Section II 
presents the basic steps of the method we propose. Section III 
describes the nature of the tested signals and the necessary 
processing we applied. In section IV we describe the Piecewise 
Aggregate Approximation, while in section V the SAX 
discretization stage takes place. Section VI provides the basic 
idea of computing intelligent icons and in section VII we present 
the proposed integrated  method for symbolic representation. 
Section VIII is dedicated to describe the classification method 
we apply and section IX provides a brief description of the 
database we used and the data containing. In section X we 

demonstrate the evaluation of the method using some 
classification metrics. Section XI concludes the paper with 
directions for future work. 

II. METHODS 

The proposed method consists of the following steps. First, 
we preprocess the raw signals (accelerometer, gyroscope) by 
applying noise removal filters for signal smoothing. Right after 
that, the signals are being standardized and data segmentation is 
following that leads to an ensemble of windows. Then the 
Piecewise Aggregate Approximation (PAA) procedure is 
employed in order to reduce the dimension of the signal. PAA is 
an intermediate step that leads to the core of the Symbolic 
Aggregate Approximation (SAX) method, i.e. the discretization 
phase, where a string of symbols is produced for each window 
of the signal. The last step is the computation of the intelligent 
icons, where we compute them using both the single-channel 
SAX technique and the here proposed method. The latter are 
combined to form a table of features that consist the input of a 
KNN classifier that predicts the class (activity) of inputs. Fig. 1 
illustrates the main steps of the integrated method. 

 

Fig. 1.  The overall structural processing steps for the proposed method

III. SIGNAL USED 

The proposed method is tested with signals from a publicly 
available web database [16, 17] that contains triaxial linear 
acceleration and angular velocity signals recorded from the 
accelerometer and the gyroscope of the device at a sampling rate 
of 50 Hz. This rate is sufficient for capturing human body 
motion since 99% of its energy is contained below 15Hz [18]. 
These signals were recorded by fifteen subjects conducting eight 
different activities: climbing stairs down and up, jumping, lying, 
standing, sitting, running/jogging, and walking. The signals 
were recorded in three axes. Fig. 2 illustrates a fraction of 
accelerometer and gyroscope signals for x, y, z axes 
respectively, from a randomly chosen activity (running).  

 
(a) 

 
(b) 

Fig. 2 Accelerometer signal (a) and gyroscope signal (b) (1000 points 

depiction), x, y, z directions respectively for the running activity 

A. Pre-processing 

The first step in the preprocessing phase is the 
synchronization of sensor data. This is necessary when multiple 
sensors are used, since the data from the sensors are not all 
received at the same time. The procedure that is described 
below is followed for each of the three discrete signals of each 
sensor, so we handle six separate signals. Fig. 3 illustrates the 
accelerometer signal for the x-dimension derived from the first 
subject of the database recorded when running. 



 
(a) 

 
(b) 

Fig. 3. Illustration of the beginning (a) and the end (b) of the accelerometer 

signal. 

One can easily observe at Fig. 3, that at the beginning and at 
the end of the accelerometer signals there is a small part that did 
not resemble the pattern of the rest of the signal, but it shows 
relative calmness. This is a transitional condition that it normally 
occurs until each person enters the normal pace of the activity. 
Since these parts do not contain information that describe any 
activity, we exclude them. More specifically, 2% of all points 
are deducted from the beginning and the end of the signals. The 
latter percentage resulted after conducting tests with the 
objective the less possible useful signal be lost. The same 
procedure is followed for the gyroscope signals. 

Afterwards, raw data are filtered using a fifth order median 
filter [19] and a fifth order low-pass Butterworth filter with a 20 
Hz cutoff frequency [2, 20]. Fig. 4 displays the signal before and 
after applying the previously mentioned filters. 

 
(a) 

 
(b) 

Fig. 4. The filtering process (a) The original and (b) the noise canceled 

accelerometer signal respectively 

B. Standardisation 

After the filtering of the signal, i.e. accelerometer, 
gyroscope, a z-score normalization step takes place. This is a 
standard procedure for the SAX algorithm in order to remove 
the distortions, namely the offset translation and the amplitude 
scaling, that has negative impact on the results of the activity 
recognition tasks [21]. 

We z-normalize each time series to have a mean of zero and 
a standard deviation of one since it is meaningless to compare 
time series with different offsets and amplitudes [11]. Eq. (1) is 
used to z-normalize the time series [22]. 

𝑇𝑛𝑜𝑟𝑚 =
𝑇− 𝜇

𝜎
 (1) 

where: 𝑇 is the original time series, 𝜇 is the mean value of time 
series variables, and 𝜎 is the standard deviation of the time series 
variable. 

C. Data segmentation 

We segment the filtered and standardized signal into sliding 
windows of the same size [23, 24]. The time windows are 
segmented successively without overlapping and with 
overlapping of 50% degree, in order to compare both cases for 
our test data. On the one hand, the overlapping technique 
provides us more data for training our classification model, and 
on the other hand the time series are scanned thoroughly, thus 
avoiding the loss of critical points that characterize the signal. 

We choose the time window duration to be 2.56 seconds. 
Taking into account that the sampling frequency of the signal is 
50 Hz, we can easily calculate the number of data points that 
consist a window, that is 50 Hz * 2.56 sec = 128 data points. Fig. 
5 illustrates the segmentation into windows of 128 data points. 

 

Fig. 5. Window Segmentation for the signal 

Then, by considering that the filtered signal is an L-length 
time series and N is the number of points that we have chosen to 
make up a window, therefore the number of windows W that the 

time series is divided is given by 𝑊 =
𝐿

𝑁
. 

IV. PIECEWISE AGGREGATE APPROXIMATION 

Below, for consistency, we list the symbols we use in our 
analysis. 

𝐿: Length of the time series  
𝑁: Window length  
𝑊: Number of windows the time series is segmented 
𝑛: Number of symbols of each window 
𝛼 ∶ Size of alphabet  



Right after the segmentation, the PAA algorithm [8, 11] is 
applied to reduce the data dimensionality. The PAA steps are 
described below: 

1. Choose the number of symbols 𝑛  that represent each 
window. 

2. Divide each window into n segments of length N/n. 
3. Calculate the mean value of data points in every segment, 

given by Eq. (2) 

𝑥�̅� =  
𝑛

𝑁
∑ 𝑥𝑗

𝑁

𝑛
𝑖

𝑗=
𝑁

𝑛
 (𝑖−1)+1

  (2) 

where: 𝑥�̅� is the mean value of every segment, 𝑥𝑗  is the given 

value of data point 𝑗 , 𝑁  is the number of data points in a 
window, and 𝑛 is the number of symbols represent the window.  

As a consequence, from each window a vector of length 𝑛 is 
derived. These are the PAA coefficients. 

In this specific analysis, we have chosen 𝑛 = 32, so each 
window is represented by 32 symbols. As a result, the 
compression ratio is 128 / 32 = 4. Fig. 6 depicts the signal and 
its PAA illustration for a specific window. 

 

Fig. 6.  Signal and PAA depiction (single window) 

V. SAX - DISCRETIZATION STAGE 

During the discretization stage, we essentially assign a 
symbol to each PAA coefficient, which has produced at the 
previous step. To do this, we select the size of the alphabet 𝛼. In 
other words, if we choose the number of symbols e.g. 𝛼 = 4, 
then each PAA coefficient can be represented by one of the 
following symbols ‘a’, ‘b’, ‘c’, ‘d’. 

Each symbol must have an equal probability of occurrence 
[8]. This condition is ensured by the fact that the samples after 
normalization follow the same normal distribution. Based on the 
size of the alphabet size we can choose the cut zones βi 
(breakpoints) obtained from the table of normal distribution [25] 
as shown at Fig.7. Breakpoints define a bin in which an alphabet 
letter is assigned. 

In the PAA stage, we set the n = 32 for each window. We 
match each value to a symbol based on the region it belongs. In 
this way a window is now represented by a sequence of symbols, 
in other words we transformed our problem from a real value 
problem to string problem. Fig. 8 comprehensively illustrates 
the procedure described and its results.  

 

 

Fig. 7. Lookup table that contains the breakpoints 

 

Fig. 8. Signal, PAA, breakpoint lines, symbols illustrated all together 

Finally, the string produced after applying SAX is provided 
below (referring to a single window). 

S = ‘ccddddbbaabbcdddcbbaabbcdddcbaab’ 

and in a colorized format S = 

 

VI. INTELLIGENT ICONS 

Intelligent icons are a method that visualize the results after 
applying SAX [12]. In this way, we compute the frequency of 
occurrence of a symbol or group of symbols (called words) 
within a window creating approximations of the underlying 
probability mass functions [26]. The steps are described below: 

 Define the word length, that is the number of symbols 
that can form a word. In our analysis we have chosen 
after testing (considering the efficiency and complexity 
of the method and finding the middle ground) the  word 
length =  l = 3. 

 Compute all possible combinations of alphabet symbols 
that define the possible words. In our experiment, since 
l = 3 and α = 4, the total number of combinations is 64. 

 For each word, we compute the number of occurrences 
in the string generated after the implementation of SAX 
for every window separately. 

 Create a 2-dimension histogram matrix that describes 
the frequency of each word, as shown at Fig. 9. 

Fig. 9 shows a visual representation of an intelligent icon. 



aaa aca baa bca caa cca daa dca 

aab acb bab bcb cab ccb dab dcb 

aac acc bac bcc cac ccc dac dcc 

aad acd bad bcd cad ccd dad dcd 

aba ada bba bda cba cda dba dda 

abb adb bbb bdb cbb cdb dbb ddb 

abc adc bbc bdc cbc cdc dbc ddc 

abd add bbd bdd cbd cdd dbd ddd 

(a) 

 
(b) 

Fig. 9. (a) The table of all combinations and (b) the single-channel intelligent 

icon (with correspondence to the above table) derived from the string S = ‘c c d 

d d d b b a a b b c d d d c b b a a b b c d d d c b a a b’. Each number shows the frequency of 

occurrence of the triplet that is in the corresponding cell. 

VII. MULTICHANNEL INTELLIGENT ICONS 

Here, we introduce the multichannel Intelligent Icons 
modeling approach, which is an extension and innovative 
approach to the single-channel intelligent icon representation 
[12]. The novelty comes when producing the intelligent icons 
which are now formed by finding all possible words that come 
from combining symbols through all dimensions, that is, x, y, z. 
In other words, we construct the correlated intelligent icons 
along with the three directions of the signal. In the following we 
describe the proposed procedure in more detail:     

Let us focus on the first window of x, y and z dimension of 
the accelerometer signal obtained from the first subject of the 
database while running. After applying SAX, we extract three 
different strings for each one of the different dimensions. 

x axis: ‘ccddddbbaabbcdddcbbaabbcdddcbaab’ 

y axis: ‘aaccdaabdddaacccabcddbabddbacddc’ 

z axis: ‘cbaaabcbbabdbbaabcbbbcdcbabbbabc’ 

 We now search for words (made of 3 symbols) where the 
first symbol comes from x-string, the second from y-string and 
the third from z-string, as shown in Fig. 10. 

 

Fig. 10.  Words are consisted of one symbol from every dimension for 

computing multichannel intelligent icon 

The frequency of occurrence of all the words, while reading 
words with the above-mentioned way, constitutes the 

multichannel intelligent icon. Fig. 11 depicts the generated 
multichannel intelligent icon. 

aaa aca baa bca caa cca daa dca 

aab acb bab bcb cab ccb dab dcb 

aac acc bac bcc cac ccc dac dcc 

aad acd bad bcd cad ccd dad dcd 

aba ada bba bda cba cda dba dda 

abb adb bbb bdb cbb cdb dbb ddb 

abc adc bbc bdc cbc cdc dbc ddc 

abd add bbd bdd cbd cdd dbd ddd 

(a) 

 
(b) 

Fig. 11.  (a) The table of all combinations and (b) the multichannel intelligent 

icon (with correspondence to the above table). Each number shows the 

frequency of occurrence of the triplet that is in the corresponding cell.  

We are proposing the following algorithm in order to 
produce the Multichannel Intelligent Icons. The proposed steps 
are: 

Step 1: Apply SAX on each dimension of a p-dimensional signal 
(separately).  
Step 2: Obtain p unique strings. 
Step 3: Transversal search for words of length p through all 
strings. 
Step 4: Compute the Intelligent Icons table that contains α^p 
elements. 

VIII. CLASSIFICATION 

After deriving the intelligent icons (single-channel and 
multichannel ones) from every window and every dimension of 
the signals used, we have to build the table of features that will 
be the input of the classifier [27]. For this purpose, we place the 
tables of single-channel intelligent icons and multichannel 
intelligent icons horizontally side by side with the following 
sequence: 

 accelerometer signal - single-channel intelligent 
icon approach 

o - x dimension 
o - y dimension  
o - z dimension 

 gyroscope signal - single-channel intelligent icon 
approach 

o - x dimension 
o - y dimension  
o - z dimension 



 accelerometer signal - multichannel intelligent icon 
approach 

 gyroscope signal - multichannel intelligent icon 
approach 

We employed a Nearest Neighbour classifier consisting of 
one neighbour in order to examine the prediction accuracy of the 
model. We randomly separated the table of features to obtain a 
training dataset and a testing dataset. The training dataset 
consists of randomly extracted 80% of the intelligent icons of 
every class and the remaining 20% constitutes the testing 
dataset. 

IX. DATA SET USED 

The database [16,17] contains signals that were recorded by 
fifteen subjects who performed eight different activities: 
climbing stairs down and up, jumping, lying, standing, sitting, 
running/jogging, and walking. Here, we only used the signals 
produced from the accelerometer and the gyroscope of the 
device. The sampling rate was set at 50 Hz. The data set covers 
acceleration and gyroscope data of the activities climbing stairs 
down and up, jumping, lying, standing, sitting, running/jogging, 

and walking of fifteen subjects (age 31.9±12.4, height 
173.1±6.9, weight 74.1±13.8, eight males and seven females). 
Each subject performed each activity roughly for 10 minutes 
except from jumping due to the physical exertion (~1.7 
minutes). Concerning the gender, the amount of data is equally 
distributed [16, 17]. The file of the activity “Climbing stairs up” 
is empty for the second subject. We just ignored this one.   

X. RESULTS 

We repeated the execution of the Nearest Neighbour 
algorithm ten times and Table I depicts the overall classification 
accuracy of the proposed model and the relevant standard 
deviation (STD).                

TABLE I. Accuracy of the proposed model for no-overlapping and 

overlapping sliding windows approach for the proposed method 

ACCURACY (%) 

no – overlapping windows 50% overlapping windows 

MEAN STD MEAN STD 

84.42 0.42 92.39 0.24 

       Fig. 12 illustrates the confusion matrices and the average 
TPR for every activity.

 

 

 

 

 

 

 

 

 

 

Fig. 12.  Total confusion matrices of (a) no-overlapping sliding windows approach and (b) 50% overlapping sliding windows approach of the proposed method. 

The last two columns display the percentage of correctly and incorrectly classified observations for each predicted class. The last two rows display the percentage 

of correctly and incorrectly classified observations for each true class. 

For comparison purposes, we carried out the single-channel 
intelligent icon computation approach with exact the same 
dataset, the exact same classifier and the same number of 
repetitions for testing the latter. In short, the results are presented 
in Table II and Fig. 13.  

TABLE II. Accuracy of the single-channel model for no-overlapping and 

overlapping sliding windows approach for single-channel computation of 

intelligent icons 

ACCURACY (%) 

no – overlapping windows 50% overlapping windows 

MEAN STD MEAN STD 

81.10 0.39 90.13 0.20 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(a) (b) 



(b) 

Fig. 13.  Total confusion matrix of (a) no-overlapping sliding windows 

approach and (b) 50% overlapping sliding windows approach for single-

channel method. The last two columns display the percentage of correctly and 

incorrectly classified observations for each predicted class. The last two rows 

display the percentage of correctly and incorrectly classified observations for 

each true class. 

Table III depicts the comparative average and standard 
deviation values [28] of TPR between the two approaches, our 
method and single-channel intelligent icons, for no-overlapping 
and overlapping sliding windows experiments. At a first glance 
at Table III, we can observe that our method achieved an 
increase on both overall accuracy and sensitivity in both 
overlapping and no-overlapping sliding windows approaches at 
a level of 3%.  The activities presenting the most increase in 
accuracy are “climbing up”, “sitting” and “standing”. These are 

easily confused, the first one with “climbing down” and the two 
left together. It is shown in confusion matrices in Fig. 12, 13 that 
there exists a leakage between these easily confused activities. 
This is a common problem as it is justified in other works, that 
is distinguishing the “sitting” and “standing” activities which are 
often described as non-dynamic activities [2] and the “climbing 
down” and “climbing up” activities [29].  However, as shown in 
Fig. 12, 13 multichannel signals can actually better describe the 
relative stillness of non-dynamic activities correlated in space 
reducing the possible leakages to other closely related activities 
(false positives). In general, the feature table derived from our 
method acts as a distinguishing factor between similar activities.  

The overlapping-windows approach has evidently better 
performance than the no-overlapping windows one. Let us 
comment on the increase of “climbing down” (~15.7%) and 
“standing” (~11%). In connection to what mentioned in the 
previous paragraph, the overlap clearly provides the datapoints 
that are crucial for distinguishing these easily misclassified 
activities. Another noteworthy increase (~13%) occurs at 
activity “jumping” where we observe a false positive leakage to 
“climbing down” mainly. This could be explained if we take into 
consideration that this activity consists of the fewer samples, 
consequently it is vulnerable to be overridden by other activities 
in the nearest neighbour classification step. Thus, overlapping-
windows boosts the prediction ability of this activity and 
restricts the above explained leakage. Another finding is that the 
two activities that outperform is running and walking exceeding 
97% TPR. They are dynamic activities and consequently the 
easiest to predict as they present distinct attributes. Moreover, 
our method presents lower standard deviation values in general, 
meaning that its results are more concentrated, more robust, thus 
more reliable. 

TABLE III. Total comparative table between our method and single-channel intelligent icons approach 

ACTIVITIES 

Our Method Single-channel Intelligent Icons Approach 

TPR (%) STD (%) TPR (%) STD (%) 

No-overlap Overlap No-overlap Overlap No-overlap Overlap No-overlap Overlap 

Climbing down 80.04 95.70 1.27 0.63 73.25 92.51 1.24 0.88 

Climbing up 84.99 94.70 1.20 0.98 81.35 92.47 1.47 1.04 

Jumping 83.75 96.89 2.79 0.91 73.93 95.89 2.18 1.18 

Lying 86.57 92.10 1.19 0.37 84.10 89.92 1.29 0.74 

Running 95.85 97.69 0.63 0.46 94.97 97.19 0.68 0.44 

Sitting 76.20 83.87 1.11 0.59 73.04 80.20 1.49 0.75 

Standing 74.84 85.13 1.44 0.91 72.26 81.62 0.97 1.03 

Walking 90.57 97.22 1.48 0.33 86.90 96.11 1.39 0.50 

MEAN 84.10 92.91 1.39 0.65 79.98 90.74 1.34 0.82 

XI. CONCLUSIONS 

This study introduces the hybrid Intelligent Icons technique 
which is successfully applied for Human Activity Recognition. 
A new feature table of multichannel intelligent icons is 
generated after applying the proposed method and it is integrated 
to the table of single-channel intelligent icons. All features are 
inputs to a classifier. The results of our experiments, obtained 
after performing Nearest Neighbour classification, indicate that 
the proposed approach achieves improved accuracy and 

sensitivity rates compared to the approach using just only single-
channel intelligent icons. It is also mentioned that the difficulty 
in distinguishing relative activities is overcome. The proposed 
method excels in predicting and recognizing dynamic human 
activities. Moreover, it is concluded that applying overlapping 
sliding windows, it enhances the experimental outcomes for 
both single-channel and the proposed multichannel method.  

In both the single-channel and the Multichannel Intelligent 
Icons approach, we must define the main parameters of the 



algorithm i.e. alphabet size, word length. Here, we use a trial and 
error process for adjusting the values of parameters so that to 
choose the optimal values for conducting experiments. 

In future work, we will investigate the proposed approach 
for imbalanced datasets. We will also investigate other human 
activity recognition tasks that are complex and are characterized 
with transitional activities showing relative difficulty in 
distinguishing them.  

To conclude, we have proposed a semi-automated method 
(no feature selection is required) for recognizing human 
activities exhibiting high performance in terms of prediction 
accuracy utilizing data from just two sensors. The proposed and 
implemented algorithm is quite simple but it is intuitive, and it 
correlates movement in space. The simplicity offers relatively 
low computational and complexity costs making it a viable 
solution for using streaming data.   
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