
Lesson Learnt by Using DevOps and Scrum
for Development a Traceability Software

Dimitrios Salmas, Giannis Botilias, Jeries Besharat, and Chrysostomos Stylios(B)

Department of Informatics and Telecommunications, University of Ioannina, Kostakioi,
47150 Arta, Greece

{salmasdimitris,jbotilias,jeries.besharat}@kic.uoi.gr,

stylios@uoi.gr

Abstract. Agile has significantly impacted the software development lifecycle
by introducing methodologies such as Scrum, Extreme Programming, and Lean
Software Development. Recently, DevOps approach has attracted and gained a
wide interest of the software development society. DevOps provides a set of prin-
ciples that enables Continuous Development and Continuous Integration of a sys-
tem. This paper presents a case study where it is designed and developed a food
traceability software for a Greek meat company; it discusses the lesson learnt by
applying the DevOps principles for the software development and by using the
Scrum methodology for management purposes.

Keywords: DevOps · Agile · Scrum · Software development

1 Introduction

DevOps is a set of principles and practices that are used to bridge the gap between the
Development and IT operation teams [1, 2]. DevOps’ primary objective is to unify both
teams to reduce committing a change to a system while ensuring high quality. DevOps’
principles are focused on improving the teamwork, communication, and collaboration
of developers and operators [3]. Based on those principles, the DevOps focuses on the
following four main concerns [4]:

• Quickly getting a change into production.
• Finding errors through automated testing.
• Reducing or eliminating errors that occur during deployment.
• Quickly finding and repairing faults in the system.

The DevOps approach and culture can support Agile’s delivery cycle from inferring
and providing the design specifications and documents to comply with the Continuous
Development and Continuous Integration of the DevOps culture.

Agile software development principles, values and practices are required for suc-
cessful DevOps adoption [5] as Agile methodologies come to give a more effective way
of managing projects and developing products and services.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Á. Rocha et al. (Eds.): WorldCIST 2021, AISC 1368, pp. 366–373, 2021.
https://doi.org/10.1007/978-3-030-72654-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72654-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-72654-6_36


Lesson Learnt by Using DevOps and Scrum 367

Agile Methodologies are a group of software development methods that are based
on iterative and incremental development [6]. They have been developed to address the
problems faced by the conventional model and to offer project teams multiple possibil-
ities during the development process [7]. The methodologies for software development
diversify and support a gradual development of requirements. This manner of incremen-
tal requirements refinement further refines the design, coding and testing at all stages of
production activity. This project management style allows for adaptive planning, iter-
ative & evolutionary development, rapid and flexible response to change and promote
communication, which are the four major characteristics that are fundamental to all agile
methodologies [6].

In other words, Agile methodologies are used to achieve higher quality software in
a shorter period of time, self organizing teams, customer collaboration, less documen-
tation and reduced time to market [6]. To achieve these goals, there are a lot of agile
methodologies that are used. Most popular are the Scrum, Extreme Programming (XP),
Kanban, Crystal Methods and Feature Driven Development (FDD) [8]. This study will
be focused on Scrum Methodology, which is specifically designed to handle rapidly
changing business requirements.

This paper presents the main characteristics of DevOps approach in collaboration
with the best framework of Agile methodology, the Scrum. It aims to describe how the
development aspects that Scrum offers and the rapid delivery aspects that DevOps offers
could be combined in the case of developing a food traceability software [9]. It presents
the evaluation results of applying the abovementioned methodologies and their impact
to software development team and the software itself.

2 Case Study

This paper is focusing on a cattle/beef traceability software application developed for a
Greek meat market to track the whole meat chain from farm to the final product sold on
the shelf of the supermarket. The application consists of a desktop andmobile application
and is based on a cloud platform and web technologies.

This web application was developed with a DevOps approach and the agile method-
ology as a management tool. Different users in different places in the traceability chain
will submit data over the mobile or desktop application. The software is developed in
such a way that provide access to all the details crucial to the final product’s backward
and forward traceability.

3 Methodology

The applied and described methodology adapts Agile approach in the DevOps culture.
In this methodology, Scrum has been chosen as the main Agile framework that is used
to cover the managerial aspect of the software development lifecycle while DevOps is
used to support the rapid deployment of the functionalities.

Given below are the stages of the software development lifecycle that were used in
the use case:



368 D. Salmas et al.

• Management
• System integration testing
• Testing user acceptance test
• Deploy monitoring.

3.1 Management

Scrum
The Scrum methodology focuses greater on management of the development process
than software program coding strategies. Scrum moves a project forward by improving
communication between team members and breaking the work into short time frames
(“sprints”) that run usually from one to four weeks. Although Scrum works effectively
on both small and large projects [8], Scrum is mainly a software development process
for small teams. Researchers have shown that small teams that work independently are
more effective [10]. In Scrum methodology, teams work as tight, integrated units with
each team member playing a well-defined role and the whole team focusing on a single
goal.

Sprint
A sprint produces a visible, usable, deliverable product that implements one or more
user interactions with the system. The key idea behind each sprint is to deliver valuable
functionality. Sprint is one-time boxed iteration of the continuous software improvement
and development cycle and it has consistent duration throughout a development effort.
The consistent duration means that the end date for a sprint does not change [10].

In the case study, the sprints were weekly and during the sprint the team has hold
frequent Scrum meetings via Slack tool. These meetings were attended by all members
of the team, including those whoworked remotely. The purpose of these meetings was to
bring all teammembers closely to talk about problems that arose during implementation.
The duration of Scrum meetings was short (15–20 min) and kept everyone informed of
team progress and obstacles.

At the end of a sprint, a final meeting is scheduled in which all new information from
the just completed sprint is reported. At this meeting, anything can be changed. Work
can be added, eliminated, or reprioritized. In continuation, all project team participate
to a meeting with all stakeholders, including high-level management, customers, and
customer representatives to discuss the information of the sprint and suggest possible
changes. These meetings usually are triggering the initiation of a new cycle of sprints.

Single Source Repository
The DevOps team used a Single Source Repository for code management and version
control in order to achieve Continuous Integration and Continuous Delivery. All team
members had access to the repository and they were permitted to keep track of devel-
opment progress. Each new feature, that needs to be developed, had its own branch in
the repository and it passed through three phases. Each phase had a separate identical
environment and a branch in the repository:



Lesson Learnt by Using DevOps and Scrum 369

• Thedevelopment branch: In this branch all the new featureswere initially implemented
and passed a unit testing before being pushed to the stage branch.

• Stage branch: This branch was identical to the production branch, and all features
implemented passed user acceptance tests before they were pushed to the production
branch.

• Production branch: This branch contains the code of the working version of the appli-
cation which is constantly online and monitored. Any features committed in this
branch were already tested and ready to use.

In order to work in a scrum environment and produce code, without interrupting the
final product, the team followed some rules:

• There was no time limit on committing new changes in development mode.
• No changes in the codes of stage and production branch.
• The development branch never pushes changes directly to the production branch.
• Each environment had its own database to ensure the integrity of the data.

3.2 System Integration Testing

System Integration Testing (SIT) is the overall testing procedure of the whole system,
which is composed of many sub-systems. The main goal of SIT is to ensure that all soft-
ware module dependencies are functioning properly and the data integrity is preserved
between distinct modules of the whole system. Integration testing is an important part
of the testing process and is one of the most common methods for assuring the quality
of complex computer software systems [11].

The development of the system was implemented in an identical environment for the
production and upholding the Continuous Integration philosophy of DevOps. The devel-
opment of new features was integrated according to Agile’s test-driven development. At
the start of each feature, a unit testing was developed. The developers updated the codes
until the new feature passed the unit testing. After the code passed the unit testing, its
quality and technical debt were automatically inspected. Afterward the developers refac-
tored the existing code until its quality was at a satisfactory level and the technical debt
was as low as possible.

Before integrating the feature to the stage phase for the user acceptance test, it passed
through the system integration testing.

3.3 Testing User Acceptance Test

In the stage environment, the developer teams were conducting user acceptance test-
ing of the software’s new features. User Acceptance Testing (UAT) involves validating
software in a real setting by the intended audience. The aim is not so much to check
the defined requirements but to ensure that the software satisfies the customer’s needs.
Agile methodologies put stringent demands on UAT, if only for the frequency at which
it needs to be conducted due to the iterative development of small product releases [12].

At the end of each sprint, any features that meet the requirements were deployed to
the production environment.



370 D. Salmas et al.

3.4 Deployment and Monitoring

In this case study, the team was working in a test environment similar to the production
environment. As part of the Continuous Deployment, the team did create a Webhook
service that was triggered on the successful completion of the Continuous Integration
and Testing stage.

The production environment is constantly monitored and provides to the team useful
information regarding maintenance and measurements of the application operation. The
continuous monitoring of the software produces live data as well as logs that are used
for further analysis. The analysis includes event tracking, profiling, and performance
issues.

4 Tools

4.1 Scrum Management

Trello is a collaboration tool that is used for organizing projects and is created by Atlas-
sian. The Trello is being used by the team for project management. Each sprint has its
own list and each features its own card with descriptions on time estimation and other
useful information attached to it. Each member of the team is attached to the cards to
allow the project manager to have a better overview of the team members’ workload
[13].

4.2 ChatOps

Due to the covid19 pandemic, the team is working remotely. Therefore, a need for better
and faster communication between its members emerged. The DevOps team adopted
Slack as the default communication platform. Slack is a channel-based messaging plat-
form that provides a connection to different software such as google calendar and Trello
[14].

4.3 Source Management

ForSourcemanagement, the teamusedGit andmore specificallyGitHubas its repository.
GitHub is a user interface with various features that are based on the Git command-line
tool.GitHub contains everything that is needed from the developers’ team such as version
control, issue tracking, documentation, and status dashboards [15].

4.4 Source Code Quality Management

SonarQube uses for checking code coverage and provides information regarding the
source code quality. SonarQube is an open-source software quality assurance tool
released by SonarSource. It supports over 20 languages and it has various source code
metrics, coding rules, violations, code duplication and provides an estimation of the
technical debt [16].



Lesson Learnt by Using DevOps and Scrum 371

4.5 Deployment Tool

The Pm2 is used to manage and monitor the Node.js server. Pm2 is process manage-
ment for Node.js applications that also provides real-time data or monitoring [17]. The
Pm2 monitoring integration provides vital data concerning the health and status of the
application as well as real-time logs, all in one dashboard.

4.6 Unit Testing

Mocha and Chai have been selected for the unit testing. Mocha is a JavaScript test
framework running on NodeJS and it can be used with Chai, a BDD/TDD assertion
library [18, 19]. They are used for the test-driving development of the software. Loader.io
is used to test the system response time. Loader.io is a load testing service that allows
the developers to stress test API and web applications [20].

5 Learning Outcomes

This section is presenting the main learning outcomes and how there were improved the
capabilities of the software development team.

5.1 DevOPS

During the development procedure, the software development team learned how to use
themethodology and tools forContinuousDevelopment andContinuous Integration. The
capabilities related to Continuous Development and Continuous Integration is mainly
provided by DevOps approach paired with Agile’s Sprint procedure that provide the
Project Manager’s ability to quickly monitor the team. By following the four stages of
the software development life cycle introduced and adopted in the development of this
application, the team managed to successfully adapt to the DevOps culture. The team
members already used GIT, and they adapted with ease on using GitHub as the main
SourceManagementwhere they created a new branch for each featurewithout disrupting
the flow of software development. The usage of a source management tool such as Git
supported the aim of a successful Continuous Software Development and the integration
of new features, based on the requirements and tasks assigned at the beginning of each
Sprint.

At the initial phase of the project was difficult for the software development team to
follow the adopted methodology and the proposed tools that were used for Automatic
deployment, monitoring, quality management and unit testing, but after three weeks, the
team had fully used the approach. At the final stages of the application development, the
team was asked to evaluate the new procedure and they concluded that it is faster and
easier to use those to test their code and deploy the new features.



372 D. Salmas et al.

5.2 Agile

This specific project was the first time for the development team that they were intro-
duced to Agile’s world. Thus, it was evaluated the followed procedure and it was con-
cluded that its adapting Agile methodology for software development produced positive
outcomes both for the whole team and for each individual programmer. More specifi-
cally, the Scrum methodology trained the team and it increased teamwork, the level and
quality of collaboration and communication; especially the Scrum meetings contributed
to a perfect synergy between project management and software development skills. In
addition to this, the Scrum methodology provided opportunities to each programmer to
upgrowth programming skills in many aspects such as in server and client-side program-
ming, development, programming languages, tooling and task management as well as
software problem solving. Furthermore, one of the most important positive outcomes of
the adopted Scrum methodology is the individual responsibility shown by each member
of the team at critical points of the project, where they accepted their tasks without
transferring his responsibilities to the other members. In conclusion, adopting Scrum
methodology led at producing higher quality software and deliverables and in achieving
the final goal consistently and accurately.

6 Conclusion

Due to the competitiveness of the software application field, programmers are under
constant pressure to deliver software updates and include advanced features in the min-
imum possible time. In the specific case study, the development team was introduced
for first time in adopting a balanced combination between DevOps culture and Scrum
methodology that it lead to achieving better results such as enabling the rapid inclusion
of new features and ensuring high quality. Here it was presented the main methodology
and tools that the software team used and adopted for the specific case for developing
food traceability software.

Acknowledgment. This research work is funded by the Operational Programme “Epirus” 2014–
2020, under the project “Advanced traceability of Epirus meat to improve productivity, quality
and hygiene by using Business Intelligence Systems – EUKREAS”, Co-financed by the European
Regional Development Fund (ERDF).

References

1. Govil, N., Saurakhia, M., Agnihotri, P., Shukla, S., Agarwal, S.: Analyzing the behaviour of
applying agile methodologies & DevOps culture in e-Commerce web application. In: 2020
4th International Conference on Trends in Electronics and Informatics (ICOEI), vol. 48184
(2020). https://doi.org/10.1109/icoei48184.2020.9142895

2. Jabbari, R., Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: A systematic mapping study
on definitions and practices. J. Softw. Evol. Process 1–11 (2016). https://doi.org/10.1145/296
2695.2962707

https://doi.org/10.1109/icoei48184.2020.9142895
https://doi.org/10.1145/2962695.2962707


Lesson Learnt by Using DevOps and Scrum 373

3. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: Towards a benefits dependency network for
DevOps based on a systematic literature review. J. Softw. Evol. Process 30 (2018). https://
doi.org/10.1002/smr.1957

4. Bass, L.: The software architect and DevOps. IEEE Softw. 35, 8 (2018). https://doi.org/10.
1109/ms.2017.4541051

5. Lwakatare, L., Kuvaja, P., Oivo, M.: Relationship of DevOps to agile, lean and continuous
deployment. Product-focused software process improvement, pp. 399–415 (2016)

6. Kumar, G., Kumar Bhatia, P.: Impact of agile methodology on software development process.
Int. J. Comput. Technol. Electron. Eng. (IJCTEE) 2, 2249–6343 (2012)

7. Mohammad, S.: DevOps automation and Agile methodology. SSRN Electron. J. 5, 946–949
(2017). https://doi.org/10.1729/Journal.24060

8. Livermore, J.: Factors that significantly impact the implementation of an agile software
development methodology. J. Softw. (2008). https://doi.org/10.4304/jsw.3.4.31-36

9. Samarawickrama, S., Perera, I.: Continuous scrum: a framework to enhance scrum with
DevOps. In: 2017 Seventeenth International Conference on Advances in ICT for Emerging
Regions (ICTer) (2017)

10. Rising, L., Janoff, N.: The Scrum software development process for small teams. IEEE Softw.
17, 26–32 (2000). https://doi.org/10.1109/52.854065

11. Jin, Z., Offutt, A.J.: Coupling-based criteria for integration testing. Softw. Test Verif. Reliab.
8(3), 133–154 (1998)

12. Otaduy, I., Diaz, O.: User acceptance testing for Agile-developed web-based applications:
empowering customers through wikis and mind maps. J. Syst. Softw. 133, 212–229 (2017).
https://doi.org/10.1016/j.jss.2017.01.002

13. What is Trello? - Trello Help. In: Help.trello.com (2020). https://help.trello.com/article/708-
what-is-trello.

14. What is Slack? In: Slack Help Center (2020). https://slack.com/intl/en-gr/help/articles/115
004071768-What-is-Slack-.

15. Bleiel, N.: Collaborating inGitHub. In: 2016 IEEE International Professional Communication
Conference (IPCC) (2016). https://doi.org/10.1109/ipcc.2016.7740497

16. Barta, B., Manz, G., Siket, I., Ferenc, R.: Challenges of SonarQube plug-in maintenance. In:
2019 IEEE26th International Conference onSoftwareAnalysis, Evolution andReengineering
(SANER) (2019). https://doi.org/10.1109/saner.2019.8667988

17. PM2. https://pm2.keymetrics.io/
18. The fun, simple, flexible JavaScript test framework. In: Mocha. https://mochajs.org/
19. Chai Assertion Library. In: Chai. https://www.chaijs.com/
20. API Docs. In: Loader.io Documentation. https://docs.loader.io/

https://doi.org/10.1002/smr.1957
https://doi.org/10.1109/ms.2017.4541051
https://doi.org/10.1729/Journal.24060
https://doi.org/10.4304/jsw.3.4.31-36
https://doi.org/10.1109/52.854065
https://doi.org/10.1016/j.jss.2017.01.002
https://help.trello.com/article/708-what-is-trello
https://slack.com/intl/en-gr/help/articles/115004071768-What-is-Slack
https://doi.org/10.1109/ipcc.2016.7740497
https://doi.org/10.1109/saner.2019.8667988
https://pm2.keymetrics.io/
https://mochajs.org/
https://www.chaijs.com/
https://docs.loader.io/



