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We propose an approach to describe and contro1 complex
systems based on fuzzy cognitive map (FCM). A mathe-
matical model of FCMs and a ealculation method are

described as well as a methodology for constructing and
developing them that exploits experts who use fuzzy ru1es
to explain eause and effect among concepts. We apply
FCMs in a process control problem and demonstrate
their effectiveness. We propose a two-level structure for
supervisory control of the process, where the supervisor
is modeled as an FCM used for failure detection and

decision analysis. There is increasing demand for more
autonomous, intelligent systems, and the applieation of
FCMs in control and systems may contribute in devel-
oping such systems.

Keywords: Fuzzy cognitive map, Control systems, Super-
visory control, Soft computing

1. Introduction

  Corrventional control has signhicantly contributed to the
solution of many control problems, but its contribution to
solutions of increasingly complex dynamical systems has
practical dWiculties. Requirements in control and in super-
visory control cannot be met with existing conventional con-
trol theory and new methods are required that exploit past
experience, can learn, and provide failure detection and
identification. Soft computing thus becomes an important
alternative to corrventional control. Fuzzy cognitive map
(FCM) usage for control and modeling systems is expected
to contribute much to the effort to create more intedigent
control systems.
  FCM describes and models a system symbolically, using
concepts to illustrate ditiferent aspects of system behavior
that interact, showing system dynamics. A FCM integrates
experienoe and knowledge on system operation due to how
it is constructed, i.e., using human experts that know system
operation and its behavior in ditiferent circumstances. Due
to their dynamic nature, FCMs are exploited to represent

and conduct system control.
  Political scientist R. Axelrodi) introduced cognitive maps
for representing social scientific knowledge and describing
methods used for decision making in social and political
systems. B. Kosko6'" enhanced cognitive maps considering
fuzzy values for conoepts of the cognitive map and fUzzy
degrees of interrelationships between conoepts. After this
pioneering work, FCMs attracted the attention of scientists
in many fields and have been used in durerent scientific
problems. New FCMs have been proposed such as the ex-
tended FCM5) and the neural cognitive maps9). FCMs have
been used for planning and making decisions in interna-
tional relations and political developmentsM and have been
proposed for generic decision analysis20) and disuibuted
cooperative agents2i), FcMs have been used to analyze
electrical circuitsi4) and to construct vimal worlds2). ln
control themes, FCMs have been used to model and support
plant contro14), represent failure models and effects analysis
for a system modeliiNi2), and to model the control system
supervisori5-i6). The objective of this paper is to define and
constmet FCMs models for describing complex systems.
Section 2 describes Fems and proposes a calculation rule.
Section 3 proposes a soft computing methodology for con-
structing and developing FCMs. Section 4 implements FCM
to model and control a chemical process. Section 5 suggest
the use of two-level FCMs to conduct supervisory control
and discusses the failure part of a supervisor-FCM. Section
6 gives conclusions and prospects.

2. FCMs

  The Fcu is regarded as a combination of fUzzy logic
and neural networks. Graphically, the FCM seems to be a
signed weighted graph with feedback, consisting of nodes
and weighted arcs. Nodes stand for concepts describing sys-
tem behavior and are connected by signed and weighted arcs
representing causal relationships between conoepts (Figure
1). Each concept represents a system characteristic, gener-
ally events, actions, goals, values, and trends of the system
modeled as an FCM. Each concept is characterized by a
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concepts and the matrix diagonal is zero sinoe it is assumed
that no concept causes itself.

     A, =f(A.,W+cA,.,) ............... (2)

  Multiplication of previous state vector Ata at ime t-1 with
weight matrix W and addition of previous state vector At.1
computes a new state vector At. The new vector shows the
effect of the change in the value of one concept on the whole
FCM. Equation (2) includes the previous value of each con-
cept, so the FCM possesses memory and there is a smooth
change after each new interaction among FCM concepts.

Flg. 1. A simple Fuzzy Cognitive Map

3. Constructing FCMs

number Ai representing its value and results from transfor-
mation of the real system variable, for which this concept
stands, in the interval [O,1]. Nl values in the graph are ftzzy,
so weights of arcs are in the interval [-1,1]. This graphical
representation makes clear which concept influences other
concepts showing interconnections between concepts and
permitting updating of the graph, such as adding or deleting
an interconnection or a concept.
  Between concepts, there are three possible types of
causal relationships expressing the type of influence of a
concept to the others. This causa1 relationship is expressed
by the weight, denoted by VVij for the arc from concept Ci
 towards concept Cj. It can be positive, (WiJ' 〉O) meaning

that an inerease in the value of concept Ci leads to an in-
erease in the value of concept Cj, and a decrease in the value
of concept Ci leads a decrease in the value of concept Cj.
 'Ihere may be negative causality (JVij 〈O) meaning that an

increase in the value of conoept Ci leads to a decrease in
value of concept Ci and vice versa. wnen no relationship
exists between concept Ci and conoept Cj, then Wij' = O.
  The value of each concept is influenced by values of
connected concepts with the corresponding weights. A new
ca!culation rule is proposed, it considers part of the last
value of each concept, value Ai for each concept Ci is cal-
culated by the following rule:
           n

      Af sf( 2 A}-' Wji+ cttlr･ ') .............(1)
           il

 where Af･ is the value of concept Ci at time t, Ai'･'-i that of
concept Cj at timet- 1, IVji the weight of the interconnection
between Cj and Ci, andfa threshold function. In this com-
putation, the nonnegative parameter c is used to represent
the fraction of the previous value of each concept, added to
summed multiplication, so the new value of each concept is
calculated. This parameter is in the range O,Ol s c s 1. The
choice of this parameter influences the number of steps
FCM needs to reach equilibrium; the optimal choice is O.1,
where values of concepts converge faster than at c = 1 or
c=O.Ol, where more simulation steps are needed to reach
equilibrium.
  A more compact mathematical model for FCM consists
of a 1 x n state vector A including values of n concepts and
n × n weight matrix W gathering weights IJVij of intercon-
nections among n FCM concepts. Matrix W has n rows and
n colurnns where n equals the total number of distinct FCM

  A Fcu is a type of network built by experts using inter-
active knowledge acquisition. An expert defines main con-
cepts representing the system model, based on his
knowledge and experienoe in system operation. The expert
determines conoepts that best describe the system. A con-
cept is a system characteristic, state, variable, input, or out-
put. The expert knows which factors are crucial for
modeling the system and represents a conoept for each. The
expert has observed which system elements influence other
elements and, for corresponding concepts, determines the
negative, positive, or no effect of a concept on others using
a fuzzy value for each interconnection, since it is assumed
that there is a fuzzy degree of causation between concepts.
  To have better results in FCM development, a group of
experts is used and the development methodology becomes
more objective as the experience of a group of experts is
exploited. Nl experts are polled together and determine rele-
vant factors, main system characteristics, and thus concepts
that should compose the FCM. They determine the structure
and interconnections of the network using fuzzy conditional
statements.

  We propose a methodology for developing FCMs based
on fuzzy logic. Experts are asked to describe relationships
among concepts and use IF-THEN rules to justify the cause
and effect relationship among concepts and infer a linguistic
weight for each interconnection.
  The fUzzy rule with the form if-then describes the rela-
tionship between two conoepts appeared as the weight of
the interconnection. A fuzzy rule of the following form is
assumed, where A, B, C are 1inguistic variables:
  IF an A change occurs in value of concept Ci 7HEIVB
  change is caused in value ofconcept Cj
lnter: The influence of concept Ci to concept Cii C
  Every expert proposes a linguistic rule for every inter-
connection, the inference of the rule is a 1inguistic value for
the relationship between the two concepts. So the oausal
relationship is described with a fuzzy rule, which gives the
grade of causality between conoepts so the corresponding
weight is inferred. Thus, every one of the group of experts
suggests for each interconnection a linguistic weight and the
set of weights of each interconnection are integrated and
defuzzification is used to produoe a numerical weight for
the interconnection. In fUzzy logic literature, many methods
for defuzzhication have proposed such as Center of Area,
used here, and the produoed numerical weight belongs to
the interval [-1,1].
   As an example, the case where 4 experts deseribe the
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relationship among two conoepts is examined. Experts de-
scribe the relationship among conoepts using the foilowing

fUzzy rules with 1inguistic variables:
1su expert:

F a very smatl change oceurs in value of concept Ci THEN
a large change in value of concept Cj is caused.

infer: The influence of Ci to Cj is pasitively very high so
value of rviJ- is pasitively very high

2nd expert:
IF a small change occurs in value of conoept Ci IHEN a

large change in value of conoept Cji caused.
infer: The influence of Ci to Cj i pasitively high so value

of Wiij is positively high
3rd expert:

F a very small change oocurs in value of concept Ci THEN
a very large change in value of concept Cj is caused.

infer: The influence of Ci to Cj i positively very much high
so value of Wiij is pasitively very much high

4th expert:
IF a small change oecurs in value of concept Ci THEN a

very large change in value of concept Cj is caused.
infer: The influence of Ci to Cji pasitively very high so

value of Wiij is positively very high
  These 4 fUzzy nies for the interconnection between Ci
and Cj are combined, the 4 linguistic variables for weight
rviij will pass though the defuzzhier, and the result is a crisp
number. For this example, it was supposed that well known
uiangular membership functions stand for the weight (Fig-
ure 2) and the defuzzifier Center of Area was used and the

result of the defuzzifier was ;Vij = O.87.
  Each expert thus describes FCM operation by an ensem-
ble of fuzzy rules. Rules that conoern each interconnection
are evaluated in parallel using fuzzy reasoning and results
of rules are combined and defUzzified and the result is a

crisp number representing the weight of each interconnec-
tion. This construction methodology is very comprehensive
to system operators, who determine the influence of one
factor of the system to another using simple reasoning rules.
This is very similar to the way in which humans relate states,
variables, and events and store them in their mind as a causa1

network of c
propose for 
knowledge of
describe syst
require exper
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4.

Implementation of FCM
Control Problem

Process

  As is clear
an FCM is the
the system an

fs/ .cepts･ T

Vol.3 No5, 1999 Joumal of Advanced Computational inteMgence411



Stylios, C. D. et al.

Heeting
Elem ett

Fig. 3. E]cample of a prooess system to be controlled

                      example to examine 3 differ-  The system was used as an
ent hybrid modeling methods3) and the applicability of FCM
is such prooess control systems is examined, The system
consists of 2 tanks (Figure 3). Each tank has inlet and outlet
va!ves. The outlet valve of the first tank is the inlet valve of
the second.

  The control objective is to keep the amount of liquid, in
both tanks, between some limits, an upper Hmax and a low
1imit Hmin. Another objective is to keep the temperature of
liquid in both tanks between maximum value Tmax and mini-
mum value Tmin. The desired target is keeping these vari-
ables in the range of values:

      H-i･, s H' s Hk.
     Hkin s H2 s H:ax
                   .................(4)
      liml in s Tl s 1"max
      7i.l in s 12 s 19mu

  The temperature of liquid in tank 1 is inereased through
operation of a heating element. The temperature of liquid in
tank 2 is measured with a thermometer and controlled so

that when the temperature of liquid 2 decreases, valve 2
opens, so hot liquid enters tank 2.
  An FCM is constructed to model and control the system.
To determine FCM concepts that describe the system, sys-
tem variables must be taken into account, such as the level

of liquid in each tank and/or the temperature. Concepts are
assigned for the system's elements that afiiect system vari-
ables such as the state of valves.

  For this plant, an FCM is developed with 8 concepts,
which describes the system well and controls the plant:
  Conoept1 The amount of liquid tank 1 contains. This is
     dependent on valves 1 and 2.
  Concept 2 The amount of liquid in tank 2. This is de-
     pendent on valves 2 and 3.
  Concept 3 The state of valve 1. The valve is open, closed,
     or partially open.
  Conoept 4 The state of valve 2. The valve is open,
     closed, or partially open.
  Concept 5 The state of valve 3. The valve is open,
     closed, or partially open.
   Concept 6 The temperature of liquid in tank 1.
   Concept 7 The temperature of liquid in tank 2.
   Concept 8 Describes operation of the heating element
     increasing the temperature of liquid in tank 1.
  These concepts must be connected. First for each concept
it must be decided to which other concepts it is connected
to. The sign of the connection is decided, then the weight

of each connection is determined.

  Connections between concepts are:
Event1 Connects concept 1with concept 3. It relates the
  amount of liquid in tank 1 with operation of valve 1.
  When the height of liquid in the tank is low, it is needed
  to increase the amount of incoming liquid in tank 1 so
  valve 1 is opening.
Event 2 Relates concept1with concept 4 concept 4;when
  the height of liquid in tank 1 is high, opening of valve 2
  (conoept 4) reduces the amount of liquid in tank 1.
Event 3 Connects conoept 2 with concept 4; when the
  height of liquid in tank 2 is low, opening of valve 2
  (concept 4) increases the amount of liquid that enters
  tank 2.

Event 4 Relates concept 2 with concept S; when the height
  of liquid in tank 2 is high, opening of valve 3 (conoept
  S) helps in keeping the amount of liquid be1orv an upper
  limit.

Event 5 (k)nnects conoept 3 (valve 1) with concept1(tank
  1); any change in valve1influences the amount of liquid
  in tank 1.

Event 6 The value of concept 4 (valve 2) causes the de-
  crease or not of the value of conoept 1 (tank 1).
Event 7 The value of concept 4 (valve 2) causes the inerease
  or not of the amount of liquid in tank 2 (conoept 2).
Event 8 Relates concept S (valve 3) with concept 2 (tank
  2), the value of conoept S causes the decrease or not of
  the amount of liquid in tank 2.
Event 9 Connects concept 6 (temperature in tank 1) with
  concept 8 (operation of the heating element). When the
  temperature in tank 1 is low, it causes the opening of the
  heating element.
Event 10 Connects concept 8 with concept 6; the value of
  concept 8 (operation of the heating element) increases
  the value of conoept 6 (temperature in tank 1).
Event 11 Connects conoept 6 with concept 3 (valve 1); when
  the temperature in tank 1 reaches an upper lmit, opening
  of valve 1 causes liquid of low temperature to enter tank
   1.

Event 12 Relates conoept 7 (temperature in tank 2) with
  conoept 4 (valve 2); when the temperature in tank 2 is
  below a 1imit, valve 2 should opened so new hot liquid
   enters tank 2 from tank 1.

Event 13 Shows the effect of concept 4 (valve 2) on concept
   7 (the temperature in tank 2); when valve 2 (concept 4)
   is open then hot liquid enters tank 2 and the temperature
   in tank 2 (concept D is increased.
   in assigning weights to interconnections, the experience
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e

of a group of experts is used who use the methodology in
section 3 to determine the cause and effect relationship

among concepts. As an example, experts describe the influ-
ence of valve1(concept 3) on the amount of liquid in tank
1 (concept 1) using a set of fuzzy rules from which it is
inferred that there is positive influenoe, transformed in
weight O.76 (event 5). Each event (conneetion between con-
cepts) has a weight, which ranges between [-1,1] and was
deterrnined by a group of experts. Each concept has a value,
which ranges in the interval [O,1] and is obtained after thre-
sholding the real value of the concept. An interface is needed
to transform real measures of the system to representative
values in the FCM and vice versa.

  The mathematical and graphical model of the FCM that
describes the system makes apparent how the designer of
the model can easily add or remove connections. A concept
is added or removed to analyze system operation from a
different perspective and to improve the system's descrip-
tion, without reconstruction of the whole model. For exam-
ple, another concept that could be added later is one
representing desirable output for valve 3.
  figure 4 shows the FCM used to describe and control
the system, with the initial value of each concept and inter-
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IPIg, a Supervisory Fuzzy Cognitive Map for failer modes.

connections between concepts. The values of concepts cor-
respond to real measurements of physical magnitude, At
each simulation step of the FCM, the value of each conoept
is defined by the result of taking al1 causal weights pointing
into this concept and multiplying each weight by the value
of the concept that causes the event based on equation (1).
It is assumed that c=O.1 and sigmoid function
       1
           is applied on calculation resulg transformedf(x) t
     1+e-X
in the interval between O.oo and 1.oo.

  As the simulation step of the FCM is defined, the period
during which values of al1 concepts are calculated and
change. Each simulation step holds for a time unit. Tlable 1
shows values of concepts for 10 simulation steps.
  Weights of interconnections are considered tixed, and the
FCM runs for initial values. Figure 5 depicts the surface of
the variation of values of 8 concepts for 10 simulation steps.
figure 5 shows that the FCM is driven to equilibrium after
6 simulation steps. When the FCM is at equilibrium, if a
disturbance oocurs in the real system, which wM cause the
change in the value of one or more concepts, the FCM wru
interact for a limited number of steps and wru reach again
equilibrium.
  Here, we assumed that there is no ime relationship in
changes of concept values, when the value of one concept
changes, in the same ime unit values of the of the rest
conoepts change based on their influence of the first. This
is referred to as a simulation step. In a realistic system,
effects take plaoe in different unit times. For exarnple, in
Figure 3 a change in conoept 6 (the temperature of liquid
in tank 1) wM lead almost irnmediately to a change on the
state of the heat element (concept 8) but a change in the
state of valve 1 takes some tirne to have fu11 effect in the

amount of liquid in tank 1. Thus, time tags are introduced
corresponding to each effect, but then problems would ap-
pear on estimating different time units for each effect but
could follow the methodology proposed by Park and KimiO).

5. Supervisory Contro1 for Process Contro1
  Problem

  ln complex systems, it is ditficult to represent states and
variables of the process that are good indicators of faults,
and more elaborate models are neoessary. As systems be-
come complex and sophisticated, they are characterized by
highly nonlinear dynamics coupling a variety of physical
phenomena in temporal and spatial domains. For such sys-
tems, intelligent fuzzy logic based techniques and object
modeling were proposed to address uncertainty issues and
provide flexible platformsi8). These processes are thus not
well understood and their operation is "tuned" by experienoe
rather than through mathematical scienthic principles. Cap-

 Il/IEIII,.,?yap",d.,X:･l,g,e.xPiertp,l:;.}o,w":ghg,e.eS[1?c,t,ily.e.17g).ansdy,e,gl/il
operators observe multiple data simultaneously and make
tough decisions based on experience and empincal know1-
edge.
  This is replicated by an FCM constructed by exploiting
the experience of system operators. This FCM lies in the
upper level and serves as a supervisor. It consists of concepts
that may represent irregular operation of some system ele-
ments, failure mode variables, failure effect variables, fail-
ure cause variables, severity of the effect or design variables,
planning schemes, etc.
  For the previous example, the FCM-supervisor describes
failure states of valves, possible failures in control valve
opening, the flow rate of liquid, possible malfunction in the
heating element, leaks in tanks, and other alarm schemes.
We must select FCM concepts that wil1 stand for complex
and frequently observable faults; others wi!1 represent meas-
ures and plain failures and interconnections among conoepts
wil1 show existing interactions. All are determined empin-
cally by carefu11y investigating faults in the past (Figure (D.
Concepts for failure of heating element, failure of valves,
conditions of overflow and temperature sensor alarm are
used to determine process fai1ures. This FCM includes con-
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Flg. 7. The two-level structure conneller with FCM on each leveL

cepts for determining spechic system operation. ln a similar
chemical process, dMierent amounts of liquid in the output
at different times could be needed, based on the requisite
density of liquid. The outputs of the supervisor FCM are
signals to indicate potential problems in the end product.
This is only the failure detection and identhication of the
supervisor, which gives appropriate commands to the proc-
ess controller in the lower level.

  ln the previous section, a model for a prooess control
problem was proposed, and could be enhanoed if a two-level
structure model is considered (Figure 7). In the lower level
of the structure, there is the FCM previously constructed to
control the process and refiect the model of the process
during normal operation. In the upper level, the supervisor
FCM (Figure 6) used for failure modes, effects analysis,
and completed with a black box for decision analysis of the
FCM. The decision maker of the FCM evaluates alarm sig-
nals, process fail signals and inputs, and sends control sig-
nals to the lower FCM influencing the process.
  'Ihe two FCMs interact and information must pass from
one to the other. The interface consists of two parts: one
passes information from the FCM in the lower level to the
FCM in the upper level and the other vioe versa. This tw"
part interface is necessary because changes on one or more
concepts in the lower FCM could mean change in a concept
in the upper level and the corresponding procedure, when

information descends from the upper FCM t(rwards the
lower level. Generally, two or more FCM concepts on the
lower level pass through the interface and influence one
concept in the upper FCM, and an analogous interface exists
for the inverse transmission of information.

  As an exarnple values of concepts "tank 1" and "tank 2"
at the lower FCM determine the value of conoept "overfiow"
at the upper FCM, using the following reasoning:
   F Tank 1 is low (〈30%) OR Tturk 2 is low (〈30%) IHEN
  Ove,flow is low

   F Tank 1 is medium (309e or 〈60%) OR Tank 2 is me-
   dium (309o or 〈60%) THEN Overl7ow is low

   IF Tank1 is high (〉60%) OR Tank2 is high (〉60%)
  THEN Overflow is high
  But the value of concept "valves-fai1" on the second
FCM is determined through the measurement of special sen-
 sors･

  The fai1ure diagnosis of the supervisory FCM is con-
structed where there are two concepts `alarm' and `proc-
ess-fai1' that indicate the possibility for failure in the
process. The decision maker part of supervisor evaluates
values of these two conoepts and take action. A more com-
plete structure for the FCM that acts as the supervisor of the
entire system lies in the upper level, it is subject of future
work. This FCM will include failure sehemes for malfunc-

tion of actuators, failures of flovv sensors, and complicated
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fai1ures of fiow rate with overflow of tanks.

  The cooperation of the two FCMs is alluring and could
lend itself to more sophisticated systems. It is suggesting
another approach, where the lower !evel has a more conven-
tional controller such as a neural networK and the upper
supervisor is an FCM.

6. Summary

  FCM thcory, a soft computing approach to describe the
behavior of complex systems and control them, best uses
existing experienoe in system operation. The proposed
methodology for constructing and developing FCMs ex-
ploits experts who use fUzzy rules to explain cause and
effect among concepts. For complex systems, it is extremely
ditificult to depict the entire system by a precise mathemati-
cal model. Thus, it is more usefu1 to graph it, showing causal
relationships between states-concepts. Since this symbolic
representation and control is easily adaptable and relies on
human expert experience and knowledge, it is considered
intelligent.
  The implementation in a prooess control problem is pre-
sented and its simplicity in describing the system's operation
shown. The prospect for it to be expanded in more advanced
control schemes was discussed by adding a second FCM in
a higher level for fai1ure analysis, prediction, decision analy-
sis, and planning.
  FCMs seem useful in describing dynamics and control of
complex systems, by exploiting knowledge on system op-
eration, which will help the designer of a system in decision
analysis and strategic planning. FCMs are usefu1 in describ-
ing the supervisor of complex control systems comple-
mented with other techniques and wil1 lead to more effective
control systems.
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