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We propose an approach to describe and control complex
systems based on fuzzy cognitive map (FCM). A mathe-
matical model of FCMs and a calculation method are
described as well as a methodology for constructing and
developing them that exploits experts who use fuzzy rules
to explain cause and effect among concepts. We apply
FCMs in a process control problem and demonstrate
their effectiveness. We propose a two-level structure for
supervisory control of the process, where the supervisor
is modeled as an FCM used for failure detection and
decision analysis. There is increasing demand for more
autonomous, intelligent systems, and the application of
FCMs in control and systems may contribute in devel-
oping such systems.

Keywords: Fuzzy cognitive map, Control systems, Super-
visory control, Soft computing

1. Introduction

Conventional control has significantly contributed to the
solution of many control problems, but its contribution to
solutions of increasingly complex dynamical systems has
practical difficulties. Requirements in control and in super-
visory control cannot be met with existing conventional con-
trol theory and new methods are required that exploit past
experience, can learn, and provide failure detection and
identification. Soft computing thus becomes an important
alternative to conventional control. Fuzzy cognitive map
(FCM) usage for control and modeling systems is expected
to contribute much to the effort to create more intelligent
control systems.

FCM describes and models a system symbolically, using
concepts to illustrate different aspects of system behavior
that interact, showing system dynamics. A FCM integrates
experience and knowledge on system operation due to how
it is constructed, i.e., using human experts that know system
operation and its behavior in different circumstances. Due
to their dynamic nature, FCMs are exploited to represent
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and conduct system control.

Political scientist R. Axelrod") introduced cognitive maps
for representing social scientific knowledge and describing
methods used for decnslon making in social and political
systems. B. Kosko®”) enhanced cognitive maps considering
fuzzy values for concepts of the cognitive map and fuzzy
degrees of interrelationships between concepts. After this
pioneering work, FCMs attracted the attention of scientists
in many fields and have been used in different scientific
problems. New FCMs have been proposed such as the ex-
tended FCM> and the neural cognitive maps ). FCMs have
been used for planning and making decisions in interna-
tional relations and political developments 17) and have been
proposed for generic decision analysmzo} and distributed
cooperative agentszn. FCMs have been used to analyze
electrical circuits'” and to construct virtual worlds?. In
control themes, FCMs have been used to model and support
plant control4), represent failure models and effects analysis
for a system model'!” , and to model the control system
supervisor™> 19, The objective of this paper is to define and
construct FCMs models for describing complex systems.
Section 2 describes FCMs and proposes a calculation rule.
Section 3 proposes a soft computing methodology for con-
structing and developing FCMs. Section 4 implements FCM
to model and control a chemical process. Section 5 suggest
the use of two-level FCMs to conduct supervisory control
and discusses the failure part of a supervisor-FCM. Section
6 gives conclusions and prospects.

2. FCMs

The FCM is regarded as a combination of fuzzy logic
and neural networks. Graphically, the FCM seems to be a
signed weighted graph with feedback, consisting of nodes
and weighted arcs. Nodes stand for concepts describing sys-
tem behavior and are connected by signed and weighted arcs
representing causal relationships between concepts (Figure
1). Each concept represents a system characteristic, gener-
ally events, actions, goals, values, and trends of the system
modeled as an FCM. Each concept is characterized by a
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Fig. 1. A simple Fuzzy Cognitive Map

number A; representing its value and results from transfor-
mation of the real system variable, for which this concept
stands, in the interval [0,1]. All values in the graph are fuzzy,
so weights of arcs are in the interval [-1,1]. This graphical
representation makes clear which concept influences other
concepts showing interconnections between concepts and
permitting updating of the graph, such as adding or deleting
an interconnection or a concept.

Between concepts, there are three possible types of
causal relationships expressing the type of influence of a
concept to the others. This causal relationship is expressed
by the weight, denoted by Wj; for the arc from concept Ci
towards concept Cj. It can be positive, (Wjj > 0) meaning

that an increase in the value of concept C; leads to an in-
crease in the value of concept Cj, and a decrease in the value
of concept C; leads a decrease in the value of concept Cj.
There may be negative causality (Wjj < 0) meaning that an

increase in the value of concept C; leads to a decrease in
value of concept Cj and vice versa. When no relationship
exists between concept C; and concept Cj, then Wij = 0.

The value of each concept is influenced by values of
connected concepts with the corresponding weights. A new
calculation rule is proposed, it considers part of the last
value of each concept, value A; for each concept Ci is cal-
culated by the following rule:

A f(SA Wit ™) e )

=1
=1

where A! is the value of concept C; at time t, Aj"' that of
concept C; at time ¢ - 1, Wj; the weight of the interconnection
between C; and C;, and f a threshold function. In this com-
putation, the nonnegative parameter ¢ is used to represent
the fraction of the previous value of each concept, added to
summed multiplication, so the new value of each concept is
calculated. This parameter is in the range 0,01 s ¢ < 1. The
choice of this parameter influences the number of steps
FCM needs to reach equilibrium; the optimal choice is 0.1,
where values of concepts converge faster than at ¢ = 1 or
¢=0.01, where more simulation steps are needed to reach
equilibrium.

A more compact mathematical model for FCM consists
of a 1 x n state vector A including values of n concepts and
n x n weight matrix W gathering weights Wijj of intercon-
nections among n FCM concepts. Matrix W has n rows and
n columns where n equals the total number of distinct FCM
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concepts and the matrix diagonal is zero since it is assumed
that no concept causes itself.

Anf(AuWHCAY) « o« v oo vvvvvonns 2

Multiplication of previous state vector Ay at time -1 with
weight matrix W and addition of previous state vector At-|
computes a new state vector Ar. The new vector shows the
effect of the change in the value of one concept on the whole
FCM. Equation (2) includes the previous value of each con-
cept, so the FCM possesses memory and there is a smooth
change after each new interaction among FCM concepts.

3. Constructing FCMs

A FCM is a type of network built by experts using inter-
active knowledge acquisition. An expert defines main con-
cepts representing the system model, based on his
knowledge and experience in system operation. The expert
determines concepts that best describe the system. A con-
cept is a system characteristic, state, variable, input, or out-
put. The expert knows which factors are crucial for
modeling the system and represents a concept for each. The
expert has observed which system elements influence other
elements and, for corresponding concepts, determines the
negative, positive, or no effect of a concept on others using
a fuzzy value for each interconnection, since it is assumed
that there is a fuzzy degree of causation between concepts.

To have better results in FCM development, a group of
experts is used and the development methodology becomes
more objective as the experience of a group of experts is
exploited. All experts are polled together and determine rele-
vant factors, main system characteristics, and thus concepts
that should compose the FCM. They determine the structure
and interconnections of the network using fuzzy conditional
statements.

We propose a methodology for developing FCMs based
on fuzzy logic. Experts are asked to describe relationships
among concepts and use [IF-THEN rules to justify the cause
and effect relationship among concepts and infer a linguistic
weight for each interconnection.

The fuzzy rule with the form if-then describes the rela-
tionship between two concepts appeared as the weight of
the interconnection. A fuzzy rule of the following form is
assumed, where A, B, C are linguistic variables:

IF an A change occurs in value of concept C; THEN B

change is caused in value of concept C;

Inter: The influence of concept C; to concept Cj is C

Every expert proposes a linguistic rule for every inter-
connection, the inference of the rule is a linguistic value for
the relationship between the two concepts. So the causal
relationship is described with a fuzzy rule, which gives the
grade of causality between concepts so the corresponding
weight is inferred. Thus, every one of the group of experts
suggests for each interconnection a linguistic weight and the
set of weights of each interconnection are integrated and
defuzzification is used to produce a numerical weight for
the interconnection. In fuzzy logic literature, many methods
for defuzzification have proposed such as Center of Area,
used here, and the produced numerical weight belongs to
the interval [-1,1].

As an example, the case where 4 experts describe the
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Fig. 2. The 1st expert suggestion fuzzy rule for an interconnection.

relationship among two concepts is examined. Experts de-
scribe the relationship among concepts using the following
fuzzy rules with linguistic variables:

o expert:

IF a very small change occurs in value of concept C; THEN
a large change in value of concept C; is caused.

Infer: The influence of C; to C; is positively very high so
value of Wj; is positively very high

2nd expert:

IF a small change occurs in value of concept C; THEN a
large change in value of concept C; is caused.

Infer: The influence of C; to C; is positively high so value
of W is positively high

3rd expert:

IF a very small change occurs in value of concept C; THEN
a very large change in value of concept C; is caused.
Infer: The influence of C; to C; is positively very much high
so value of Wj; is positively very much high

4th expert:

IF a small change occurs in value of concept C; THEN a
very large change in value of concept C; is caused.

Infer: The influence of C; to C; is positively very high so
value of Wj; is positively very high

These 4 fuzzy rules for the interconnection between C;
and Cj are combined, the 4 linguistic variables for weight
Wij will pass though the defuzzifier, and the result is a crisp
number. For this example, it was supposed that well known
triangular membership functions stand for the weight (Fig-
ure 2) and the defuzzifier Center of Area was used and the
result of the defuzzifier was Wjj = 0.87.

Each expert thus describes FCM operation by an ensem-
ble of fuzzy rules. Rules that concern each interconnection
are evaluated in parallel using fuzzy reasoning and results
of rules are combined and defuzzified and the result is a
crisp number representing the weight of each interconnec-
tion. This construction methodology is very comprehensive
to system operators, who determine the influence of one
factor of the system to another using simple reasoning rules.
This is very similar to the way in which humans relate states,
variables, and events and store them in their mind as a causal
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network of causes and effects. The methodology that we
propose for developing FCMs exploits the experience and
knowledge of a group of experts who use fuzzy rules to
describe system behavior. This is an objective and does not
require experimental data for values of concepts, as other
methods do'>) especially for problems that usually use
FCMs such as modeling of complex systems.

Experts involved in the construction of FCM determine
concepts and causality among them. Sometimes this ap-
proach may yield a distorted model, since it is possible that
experts have not considered appropriate factors and may
have assigned inappropriate causality weights among FCM
concepts. The best conductance of FCMs is obtained by
combining them with neural network characteristics and in-
tegrating their advantages. More specifically, neural learning
techniques are used to train the FCM and determine appro-
priate weights of interconnections among concepts. The re-
sult is a hybrid neurofuzzy system. Unsupervised learning
methods have been proposed for FCM training, where the
gradient of each weight is calculated by the application of
general rules:

W,-J-' =g (W,'J', A.‘, Aj, A,‘l, A;) ............ (3)

Differential Hebbian learning law is used as proposeda)
to train the FCM, meaning adjusting weights of intercon-
nections between concepts, as if they were synapses in a
neural network. The development of appropriate learning
algorithms for training FCMs needs more study and is the
subject of future research.

4. Implementation of FCM in a Process
Control Problem

As is clear, the most important component in developing
an FCM is the determination of concepts that best describe
the system and the direction and grade of causality among
concepts. These aspects are represented in the example be-
low.
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Fig. 3. Example of a process system to be controlled

The system was used as an example to examine 3 differ-
ent hybrid modeling methods® and the applicability of FCM
is such process control systems is examined. The system
consists of 2 tanks (Figure 3). Each tank has inlet and outlet
valves. The outlet valve of the first tank is the inlet valve of
the second.

The control objective is to keep the amount of liquid, in
both tanks, between some limits, an upper Hmax and a low
limit Hmin. Another objective is to keep the temperature of
liquid in both tanks between maximum value Tmax and mini-
mum value Tmin. The desired target is keeping these vari-
ables in the range of values:

HY.sH s Hp,,
HiinSHZSHﬁ'mx
Tllni.ns TI = Tllmlx
PRy ol f

The temperature of liquid in tank 1 is increased through
operation of a heating element. The temperature of liquid in
tank 2 is measured with a thermometer and controlled so
that when the temperature of liquid 2 decreases, valve 2
opens, so hot liquid enters tank 2.

An FCM is constructed to model and control the system.
To determine FCM concepts that describe the system, sys-
tem variables must be taken into account, such as the level
of liquid in each tank and/or the temperature. Concepts are
assigned for the system’s elements that affect system vari-
ables such as the state of valves.

For this plant, an FCM is developed with 8 concepts,
which describes the system well and controls the plant:

Concept 1 The amount of liquid tank 1 contains. This is

dependent on valves 1 and 2.
Concept 2 The amount of liquid in tank 2. This is de-
pendent on valves 2 and 3.

Concept 3 The state of valve 1. The valve is open, closed,

or partially open.

Concept 4 The state of valve 2. The valve is open,

closed, or partially open.

Concept 5 The state of valve 3. The valve is open,

closed, or partially open.

Concept 6 The temperature of liquid in tank 1.

Concept 7 The temperature of liquid in tank 2.

Concept 8 Describes operation of the heating element

increasing the temperature of liquid in tank 1.

These concepts must be connected. First for each concept
it must be decided to which other concepts it is connected
to. The sign of the connection is decided, then the weight
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of each connection is determined.
Connections between concepts are:

Event | Connects concept 1 with concept 3. It relates the
amount of liquid in tank 1 with operation of valve 1.
When the height of liquid in the tank is low, it is needed
to increase the amount of incoming liquid in tank 1 so
valve | is opening.

Event 2 Relates concept | with concept 4 concept 4;when
the height of liquid in tank 1 is high, opening of valve 2
(concept 4) reduces the amount of liquid in tank 1.

Event 3 Connects concept 2 with concept 4; when the
height of liquid in tank 2 is low, opening of valve 2
(concept 4) increases the amount of liquid that enters
tank 2.

Event 4 Relates concept 2 with concept S; when the height
of liquid in tank 2 is high, opening of valve 3 (concept
S) helps in keeping the amount of liquid below an upper
limit.

Event 5 Connects concept 3 (valve 1) with concept 1 (tank
1); any change in valve 1 influences the amount of liquid
in tank 1.

Event 6 The value of concept 4 (valve 2) causes the de-
crease or not of the value of concept I (tank 1).

Event 7 The value of concept 4 (valve 2) causes the increase
or not of the amount of liquid in tank 2 (concept 2).
Event 8 Relates concept S (valve 3) with concept 2 (tank
2), the value of concept S causes the decrease or not of

the amount of liquid in tank 2.

Event 9 Connects concept 6 (temperature in tank 1) with
concept 8 (operation of the heating element). When the
temperature in tank 1 is low, it causes the opening of the
heating element.

Event 10 Connects concept 8 with concept 6; the value of
concept 8 (operation of the heating element) increases
the value of concept 6 (temperature in tank 1).

Event 11 Connects concept 6 with concept 3 (valve 1); when
the temperature in tank 1 reaches an upper limit, opening
of valve 1 causes liquid of low temperature to enter tank
1.

Event 12 Relates concept 7 (temperature in tank 2) with
concept 4 (valve 2); when the temperature in tank 2 is
below a limit, valve 2 should opened so new hot liquid
enters tank 2 from tank 1.

Event 13 Shows the effect of concept 4 (valve 2) on concept
7 (the temperature in tank 2); when valve 2 (concept 4)
is open then hot liquid enters tank 2 and the temperature
in tank 2 (concept 7) is increased.

In assigning weights to interconnections, the experience
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Table 1. The values of FCM concepts for 10 simulation steps.

Step Tank 1 Tank 2 Valve 1 Valve 2 Valve 3 Heat_element Therm_tank 1 Therm_tank 2
1 0.2000 0.0100 0.5500 0.5800 0 0.2000 0.1000 0.0500
2 0.5225 0.6142 0.5441 0.5426 0.5015 0.5125 0.5155 0.5277
3 0.5350 0.5707 0.5912 0.6979 0.6032 0.5909 0.5251 0.5804
4 0.5210 0.5895 0.6006 0.6964 0.5994 0.6004 0.5288 0.5918
5 0.5227 0.5901 0.6010 0.6982 0.6020 0.6023 0.5289 0.5932
6 0.5225 0.5902 0.6013 0.6985 0.6021 0.6026 0.5289 0.5935
7 0.5225 0.5902 0.6013 0.6985 0.6021 0.6026 0.5289 0.5936
8 0.5225 0.5902 0.6013 0.6985 0.6021 0.6026 0.5289 0.5936
9 0.5225 0.5902 0.6013 0.6985 0.6021 0.6026 0.5289 0.5936
10 0.5225 0.5902 0.6013 0.6985 0.6021 0.6026 0.5289 0.5936

Values of Concepts

i
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H

4
]
'
'
[
'

-
[]
[
"
[
"

Simulation steps Eight concepts of FCM

Fig. 5. The surface of values of 8 concepts for 10 simulation
steps.

of a group of experts is used who use the methodology in
section 3 to determine the cause and effect relationship
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among concepts. As an example, experts describe the influ-
ence of valve 1 (concept 3) on the amount of liquid in tank
1 (concept 1) using a set of fuzzy rules from which it is
inferred that there is positive influence, transformed in
weight 0.76 (event 5). Each event (connection between con-
cepts) has a weight, which ranges between [-1,1] and was
determined by a group of experts. Each concept has a value,
which ranges in the interval [0,1] and is obtained after thre-
sholding the real value of the concept. An interface is needed
to transform real measures of the system to representative
values in the FCM and vice versa.

The mathematical and graphical model of the FCM that
describes the system makes apparent how the designer of
the model can easily add or remove connections. A concept
is added or removed to analyze system operation from a
different perspective and to improve the system’s descrip-
tion, without reconstruction of the whole model. For exam-
ple, another concept that could be added later is one
representing desirable output for valve 3.

Figure 4 shows the FCM used to describe and control
the system, with the initial value of each concept and inter-
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Fig. 6. Supervisory Fuzzy Cognitive Map for failer modes.

connections between concepts. The values of concepts cor-
respond to real measurements of physical magnitude. At
each simulation step of the FCM, the value of each concept
is defined by the result of taking all causal weights pointing
into this concept and multiplying each weight by the value
of the concept that causes the event based on equation (1).

It is assumed that c=0.1 and sigmoid function
fx)= : - is applied on calculation result, transformed
l+e

in the interval between 0.00 and 1.00.

As the simulation step of the FCM is defined, the period
during which values of all concepts are calculated and
change. Each simulation step holds for a time unit. Table 1
shows values of concepts for 10 simulation steps.

Weights of interconnections are considered fixed, and the
FCM runs for initial values. Figure 5 depicts the surface of
the variation of values of 8 concepts for 10 simulation steps.
Figure 5 shows that the FCM is driven to equilibrium after
6 simulation steps. When the FCM is at equilibrium, if a
disturbance occurs in the real system, which will cause the
change in the value of one or more concepts, the FCM will
interact for a limited number of steps and will reach again
equilibrium,

Here, we assumed that there is no time relationship in
changes of concept values, when the value of one concept
changes, in the same time unit values of the of the rest
concepts change based on their influence of the first. This
is referred to as a simulation step. In a realistic system,
effects take place in different unit times. For example, in
Figure 3 a change in concept 6 (the temperature of liquid
in tank 1) will lead almost immediately to a change on the
state of the heat element (concept 8) but a change in the
state of valve | takes some time to have full effect in the
amount of liquid in tank 1. Thus, time tags are introduced
corresponding to each effect, but then problems would ap-
pear on estimating different time units for each effect but
could follow the methodology proposed by Park and Kim'?).
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5. Supervisory Control for Process Control
Problem

In complex systems, it is difficult to represent states and
variables of the process that are good indicators of faults,
and more elaborate models are necessary. As systems be-
come complex and sophisticated, they are characterized by
highly nonlinear dynamics coupling a variety of physical
phenomena in temporal and spatial domains. For such sys-
tems, intelligent fuzzy logic based techniques and object
modeling were proposed to address uncertainty issues and
provide flexible platfcn‘ms;1 . These processes are thus not
well understood and their operation is "tuned" by experience
rather than through mathematical scientific principles. Cap-
turing and using expert knowledge etfeclively and effi-
ciently promises to improve plant operation 9, System
operators observe multiple data simultaneously and make
tough decisions based on experience and empirical knowl-
edge.

This is replicated by an FCM constructed by exploiting
the experience of system operators. This FCM lies in the
upper level and serves as a supervisor. It consists of concepts
that may represent irregular operation of some system ele-
ments, failure mode variables, failure effect variables, fail-
ure cause variables, severity of the effect or design variables,
planning schemes, etc.

For the previous example, the FCM-supervisor describes
failure states of valves, possible failures in control valve
opening, the flow rate of liquid, possible malfunction in the
heating element, leaks in tanks, and other alarm schemes.
We must select FCM concepts that will stand for complex
and frequently observable faults; others will represent meas-
ures and plain failures and interconnections among concepts
will show existing interactions. All are determined empiri-
cally by carefully investigating faults in the past (Figure 6).
Concepts for failure of heating element, failure of valves,
conditions of overflow and temperature sensor alarm are
used to determine process failures. This FCM includes con-
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Fig. 7. The two-level structure controller with FCM on each level.

cepts for determining specific system operation. In a similar
chemical process, different amounts of liquid in the output
at different times could be needed, based on the requisite
density of liquid. The outputs of the supervisor FCM are
signals to indicate potential problems in the end product.
This is only the failure detection and identification of the
supervisor, which gives appropriate commands to the proc-
ess controller in the lower level.

In the previous section, a model for a process control
problem was proposed, and could be enhanced if a two-level
structure model is considered (Figure 7). In the lower level
of the structure, there is the FCM previously constructed to
control the process and reflect the model of the process
during normal operation. In the upper level, the supervisor
FCM (Figure 6) used for failure modes, effects analysis,
and completed with a black box for decision analysis of the
FCM. The decision maker of the FCM evaluates alarm sig-
nals, process fail signals and inputs, and sends control sig-
nals to the lower FCM influencing the process.

The two FCMs interact and information must pass from
one to the other. The interface consists of two parts: one
passes information from the FCM in the lower level to the
FCM in the upper level and the other vice versa. This two-
part interface is necessary because changes on one or more
concepts in the lower FCM could mean change in a concept
in the upper level and the corresponding procedure, when

Vol.3 No5, 1999

information descends from the upper FCM towards the
lower level. Generally, two or more FCM concepts on the
lower level pass through the interface and influence one
concept in the upper FCM, and an analogous interface exists
for the inverse transmission of information.

As an example values of concepts "tank 1" and "tank 2"
at the lower FCM determine the value of concept "overflow"
at the upper FCM, using the following reasoning:

IF Tank 1 is low (<30%) OR Tank 2 is low (<30%) THEN
Overflow is low

IF Tank 1 is medium (30% or <60%) OR Tank 2 is me-
dium (30% or <60%) THEN Overflow is low

IF Tank 1 is high (>60%) OR Tank 2 is high (>60%)

THEN Overflow is high

But the value of concept "valves_fail" on the second
FCM is determined through the measurement of special sen-
Sors.

The failure diagnosis of the supervisory FCM is con-
structed where there are two concepts ‘alarm’ and ‘proc-
ess_fail’ that indicate the possibility for failure in the
process. The decision maker part of supervisor evaluates
values of these two concepts and take action. A more com-
plete structure for the FCM that acts as the supervisor of the
entire system lies in the upper level, it is subject of future
work. This FCM will include failure schemes for malfunc-
tion of actuators, failures of flow sensors, and complicated
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failures of flow rate with overflow of tanks.

The cooperation of the two FCMs is alluring and could
lend itself to more sophisticated systems. It is suggesting
another approach, where the lower level has a more conven-
tional controller such as a neural network, and the upper
supervisor is an FCM.

6. Summary

FCM theory, a soft computing approach to describe the
behavior of complex systems and control them, best uses
existing experience in system operation. The proposed
methodology for constructing and developing FCMs ex-
ploits experts who use fuzzy rules to explain cause and
effect among concepts. For complex systems, it is extremely
difficult to depict the entire system by a precise mathemati-
cal model. Thus, it is more useful to graph it, showing causal
relationships between states-concepts. Since this symbolic
representation and control is easily adaptable and relies on
human expert experience and knowledge, it is considered
intelligent,

The implementation in a process control problem is pre-
sented and its simplicity in describing the system’s operation
shown. The prospect for it to be expanded in more advanced
control schemes was discussed by adding a second FCM in
a higher level for failure analysis, prediction, decision analy-
sis, and planning.

FCMs seem useful in describing dynamics and control of
complex systems, by exploiting knowledge on system op-
eration, which will help the designer of a system in decision
analysis and strategic planning. FCMs are useful in describ-
ing the supervisor of complex control systems comple-
mented with other techniques and will lead to more effective
control systems.
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