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ABSTRACT
Corrosion, fatigue and corrosion-fatigue cracking are the most pervasive types of structural problems
experienced by ship structures. These damage modes, can potentially lead to unanticipated out of
service time or catastrophic failure. Acoustic Emission is gaining ground as a complementary Structural
Health Monitoring (SHM) technique, since it can offer real-time damage detection. Deep learning, on
the other hand, has shown great success over the last years for a large number of applications. In this
paper, the SHM on ship hulls is treated as a classification problem. Firstly, the AE signals are
transformed, using the Discrete Cosine Transform, followed by a dimensionality reduction stage.
Afterwards, a Deep Neural Network is employed by the classification module. The proposed approach
was validated and the results indicate that our proposed method can be very effective and efficient,
selecting the optimum AE sensor positions and providing almost perfect localisation results.
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1. Introduction

Shipping has been the largest carrier of freight throughout
recorded history, serving more than 90% of global trade by car-
rying huge quantities of cargo, fuel etc., cost-effectively, cleanly
and safely IMO (2012). Apart from commodities, more than
400 million sea passengers a year travelling through European
ports, and passenger ships and ferry services have a direct
impact on the quality of life of citizens in islands and peripheral
regions. In the ship industry, structural failure, due to the severe
corroding and metal fatiguing environment, is a major cause of
the loss of ships, vessels and tankers. A relatively recent study
IUMI (2009) on total vessel losses during 1994–2009 showed
that the most frequent cause of accidents for vessels greater
than 500GT is weather, followed by grounding, fire/explosion,
collision/contact etc. The ship hull damage is among the top
five causes of vessel sinking, causing huge loss of human life
and pollution of the seas and coastal areas. The sinking of
‘Erika’ in 1999 FMAIO (1999) and ‘Prestige’ in 2002 ABoS
(2002) were caused by the degradation of the ship hull structure
and more than 20,000 tons and 35,000 tons of oil respectively
were spilled into the sea, polluting the coast of Spain and
France, causing fatal consequences for flora and fauna. Each
year, over 400 ocean-going ships sink, many as a result of wea-
kened structures due to corrosion and inadequate and poor
welding quality LMIU (2020). A ship’s life-cycle is estimated
to at least 30 years of operational service and maintenance
and condition servicing is an essential part of maritime
industry.

In order to ensure that the strength of the ship structure is
kept safe for operation, regular hull inspections and repairs of
paint coatings, excessively corroded plate and fatigue cracks

monitoring must be carefully planned and carried out. Dry-
dock inspection is mainly done to determine hull plating thick-
ness at key points to extrapolate the extent and rate of cor-
rosion. It is desirable to detect all cracks above a critical size
that may propagate, but a complete inspection of an entire
hull or just an entire weld is impractical (Figure 1).

Non-Destructive Testing (NDT) methods have been widely
used in dry-docking services to evaluate the reliability of ship
structures; however, it is not feasible to inspect the entire hull
or even all of the major welds for cracks and defects due to
time and cost constraints. Thus, the primary purpose of dry-
dock inspections is to determine the thickness of the hull plat-
ing at strategic points to extrapolate the extent of corrosion.
Typically, this is done via an ultrasonic thickness measure-
ment TMFSC (2020). Using current NDT techniques, only
10% of the total welds length is inspected – unrepresentative
of its condition ABS (2007). Additionally, these tests are man-
ual, slow and expensive. Besides dry-docking inspections,
some NDT techniques are used for underwater inspection of
steel welds LA (2020). The working conditions for divers are
difficult and hazardous – new tankers are double-hulled and
the inside hull is not accessible – a major limitation of manual
underwater NDT by divers. It is obviously important to detect,
identify and take early corrective action, in case of hull struc-
tural failures.

Acoustic Emission (AE) is the phenomenon of radiation of
acoustic (elastic) waves in solids that occurs when a material
undergoes irreversible changes in its internal structure. Possible
causes of the internal structure changes are crack initiation and
growth, crack opening and closure, dislocation movement,
twinning, and phase transformation in monolithic materials
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Miller et al. (2015). Corrosion, fatigue and corrosion-fatigue
cracking, which are the most pervasive types of structural pro-
blems experienced by ship structures, can be detected using AE
method. AE monitoring involves listening to the process of cor-
rosion itself, which causes AE as a result of the fracture and
debonding of expansive corrosion structure, localised yielding,
or micro-crack formation. The AE method has been developed
for monitoring, detection and location of fatigue cracks in a
variety of metal structures, including airframes, oil storage,
steel bridges, pipelines and pressure vessels Roberts and Taleb-
zadeh (2003), providing several advantages for monitoring and
detection of one or multiple fatigue cracks initiation. The differ-
ent forms of corrosion could be characterised and identified by
AE analysis (Rettig and Felsen 1976; Seah et al. 1993; Jomdecha
et al. 2007), offering the great advantage of developing real-time
continuous monitoring during ship voyage, if reliable and dedi-
cated noise reduction and pattern classification methods are
discovered.

The AE method has been widely used for offshore structures
such as ships, oil platforms, bridges with marine basements,
subsea pipelines etc. Several researches (Parry 1977; Anastaso-
poulos et al. 2009) present the use of AE as a global, real-time
monitoring of the structural integrity in large-scale offshore
structures. The first application of AE analysis technology in
an undersea environment was carried out by Exxon Nuclear
in an offshore platform Parry (1977). An R&D program Thau-
low and Berge (1984) has been carried out to establish relation-
ships between corrosion fatigue crack growth in offshore steel
qualities and AE activities. Laboratory experiments on small-
scale specimens and wide plates have shown that when a certain
combination of crack size and crack surface corrosion deposit
thickness has been reached, high AE event rates were recorded
Thaulow and Berge (1984). In Løvaas (1985), some full-scale
trials have been performed in order to detect cracks in offshore
structures, using AE signals. In Kappatos and Dermatas (2011),
a detailed review in structural health monitoring of offshore
structures including ship hull, using AE testing is provided.
The ship hull structures can be monitored by AE techniques

(Georgoulas et al. 2009; Kappatos et al. 2009; Kappatos and
Dermatas 2009; Kappatos and Dermatas 2011; Georgoulas
et al. 2016) during the application of an external stress. The
external dynamic stress introduced by the sea-waves and
cargo movements in the outside and in the inside of shell
respectively is an excellent source of AE phenomena.

One of the ways to tackle the AE detection and source
location problem, is to treat it as a typical classification pro-
blem. The standard way to build a classifier given a signal is
often considered as a three step procedure. The first step is to
extract useful and robust features from the signal. In this
way, the quite high dimensionality of the signals is reduced.
Then, a feature selection is employed in order to reduce further
the feature space. Finally, the features are fed into a classifier
(statistical, neural, rule based, etc.), which has already been
trained using a representative set of historic data.

There is a vast number of research works for the AE detec-
tion and source location problem. In Kappatos and Dermatas
(2009), a Genetic Algorithm (GA) was used to both reduce
the dimensionality of the input vector of predefined features,
and also set the spread parameter of a Probabilistic Neural Net-
work (PNN) responsible for the prediction of the location.
Wavelet features were extracted from the raw AE signals, and
then, after dimensionality reduction through Principal Com-
ponent Analysis (PCA), a simple linear minimumMahalanobis
distance classifier performed the localisation Georgoulas et al.
2009. In Georgoulas et al. (2016), a radial-basis-function neural
network was used to localise AE events in ship hulls. The results
showed that the location of a single event can be classified
efficiently, using a tiny network configuration and a small set
of robust features, selected automatically by the K-means algor-
ithm from a superset of 90 signal parameters.

This work expands on our latest findings (Georgoulas et al.
2016) in which the original AE signal is transformed using the
Discrete Cosine Transform (DCT) Strang (1999). DCT is a
transform often used for compression Keogh et al. (2000) (con-
densing the relevant information to few non zero coefficients).
Then, the dimensionality reduction technique from the field of

Figure 1. (i) The sinking of Maltese Tanker, Erika, in the Bay of Biscay (1999). (ii) The oil tanker Prestige suffered catastrophic mid-ship structural failure (2002). (This figure
is available in colour online.)
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time series data mining, namely the Piecewise Aggregate
Approximation (PAA) Keogh et al. (2000), Yi and Faloutsos
(2000) is applied. The resulting representation fed a Deep Belief
Network (DBN) Hinton (2010), which belongs to the family of
deep learning paradigms.

In the current work, the aforementioned approach is tested
using a deep neural network using autoenconders for fast pre-
training and different number of input vectors as well as a com-
bination of all sensor measurements. Autoencoders are deep
neural networks and were first introduced in the 1980s by Hin-
ton (2010), Rumelhart et al. (1986). The characteristic of these
neural networks is the fact that they use the input also as the
output of the model reporting great classification results Zhu
and Zhang (2019). Our work indicates that high localisation
rates can be achieved using various configurations and, more
importantly, that the fusion of information can provide almost
perfect localisation.

The rest of the paper is structured as follows: Section 2 sum-
marises the proposed procedure with all the involved methods.
Section 3 describes the experimental set up, while section 4 pre-
sents the achieved results for the various configurations. At the
end of paper, section 5 concludes the papers, including some
suggestions for future research directions.

2. Proposed procedure

Our proposed procedure relies on a typical classification
approach. The raw AE signal is transformed to its DCT
coefficients. The number of coefficients is reduced, using
the PAA approach and are fed to a Deep Neural Network
(DNN) classifier, which predicts one out of three classes as
it is described in section 3. Figure 2 depicts a schematic of
this approach. The following subsection briefly presents the
theoretical background for each one of the aforementioned
methods.

2.1. Discrete Cosine Transform

When dealing with time series classification problems, it is
common practice to transform the original time series to a
more ‘informative’ space. For example, if different classes
have different frequency content, then the Fourier or the wave-
let transform are two common choices. In our previous work
(Georgoulas et al. 2016), it was shown that DCT can be a
very effective transformation for this specific application.

DCT is used to convert the original signal data to a sum-
mation of a series of cosine waves of different frequencies. It
is quite similar to the Discrete Fourier Transform
(DFT) (Ahmed et al. 1974), however DCT involves only the
use of cosine functions and real coefficients, whereas DFT
uses both cosine and sine functions with complex numbers.
DCT is one of the most widely known transforms in signal pro-
cessing data, and especially in coding for compression Rao and
Yip (2014). However, it can also be used for feature extraction,
transforming the original time domain signal into DCT coeffi-
cients (Rao and Yip 2014).

One of the most common implementations of the DCT is
the following Rao and Yip (2014), Proakis and Manolakis
(1996).

Suppose a discrete signal x of length L and let s be:

s[i] = x[i], 0 ≤ i ≤ L− 1
x[2L− i− 1], L ≤ i ≤ 2L− 1

{
(1)

Figure 2. The localisation procedure. AE signal is transformed using the DCT. The
produced coefficients undergo a dimensionality reduction stage using PAA. The
PAA representation finally feeds the DNN which performs the localisation by
assigning one out of three predefined classes. (This figure is available in colour
online.)
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Then one can compute the DFT of s as:

S[k] =
∑2L−1

n=0

s[k] ·Wnk
2L , 0 ≤ k ≤ 2L− 1 (2)

and the DCT of x is given by

V[k] = Wk/2
2N V[k], WL = e−j2p/L, 0 ≤ k ≤ L− 1 (3)

The application of the DCT to a raw AE signal is displayed
in Figure 3(b). As one can easily notice, the DCT produces L
DCT coefficients. In our case, the number of the DCT coeffi-
cients was L = 30, 720 same as the number of the samples of
the signal x. In order to compress the signal composing of
the DCT components only a fraction of these coefficients is
retained, while the other are discarded. In our work, the PAA

transform to the DCT coefficients, producing a reduced rep-
resentation, is applied.

2.2. Piecewise Aggregate Approximation

The main role of PAA (Karvelis et al. 2015; SAX 2016), which
was introduced by Keogh et al. (2000) and Yi and Faloutsos
(2000), is to approximate a discrete signal x of length L into
a vector of length w, xPAA = [�x[1], �x[2], . . . , �x[w]]:

�x[i] = w
L

∑
L
w
i

j=
L
w
(i− 1)+ 1

x[j], i = 1, 2, . . . , w (4)

PAA, first divides the signal into w equal sized windows and
then computes the mean value for each frame. A slight
modified formulation is needed Rao and Yip (2014), in the
case where the length of the original signal L is not divided
exactly by w. In this case, a signal w times longer than the orig-
inal signal – a new augmented signal – is created by adding
w− 1 zeros between each consecutive samples of the original
signal and then we can easily apply the PAA method Proakis
and Manolakis (1996). An illustration of the application of
the PAA method to the original DCT coefficients is displayed
below in Figure 3.

2.3. Deep Neural Network using pretraining

DNNs have drawn much attention lately, and have been suc-
cessfully applied in numerous applications and competitions
Schmidhuber (2015). On the other hand, very few applications
can be found in the available literature in the field of condition
monitoring. In Tran et al. (2014) and Tamilselvan and Wang
(2013) DBNs were used for the diagnosis of faults in power
transformers and reciprocating compressor valves.

In this work, a DNN in used for the classification process.
However, training a DNN can be very time consuming and it
usually requires a massive amount of data. To alleviate this,
an approach was proposed, which involved pre-training the
weights of each layer as the weights of an autoencoder Bengio
et al. (2007). In other words, the weights of a series of autoen-
coders can be stuck together to form a DNN.

An autoencoder is composed of two sections representing
the encoding half of the net, and the second net that makes
up the decoding half. In brief, the autoencoder is a neural net-
work that learns to map the input to an output, which is a copy
of the input. Schematically, the architecture of an autoencoder
is depicted in Figure 4.

The whole procedure can be better explained by the follow-
ing Figure 5.

Summing up, the whole procedure consists of:

(1) training of a sequence of shallow autoencoders, greedily
one layer at a time, using unsupervised data

(2) training of the last layer of the DNN (created by stacking
together the ‘first half’ of the shallow autoencoders of the
previous step) using labelled data, and

Figure 3. AE signal processing: (a) raw AE signal, (b) the DCT representation of the
AE signal and (c) the PAA representation of the DCT coefficients. (This figure is
available in colour online.)
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(3) use of backpropagation to fine-tune the entire network
(end to end) again using labelled data.

This sequential training allows quite deep architectures not
only to be trained within reasonable amount of time but can
also lead to increased performance.

3. Experimental set-up

A Stiffened Plate Model (SPM) was used to model the side shell
of a ship structure. In order to detect the AE signal from all
possible positions, four sensors were set in symmetrical pos-
itions, taking into account the structure of a ship hull.

The outside side shell is dyed with oil paint in order to simu-
late as much as possible the outer surface of a real ship’s side.
Reflections at the end of the SPM were reduced by wrapping
the ends in putty. In order to investigate the influence of
water, the SPM and its supports were fixed in a water tank.
The putty at the edges of the SPM prevents the passage of
the water on the inside shell of the plate. The putty is dyed
with oil paint for better water-tightness and to avoid putty cor-
rosion. The fixed boundary condition of the model was
obtained by clamping the side shell to three heavy bases. Insu-
lation material was placed between the SPM and the three
bases, between the three bases and the bottom of the tank, at

the bottom of the tank and on the floor to eliminate external
noise.

Physical Acoustics Corporation (PAC) R15-Alpha sensors
were used to detect waves in the steel stiffened plate. The sen-
sors were stuck on the plate with grease couplant. In real appli-
cations, where installation cost is a significant factor, the
number of sensors must be reduced and, simultaneously, the
sensors must be configured at maximum sensitivity to cover
the greatest possible ship hull area. In our experiments, the pul-
ser amplitude was decreased, and the gain was set within the
specification limits of the amplifiers used. This setting was
close to a real-life application, where the received signal is pro-
pagated through several adjacent stiffened plates and the signal
reflection at the plate edges is minimised. The sensor signals
were amplified at 58 dB (two sensors), 70.7 and 80 dB, digitised
at 1 MHz, 16 bit accuracy and stored in the AE analysis system
PAC Mistras 2001. The fourth channel’s AE system triggers,
when the signal on any channel exceeded a pre-defined
threshold, and the four-channel simultaneous recordings,
were stored on a hard disk. Τhe AE source was simulated
with a piezoelectric pulse-generator and pencil-lead breakage
(PLB), which are in common use Nielsen (1980). PLB is a
long-established standard as a reproducible artificial AE source
simulated crack initiation and growth due to corrosion, fatigue
and corrosion-fatigue cracking. Often this type of source is also
referred to as the Hsu-Nielsen source, based on the original
works of Nielsen (1980). Using a mechanical pencil, the lead
is pressed firmly against the structure under investigation
until the lead breaks. During pressure application with the
lead, the surface of the structure gets deformed. At the moment
of lead breakage, the accumulated stress is suddenly released,
which causes a microscopic displacement of the surface and
causes an acoustic wave that propagates into the structure.
Since this type of source is easy to handle in laboratory environ-
ments, as well as in field testing, it became the most common
type of test source in AE testing.

AE source was simulated with a piezoelectric pulse-genera-
tor and PLBs and in each location ten repeated measurements

Figure 4. Schematic of a simple (shallow) autoencoder. (This figure is available in
colour online.)

Figure 5. Schematic explanation of the pretraining process. The weights of the input layer of the autoenconder after unsupervised training are stuck to form the neural
network. (This figure is available in colour online.)
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were recorded. The test signals obtained from PLBs are very
reproducible given the handling of the mechanical pencil is
repeated accurately. The studies by Strathaus and Bea (1992)
and Sucharski (1995) show that the main cause of ship struc-
tural damage is fatigue due to wave-induced loads, especially
for structures having high stress concentrations at the connec-
tion between the longitudinal and the heavy transverse mem-
bers of the side shell. Three locations/classes were simulated:
(i) AE-source in the welding seam between the longitudinal
and the heavy transverse member (web), (ii) AE-source in
the welding seam between the longitudinal and the side shell,
(iii) AE-source in the welding seam between the heavy trans-
verse member (web) and side shell. The collected signals,
each one 30,720 samples long, from four different AE sensors
were used for the evaluation of the proposed method. A
detailed description of the experimental set up and procedure
can be found in Kappatos and Dermatas (2009).

4. Dataset description

Ten AE signals were acquired from 15 different locations for
each location/class Kappatos and Dermatas (2009) as close as
possible to the welding seam, resulting in a total of 3 × 15 ×
10 = 450 signals for each one of the four sensors. These record-
ings were initially tested individually for each sensor and then
were also tested all together in the form of a data fusion approach.
In each scenario, the 10 fold cross-validation procedure was
employed Witten and Frank (2005). The cross-validation pro-
cedure is a standard method to assess the generalisation ability
of the trained model. More specifically the whole dataset (450)
was divided into ten sets of equally distributed classes. The
model was trained using the nine sets and the last set was used
to access the classification accuracy measure. The above steps
were repeated until all sets were tested.

As in Georgoulas et al. (2009), a feature vector of dimension
200 was created after the consecutive application of DCT and
PAA. In this work, however, the classification performance of
the proposed scheme was evaluated using (all) the 200 features,
the first 100 features and the first 50 features (an inspection of
the values for the Area Under the Receiver Operating Charac-
teristic Curve (AUC) Wasikowski and Chen (2010), revealed a
decreasing trend of the utility of the features).

The second set of experiments features come from all four sen-
sors were put together. To keep the settings as comparable as
possible, the first 50 and the first 25 features of each sensor (result-
ing in 4 × 50 = 200 and 4 × 25 = 100 features in total), were tested.

As in Georgoulas et al. (2016), using the rule of thumb that
smaller layers should be used as we move from the input to the
output, to force the neural network to generalise rather than
overfit Heaton (2013) three different architectures were

employed depending on the size of the input vector: 200-50-
10-3, 100-50-10-3 and 50-50-10-3 for the case of individual
sensors and 200-50-10-3, 100-50-10-3 for the case of the fusing
of all four sensors.

5. Results

The results are summarised in Table 1(bold values indicate
maximum performance) while all the aggregated confusion
matrices can be found in the Appendix.

As in our previous work Georgoulas et al. (2016), sensor no
2 yields very poor results due to the confusion of two out of
three classes. This is probably due to its almost equidistance
placement from the corresponding welding seams. Regarding
the individual sensors, sensor 4 achieves very high results indi-
cating that with the strategic placement of a sensor almost all
classes can be successfully covered. The data fusion approach
(using measurements from all four sensors) provided the best
results. It is also worth noting that in this case, the less informa-
tive measurements of sensor 2, were adequately compensated
by the information contained in the rest of the sensors.

6. Conclusions and future work

This paper presented a novel data driven method for AE local-
isation on the extreme complex ship hull structures, combining
ideas from the fields of signal processing, time series data mining
and deep learning. Our work used a small scale ship hull struc-
ture and due to the huge size of typical vessels, a large sensor
network will be required to cover the entire or the most critical
areas of ship hull structure. The overall network design and
development has to ensure reliability and high accuracy detec-
tion, location and identification of AE events.

Provided though that a representative data set is available,
the proposed tested method seems a viable candidate taking
into consideration the generaliry of the individual methods
involved.

An intuitive explanation of its effectiveness as well as the
need for their complementary properties can be provided by
projecting the multidimensional data (200 features) in a
three-dimensional space. The ‘projection’ was created using a
variation of the Stochastic Neighbour Embedding (SNE)
method Hinton and Roweis (2002) called t-Distributed Sto-
chastic Neighbour Embedding, t-SNE Maaten and Hinton
(2008). Actually, t-SNE is a non linear dimensionality
reduction technique which acts in a two-stage process: First,
it starts by converting the high-dimensional Euclidean dis-
tances between data points into conditional probabilities that
represent similarities in the high space. At the second stage, a
probability distribution over the points in the low-dimensional
map is defined and the method tries to minimise distance
between the two distributions.

The implementation of the projection of the data into the
3D space is provided by Figure 6. As it can be seen, the
extracted features, using the DCT and the PAA result in com-
pact clusters, belongs to the same class. However, the cluster
belonging to a particular class are not forming a global, uniform
structure. Therefore, a powerful machine learning algorithm
for the classification task is needed.

Table 1. Classification performance.

Features

200 100 50

Sensor 1 93.33 94.89 92.44
Sensor 2 64.44 64.89 66.00
Sensor 3 94.67 97.33 96.89
Sensor 4 95.56 98.00 99.56
All the sensors combined 99.78 98.66 –
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On the other hand, it should be noted that this is a data-
driven approach. This means that an available set of historic
data is needed in order to develop the classification scheme.
Moreover, even though the results are promising, it must

be kept in mind that the data come from an experimental
setting. Therefore, further investigation is needed before
the proposed method can actually be used in industrial
applications.

Figure 6. The stiffened plate under test and the sensor positions.

Figure 7. Projection of the original data set using t-SNE. (This figure is available in colour online.)
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Starting from this last point, in future work, an attempt will be
made to test the method using real-life data. Furthermore, the
applicability of the method as a general tool for AE signal analy-
sis will be investigated. Towards that end, other combinations of
DCT with methods from the field of time series data mining will
be examined in combination with DNN as well as other para-
digms from the deep learning family (Figure 7).
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Appendix

50 Features

Table A1. Aggregate confusion matrix for sensor 1, accuracy = 92.44%.

Predicted class
A B C

TRUE class A 138 5 7
B 2 144 4
C 10 6 134

Table A2. Aggregate confusion matrix for sensor 2, accuracy = 66.00%.

Predicted class
A B C

TRUE class A 148 1 1
B 1 76 73
C 1 76 73

Table A3. Aggregate confusion matrix for sensor 3, accuracy = 96.89%.

Predicted class
A B C

TRUE class A 142 6 2
B 2 146 2
C 2 0 148

Table A4. Aggregate confusion matrix for sensor 4, accuracy = 99.56%.

Predicted class
A B C

TRUE class A 150 0 0
B 1 149 0
C 1 0 149

100 Features

Table A5. Aggregate confusion matrix for sensor 1, accuracy = 94.89%.

Predicted class
A B C

TRUE class A 144 1 5
B 2 144 4
C 3 8 139

Table A6. Aggregate confusion matrix for sensor 2, accuracy = 64.89%.

Predicted class
A B C

TRUE class A 148 2 0
B 6 83 61
C 6 83 61

Table A7. Aggregate confusion matrix for sensor 3, accuracy = 97.33%.

Predicted class
A B C

TRUE class A 144 4 2
B 0 148 2
C 1 3 146

Table A8. Aggregate confusion matrix for sensor 4, accuracy = 98.00%.

Predicted class
A B C

TRUE class A 149 1 0
B 4 146 0
C 4 0 146

200 Features

Table A9. Aggregate confusion matrix for sensor 1, accuracy = 93.33%.

Predicted class
A B C

TRUE class A 142 3 5
B 2 143 5
C 10 5 135

Table A10. Aggregate confusion matrix for sensor 2, accuracy = 64.44%.

Predicted class
A B C

TRUE class A 145 3 2
B 5 85 60
C 5 85 60

Table A11. Aggregate confusion matrix for sensor 3, accuracy = 94.67%.

Predicted class
A B C

TRUE class A 136 11 3
B 1 149 0
C 3 6 141

Table A12. Aggregate confusion matrix for sensor 4, accuracy = 95.56%.

Predicted class
A B C

TRUE class A 147 3 0
B 4 141 5
C 3 5 142

200 Features, All the Sensors combined

Table 14. Aggregate confusion matrix, accuracy = 99.78%.

Predicted class
A B C

TRUE class A 149 1 0
B 0 150 0
C 0 0 150

100 Features, All the Sensors combined

Table A14. Aggregate confusion matrix, accuracy = 98.67%.

Predicted class
A B C

TRUE class A 150 0 0
B 0 149 1
C 0 5 145
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