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Abstract
This paper presents an exploratory approach of the fetal heart rate (FHR) analysis, aiming to highlight potential limitations 
of the current predictive modeling attempts. To do so, a set of features that are usually encountered in FHR analysis as well 
as features extracted using a variant of symbolic aggregate approximation were projected onto a lower-dimensional space 
where patterns can easily be discerned. The results show, both in a qualitative and a quantitative manner, that there is high 
overlap between the classes that are formed using solely the umbilical cord pH information, irrespective of the selected 
dimensionality reduction method. These findings suggest that there is probably a limit to the performance expectation of the 
current pH-based systems and that alternative approaches should be also pursued to enhance the utility of computer-based 
decision support technologies.
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1 Introduction

Electronic fetal monitoring (EFM) was introduced into clini-
cal practice 40 years ago, and it has progressively become an 
indispensable means for fetal surveillance during delivery 
[1]. EFM mainly refers to the acquisition and interpreta-
tion of the cardiotocogram (CTG), which in turn depicts the 
fetal heart rate (FHR) and the uterine contractions (UC). 
CTG is believed to contain valuable information for fetal 
well-being, which an experienced clinician can retrieve by 
eye inspection and intervene in case they foresee an adverse 
outcome. However, the everyday use of CTG did not reduce 
the inter- and intra-observer variability [2], while it was 
also blamed for an increase in the number of unnecessary 

cesarean sections [3]. This fact, along with the firm belief 
that CTG and especially the FHR convey “hidden” informa-
tion which might not been fully exploited by eye inspection 
[4], led to the development of computerized systems. The 
ultimate goal of such a system was to remove any personal 
bias and establish a consistent interpretation, diminishing 
inter- and intra-observer variability, while at the same time 
explore the recent advances in signal processing and artifi-
cial intelligence (AI), without, however, living up to those 
early expectations [5].

Most of the computerized systems encountered in the 
literature rely on a supervised classification approach: (i) a 
set of features is extracted from the signal (a way to battle 
the “curse of dimensionality” and potentially lead to bet-
ter results) and (ii) those features are subsequently used to 
train a classifier [6–8]. Initially, for the feature extraction 
stage, methods for automatically replicating the guidelines 
issued by the International Federation of Obstetricians and 
Gynecologists (FIGO) [4] were employed. Soon after, new 
features brought in from other mature fields were adopted 
and tested, e.g., time-domain features, frequency-domain 
features, time–frequency-domain features, etc. [9–18].

All these approaches assume that FHR tracings form con-
crete classes that can be learned by a classifier. One of the 
most common ways to create those target classes is by using 
the pH value of the umbilical cord artery [19]. However, a 
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review of a number of studies revealed that there seems to 
be an upper limit to the performance of this kind of systems 
[20].

On the other hand, very few studies followed an unsu-
pervised/exploratory approach, before attempting to develop 
predictive models. In [21, 22] clustering methods, also 
known as unsupervised classification methods were tested. 
In [21] a clustering by compression approach was pursued, 
and three clusters were identified along with a cluster with 
some cases that deviated from the identified pattern. The 
method was applied to a small number of cases and the ret-
rospective labeling of the clusters primarily relied on Apgar 
score. In [22], the k-means algorithm was used, and the 
resulting two clusters seemed to capture the dynamics con-
trolling non-pathological and intrauterine growth-restricted 
(IUGR) fetuses. In these approaches, the explicit assumption 
made was that a clustering structure indeed existed in the 
FHR recordings, even though they did not impose a prede-
fined labeling.

In this current study, no assumption about the potential 
existence of classes/clusters was made. Instead, a number 
of dimensionality reduction techniques were applied to a 
set of features extracted from the largest, currently, freely 
available database [23] trying to understand the structure 
and the segregation of cases in the higher features space by 
having a look on lower projected spaces. The engaged fea-
tures come from various domains as it is described in brief 
in Sect. 2 and are commonly used in computerized analysis 
of FHR. Moreover, a novel set of features, using symbolic 
aggregate approximation (SAX) [24], was also tested. For 
the dimensionality reduction stage, a linear and three non-
linear techniques were selected in order to investigate quite 
different/representative techniques.

The main goal of this study was to investigate potential 
limitations of FHR classification when it is based solely on 
pH class formation, and the results presented in Sect. 3 and 
further discussed in Sect. 4 seem to corroborate that.

2  Methods

The whole study focuses on the reduction of the original high 
N-dimensional raw FHR time series, x[n] , n = 1, 2,… ,N 
into just two dimensions that can be perceived by the human 
brain.1 The basic procedure was performed in two stages. 
In the first stage, the FHR signal was transformed into a 

feature vector with usually much lower dimension, while in 
the second stage the feature vector was embedded into an 
even lower dimension space.

Before the application of the dimensionality reduction, 
the FHR signal was preprocessed to remove as much as pos-
sible of the contaminating artifacts. Then, two different fea-
ture extraction methods were tested. The first one computed 
a set of “conventional” features followed by feature selec-
tion. The second feature extraction approach transformed 
the original FHR signal into a symbolic representation that 
was then treated using a technique borrowed from the field 
of information retrieval.

The methods involved in the second stage belong to the 
family of dimensionality reduction methods. This family of 
methods is quite large and quite diverse. The scope of this 
work was not to exhaustively search for the “best” method 
to transform the data, rather than to check if different meth-
ods can lead to similar results/conclusions. Therefore, this 
work employed four dimensionality reduction methods: (a) 
the most used one of linear transformations, (b) one of its 
nonlinear counterparts, (c) a popular nonlinear method from 
the manifold learning family and (d) a method that is based 
on a neural network approach. The overall procedure for the 
two different feature sets is depicted in Fig. 1. As it can be 

Fig. 1  Overall procedure: a preprocessing and artifact removal were 
followed by feature ranking and selection; the feature selection stage 
was split into three branches with each one using a different classifier 
for the evaluation of the quality of the various feature sets. The best 
candidates for each one of the three branches were projected onto 2D 
using the selected dimensionality reduction method and the one with 
the higher inter/intra-class distance was selected, b preprocessing was 
followed by normalization, PAA and symbolization, leading to the 
“bag of patterns” representation. After that, the procedure is identical 
to the one followed in a 

1 In two and three dimensions, the human eye is an excellent pattern 
recognition tool and easily perceives the complexity of a potential 
classification task and can also discern the existence of structures/pat-
terns in the data. However, the use of three-dimensional (3D) scatter 
plots was not exploited, to avoid the extra complexity imposed by the 
selection of the best viewpoint.
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seen, the paths are similar and only the processing of the 
FHR was different.

2.1  Preprocessing–“conventional” feature 
extraction

FHR is a very noisy signal with the noise appearing as spiky 
artifacts and with a lot of missing values due to the displace-
ment of the transducer. In this work, an artifact rejection 
scheme based on thresholding and interpolation was used 
[13].

As it was mentioned in the Introduction, numerous fea-
tures have been used for the analysis of FHR having their 
origins in different domains. In this study, a total of 54 “con-
ventional” features were extracted (21 unique methods with 
different parameter settings). For a detailed description of 
the involved features, the interested reader can refer to our 
previous works [11, 13, 19].

2.2  Feature selection

Sometimes, there is a tendency to extract more features than 
necessary or extract features that have little discriminative 
power. In such cases, a feature selection stage can be ben-
eficial, increasing the generalization capability of the pre-
diction system. Feature selection methods can be grouped 
basically into three categories: filters, wrappers, embedded 
methods and their combinations. Our previous work [13] 
showed that the classification accuracy of an FHR signal 
analysis system can be improved by the selection of a sub-
set of the original feature set. Moreover, an initial set of 
experiments revealed that including all the extracted fea-
tures leads to more overlapping between the classes in 
the lower-dimensional space. Therefore, a feature ranking 
method (filter approach) was combined with a nested subset 
method (wrapper approach) to derive a suitable candidate set 
of features before the dimensionality reduction stage. Such 
methods are fast and simple to implement and at the same 
time have been proven to work well in practice.

For ranking, a composite approach was considered 
based on the area under the receiver operating character-
istic (ROC) curve (AUC), taking also into account correla-
tions among selected features [25]. The advantage of AUC 
is that it is immune to class imbalance [26]. The employed 
approach penalizes features that are correlated with the 
ones already ranked higher before them. This way it forces 
selected features not only to have a high individual AUC 
value but also to be as less correlated as possible with each 
other. After ranking, the simplest wrapper based approach 
for the selection of the subset of features was used: nested 
subsets of features were formed, S1 =

{
f1
}
 , S2 =

{
f1, f2

}
,…, S54 =

{
f1, f2,… , f54

}
 , where fj denotes the jth selected 

feature. Therefore, 54 such subsets were created, ranging 

from one feature to all 54 features and the performance of 
each subset was evaluated using a simple classification algo-
rithm. The subset with the best performance was selected to 
undergo further dimensionality reduction.

2.3  Features based on symbolic manipulation 
of FHR

The use of symbolic time series analysis tools and repre-
sentations is quite competitive to conventional methods for 
signal processing [27, 28] and very popular in the time series 
data mining community. One of the reasons for its popularity 
is that after the transformation of the real-valued time series 
into a sequence of symbols, tools from the mature field of 
text mining and information retrieval can be easily adopted. 
Among the various techniques for transforming a real-valued 
time series into a sequence (string) of symbols, SAX [24] is 
probably one of the most popular ones.

The SAX algorithm creates an approximation of a real-
valued times series x = {x[1], x[2],… , x[N]} of an arbitrary 
length N by converting it to a string of symbols of arbitrary 
length w , where w < N . The entire process consists of the 
following steps:

2.3.1  Normalization

Before any further processing, the original time series is nor-
malized to have zero mean and unit variance. This (for real-
life data) usually leads to distributions of the transformed 
time series that are very close to the Gaussian distribution, 
which makes it easier for the discretization process [29].

2.3.2  Piecewise aggregate approximation (PAA)

PAA, independently introduced by Keogh et al. [30] and by 
Yi and Faloutsos [31], offers a means to produce a low(er) 
dimensionality representation of a time series. More specifi-
cally, a time series x of length N is transformed into a new 
time series xPAA = {x̄[1], x̄[2],… , x̄[w]} of length w , with:

2.3.3  Discretization/symbolization

After the PAA step, a symbolic representation is created by 
partitioning the original continuous space. Since the origi-
nal time series has been normalized, the new time series 
will approximately follow a Gaussian distribution and the 
“breakpoints” can be easily determined so as to produce 
equal-sized areas under a Gaussian curve.

(1)x̄[i] =
w

N

N

w
i∑

j=
N

w
(i−1)+1

x
[
j
]
, i = 1, 2,… ,w.
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2.3.4  Feature extraction from a SAX representation

The discretization stage creates a string, which needs to be 
transformed into a representation that can be handled easier by 
a conventional classification algorithm. The “bag of patterns” 
representation borrows ideas from the well-established field of 
text processing and the “bag of words” representation, treat-
ing the created string as a text document. The method counts 
the appearance of individual “words” in a string and creates a 
histogram of appearances for each time series. More specifi-
cally, the approach uses a sliding window of length n within 
which it applies SAX to derive a word of length m . With these 
individual words, it creates a feature vector of length Aw where 
A is the length of the alphabet that holds the frequency of 
appearance of each word. This representation can be coupled 
with any conventional classification algorithm.

2.4  Dimensionality reduction methods

Since the introduction of principal component analysis (PCA) 
[32], many different linear and nonlinear techniques have 
been proposed. In the rest of this section, the four methods 
employed in this study are briefly presented: (a) classical mul-
tidimensional scaling (MDS), a linear technique which has 
been proven to be highly competitive for real-life data [33, 
34], (b) Sammon “mapping,” one of the oldest nonlinear tech-
niques, member also of the general MDS family, with suc-
cessful applications as part of a classification scheme [35], (c) 
Isomap (isometric mapping), a nonlinear method coming from 
the family of manifold learning methods, developed to improve 
MDS, which has been successfully applied to gait analysis 
[36], and (d) curvilinear component analysis (CCA), which 
comes from the field of artificial neural network approaches 
aiming to be an improvement of the self-organizing maps 
(SOMs).

2.4.1  Multidimensional scaling

MDS is practically a set of techniques [32], both of linear and 
nonlinear nature with classical MDS being of the first variety. 
All members of the MDS family are based on the same princi-
ple/goal: retain the pairwise distances between the data points 
as much as possible. The quality of the mapping, which at the 
same time drives the algorithm for finding the most appropri-
ate transformation, is called the stress function. In the case of 
classical MDS, the stress function is:

where xi ∈ ℜm, 1 ≤ i ≤ N  are the original data points in 
the higher dimensional space and yi ∈ ℜd, 1 ≤ i ≤ N  are 
the reconstructed data points in the lower-dimensional space 

(2)StrMDS(Y) =
∑
i

∑
j

(‖‖‖xi − xj
‖‖‖ −

‖‖‖yi − yj
‖‖‖
)2

,

( m > d ). The optimization (minimization) of the above stress 
function can be easily done using linear algebra operations.

2.4.2  Sammon

Sammon “mapping” [37] is one of the nonlinear variants of the 
MDS family where the stress function is given by:

The minimization of the stress function is usually per-
formed by using a pseudo-Newton method.

2.4.3  Isomap

Isomap belongs to the class of manifold learning techniques, 
which assume that the data lie on a submanifold of the origi-
nal space [38]. Isomap attempts to preserve pairwise geodesic 
distance between data points—the distance between two 
points measured over the manifold—using graph distances to 
approximate it and then applies classical MDS to the created 
distance matrix.

2.4.4  Curvilinear component analysis

CCA is a kind of SOM that performs vector quantization in the 
input space and then nonlinear projection in the low dimen-
sional space [39]. However, for small data sets, the quantiza-
tion phase can be skipped (as in our case). CCA combines 
concepts both from SOM and MDS (and especially the Sam-
mon variant) and in some cases, can provide the true structure 
of the manifold, while SOM and MDS might fail.

As in the case of MDS, CCA minimizes a stress function:

In Eq. 4, the Euclidian distance is explicitly used, but other 
distance metrics can be used. The weighting function F(⋅, ⋅) is 
typically chosen as a monotonically decreasing function of its 
arguments, such as the decreasing exponential:

where � is a parameter similar to the neighborhood radius in 
SOM. The minimization of the stress function is performed 
using a variant of the gradient descent method.

(3)

StrSammon(Y) =
1∑

i

∑
j

���xi − xj
���
⋅

∑
i

∑
j

����xi − xj
��� −

���yi − yj
���
�2

���xi − xj
���

.

(4)

StrCCA(Y) =
∑
i

∑
j

(‖‖‖xi − xj
‖‖‖ −

‖‖‖yi − yj
‖‖‖
)2

⋅ F

(‖‖‖xi − xj
‖‖‖, �

)
.

(5)F

����xi − xj
���, �

�
= exp

⎛
⎜⎜⎝
−

���xi − xj
���

�

⎞⎟⎟⎠
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3  Experimental results

Both “conventional” as well as features based on the “bag 
of patterns” approach were extracted from FHR recordings. 
In both cases, the goal was the investigation of the structure 
of the feature space, by looking into a projection of it in a 
lower two-dimensional setting, in relation to the measured 
pH values. The intention was to explore whether there are 
limitations in the use of pH values for the class formation. 
Therefore, “good” if not “optimal” configurations of the 
original high dimensional space were sought using separa-
bility and classification measures in the intermediate stages, 
before projecting the selected representations into the lower-
dimensional ones.

3.1  Data set

All the experiments were carried out using the CTU-UHB 
database [23]. The database consists of 552 records acquired 
using STAN and Avalon devices between years 2009 and 
2012 at the obstetrics ward of the University Hospital in 
Brno, Czech Republic. The features were systematically 
extracted on 30 min long FHR signals at the end of the first 
stage of labor. Next, a pH threshold value of 7.05 [13, 19] 
was used to divide the recordings into “normal” and “patho-
logical” ones. This value is commonly selected in pH-based 
classification systems.

3.2  Conventional features

After the extraction of the 54 features, the feature selection 
procedure was applied. For the nested subset selection part, 
a classification algorithm is needed. Three simple classifica-
tion algorithms were used to select a discriminative feature 
set (a discriminative feature set usually leads to less overlap-
ping between the classes in the lower-dimensional space), 
with respect to the classes formed using the pH value. The 
selection of simple classifiers instead of a more powerful 
one was done to avoid overfitting, since the whole data set 
was used both for training and performance assessment. 
(Note: this study was not interested in building an unbiased 
classification system rather than explore if the structure of 
feature space can actually support the development of such 
a system).

Two simple nonparametric classifiers, the minimum 
Mahalanobis distance classifier, a quadratic classifier and 
a simple parametric classifier, the k-nearest neighbor (k-nn) 
classifier [25] were selected.

Because the use of the 7.05 pH threshold creates two 
classes that are quite imbalanced (508/44) and the afore-
mentioned classifiers cannot cope with that, the synthetic 

minority oversampling technique (SMOTE) was used, to 
alleviate the problem [40]. It must be noted that the syn-
thetic samples were not used during the evaluation of the 
performance, which was done using the g-mean measure 
[13], which is also rather insensitive to class imbalance.

For each of the three simple classifiers, the “best” feature 
set, identified in terms of its performance, was subsequently 
transformed/reduced to two dimensions using one of the four 
dimensionality reduction algorithms. Therefore, three low 
dimensional projections (one for each one of the three sim-
ple classifiers) were created. Among the three, the one with 
the largest separability between the two classes was selected 
for further assessment. The measure of separability used is 
given below [25]:

where Sw is the within scatter matrix

Sb is the between scatter matrix

�i is the mean vector of class i, � is the overall mean vector 
(both classes put together), and xi,m is the mth data point 
belonging to class i, Mi is the number of examples belonging 
in class i (i = 1, 2) and M1 + M2 = M.

The results for each one of the four dimensionality reduc-
tion procedures are depicted in Fig. 2. As it can be seen, even 
though the four methods create slightly different representa-
tions, for all of them, a part of the space seems to belong 
primarily to the normal cases with very few pathological 
ones. The rest of the space is occupied both by pathological 
and normal cases, with the normal cases in this second part 
being, however, less dense compared to the former part. For 
example, for the case of the classic MDS (top left of Fig. 2), 
the left side of the scatter plot is occupied mainly be normal 
cases with few pathological ones, while the right part has 
relatively fewer normal cases and more pathological ones.

To have a quantitative measure of the projected feature 
space, the two-dimensional data sets were fed to a least 
squares support vector machine (LSSVM) [41] with radial 
basis function (RBF) Kernels, which was tuned using five-
fold cross-validation. The produced separating boundaries 
are depicted in Fig. 3. From these figures, it is clear that the 
two classes are highly mixed and not well separated, as it 
is also confirmed by Table 1 which summarizes the perfor-
mance measures for the LSSVM.

A better insight is given by Fig. 4, which depicts the 
data using as extra visualization information the actual 

(6)J = trace
(
S−1
w
Sb
)

(7)Sw =
1

M

2∑
i=1

Mi∑
m=1

(
xi,m − �i

)(
xi,m − �i

)T

(8)Sb =
1

M

2∑
i=1

Mi

(
� − �i

)(
� − �i

)T
.
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pH value of each case. From this figure, it can be seen that 
even though there seems to be a region where the “blue” 
color prevails (normal cases), this is not done in a uni-
form manner. More importantly, the “red” colored patho-
logical cases can lie very close to normal cases indicating 

that there will always be false alarms as well as some hit 
misses.

3.3  “Bag of patterns” representation

For the SAX-derived features, a slightly different version 
from the original formulation was applied, since the abso-
lute value of the FHR is considered an indicator of fetal 
well-being. Therefore, instead of locally applying SAX in a 
sliding window of length n, all signals were put together and 
globally normalized. Then, for each one of them, SAX was 
applied creating a long string of length w which was subse-
quently used to create a “bag of patterns” representation by 
using a sliding window of length m (the size of the word).

As in the case of the “conventional” features, different 
“bag of patterns” representations (size of the alphabet, 
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Fig. 2  The two-dimensional projection of the conventional features 
for the four algorithms. Starting from the top left corner and moving 
clockwise: classical MDS, Sammon mapping, Isomap and CCA. Red 
circles correspond to pathological cases, while blue “xs” correspond 
to normal cases (pH > 7.05) (color figure online)

Fig. 3  The decision boundaries drawn by an LSSVM classifier. a 
classical MDS, b Sammon mapping, c Isomap and d CCA (magenta 
regions corresponding to normal areas pH > 7.05) (color figure 
online)

Table 1  Performance of the LSSVM on the two-dimensional pro-
jected space

Bold values indicate the highest score

TP rate TN rate g-mean

MDS-conv 0.727 0.677 0.702
Sammon-conv 0.727 0.689 0.708
Isomap-conv 0.750 0.667 0.707
CCA-conv 0.682 0.691 0.686
MDS-SAX 0.659 0.656 0.657
Sammon-SAX 0.705 0.634 0.668
Isomap-SAX 0.636 0.697 0.666
CCA-SAX 0.705 0.644 0.673

Fig. 4  Scatter plots of the two-dimensional projection of the conven-
tional features with the individual pH value depicted for each data 
point. Starting from the top left corner and moving clockwise: classi-
cal MDS, Sammon mapping, Isomap and CCA 
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size of the produced string and length of the word) were 
tested. These different representations were fed to the same 
three simple classifiers (linear, quadratic and k-nn)—and 
SMOTE was also applied. For each classifier, the “best” 
feature set (in terms of classification performance) was 
projected onto two dimensions resulting into three rep-
resentations (one for each classifier). Among the three 
representations, the one that corresponded to the larger 
separation between the two classes (inter/intra-class dis-
tance criterion) was selected.

The results are summarized in Figs. 5, 6 and 7. Again, 
the same pattern emerges (even though the resulting for-
mations seem to be more complex compared to those cre-
ated by the projection of the conventional features, with 
higher overlap): an area where the normal cases prevail 
with some pathological cases among them. Also, some 
less dense areas where the pathological cases make their 
presence more notable, however, with normal cases lying 
in close vicinity or even further away toward areas that 
someone would expect to be occupied by more severe 
cases (lower pH values). For example, in the case of Sam-
mon mapping (Fig. 5), the area corresponding primarily to 
normal cases occupies the upper part of two-dimensional 
space, whereas the pathological cases are mainly concen-
trated in the lower part. This is further illustrated by the 
application of the LSSVM approach in Fig. 6. Finally, in 
Fig. 7 as in the case of the conventional features (Fig. 4), 
we do not have a “smooth” transition from “blue” to “red,” 
which means that “perfect” separation within this setting 
is very difficult, if not impossible.

4  Conclusions

In this study, an exploratory approach of the FHR–pH 
“correlation” was pursued in an attempt to investigate the 
viability of developing diagnostic systems for the period 
of delivery relying on features extracted from the FHR 
and calibrated solely using the umbilical cord pH. Since 
previous studies [13, 14, 19] have shown that we might 
be reaching a saturation limit of the performance of such 
systems, this study tried to shed light to the structure of 
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Fig. 5  The two-dimensional projection of the “bag of patterns” rep-
resentation for the four algorithms. Starting from the top left corner 
and moving clockwise: classical MDS, Sammon mapping, Isomap 
and CCA. Red circles correspond to pathologic cases, while blue “xs” 
correspond to normal cases (pH > 7.05) (color figure online)

Fig. 6  The decision boundaries drawn by an LSSVM classifier. Start-
ing from the top left corner and moving clockwise: classical MDS, 
Sammon mapping, Isomap and CCA, magenta regions corresponding 
to normal areas (color figure online)

Fig. 7  Scatter plots of the two-dimensional projection of the “bag of 
patterns” representation with the individual pH value depicted for 
each data point. Starting from the top left corner and moving clock-
wise: classical MDS, Sammon mapping, Isomap and CCA 
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the problem. To do so, a large set of conventional features 
as well as features that are rarely used in FHR processing 
were tested. Then, techniques from the field of dimension-
ality reduction were applied to derive a representation of 
the problem in a space tractable by human perception.

Four different dimensionality reduction methods were 
tested. It turns out that even though the four methods 
returned a bit different “portraits” of the data in the low 
dimensional space they did share some common elements: 
(a) an area where the normal cases prevail is present in 
almost all embeddings, (b) as we move away from that area 
pathologic cases appear more frequently, however, scattered 
among them are normal cases and (c) there does not seem to 
be a smooth/gradual transition between the two areas.

From Figs. 4 and 7, it was made clear that no matter the 
threshold for normality, there will always be several misclas-
sified cases. The results suggest that there is some struc-
ture in the way cases are scattered, but that structure is not 
enough for building an automatic system that can predict pH 
related classes with high classification performance since the 
overlap is quite high.

Regarding the two feature sets, the “conventional” ones 
seem to better reflect the pH information. This comes as 
no surprise, since these features are the result of years of 
research. However, the “bag of words” features also tell the 
same story, even with a bit higher overlap (lower perfor-
mance as can be seen from Table 1).

This study does not intend to argue that in higher dimen-
sions a better boundary could not be found. However, the 
observed limitation of the FHR–pH underlying structure 
indicates a few open issues for the research community; 
additional clinical information should be included as part 
of the feature set and/or alternative labeling process should 
be considered, keeping also in mind that it is not natural that 
there would be a simple separating line (pH based) between 
the normal and pathological FHRs group. Toward the latter, 
a latent class analysis (LCA) model for aggregating experts’ 
opinion was proposed lately [42]. In the future work, a simi-
lar exploratory analysis, in light of the FHR-LCA frame-
work, will be investigated.
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