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Abstract—In this research work we investigate the analysis of 

Acoustic Emission (AE) signals using wavelet decomposition to 

locate a single event (crack), which usually takes place in three 

typical areas in a ship hull. The problem is a typical 

classification problem relying on the use of novel features 

extracted from the AE time series. As in most classification 

problems the extraction and selection of the most appropriate 

set of features plays a major role in the overall performance of 

the method and it is by no means a trivial task. Once a suitable 

set of features is extracted even “simple” classification models 

can perform adequately whereas a non-informative set of 

features even combined with sophisticated classifiers can lead 

to disappointing results. Here, we exploit the multi-resolution 

capabilities of wavelet decomposition, so that a set of features 

is extracted which it is then combined with a simple classifier. 

The proposed method gives superior classification rates for 

noisy environments compared to our previous work where 

conventional methods for feature extraction were deployed. 

Keywords-component; wavelet decomposition; accoustic 

emmisio,  feature extractio, classification 

I.  INTRODUCTION 

Corrosion and fatigue cracking are the most pervasive 
types of structural problems that appear in ship structures. 
Each of the damage modes, if not properly monitored and 
rectified on time, could potentially lead to catastrophic 
failure or unanticipated out-of-service time. Especially in the 
case of a ship, which transports crude oil, the consequence of 
an oil spill due to a broken weld would be -among other 
reasons- environmentally disastrous. Therefore the structural 

health monitoring of a ship is of very critical concern. Most 
of the existing techniques for the inspection of ship 
structures require them to be taken out of service. A 
technique that could detect damage while the ship is in 
normal operation is greatly desired - keeping in mind that 
ships’ downtime is extremely costly- while the identification 
of the extent and the location of the damage is an even more 
complex problem.  

Non-Destructive Testing (NDT) methods are widely used 
for damage identification [1]. In particular, NDT techniques 
are necessary to detect damage in high stressed and fatigue-
loaded spots and areas of complex structures, i.e. aircrafts, 
bridges, ships etc.. NDT methods are extensively used for 
the manufacture and the maintenance of ship structures. Of 
particular interest is the inspection of ship welding. The 
qualitative control of welding, as is generally called the 
inspection of the surface and the interior of welding, aims to 
identify and confirm, that they do not have any cracks, 
inclusions, or/and other defects that can compromise the 
resistance of the ship. However, the use of most of the well-
known NDT methods may not be feasible when the structure 
is in operation. 

Acoustic Emission (AE) is among the most well known 
and successful NDT methods for the detection and location 
of damages in a variety of metal structures [2], [3]. AEs are 
commonly defined as transient elastic waves within a 
material caused by the release of localized stress energy. 
Hence, an event source is the phenomenon which releases 
elastic energy into the material, which then propagates as an 
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elastic wave.The processing of AE signals is based on the 
detection and conversion of these elastic waves to electrical 
signals by directly coupling piezoelectric transducers on the 
surface of the structure under examination. AE is sensitive 
enough to track newly formed crack surfaces down to a few 
hundred square micrometers and less. 

A number of analytical and experimental works 
investigating fatigue damage occurrence in ships have been 
proposed in recent years [3]. The theoretical formulation for 
the assessment of the reliability of a ship hull with respect to 
fatigue failure of the longitudinal members is presented in 
[4]. The model accounts for multiple cracks both in the side 
longitudinal and in the side shell and also models the crack 
growth process. Usually, the dynamic characteristics of the 
structure change when structural damage occurs. Five full-
scale specimens representing side longitudinal of floating 
production storage and offloading units were fatigue tested 
in [5]. The connections were very similar to connections 
currently in use, and they were fabricated according to 
typical ship-yard practice. The specimens have also been 
modeled by finite elements and some of the results from the 
most complex connections have been compared with 
measured data. Zybaydi et al. proposed an autocorrelation 
function to identify damage in the side shell of ship 
structures using a combination of experimental and 
numerical studies [6]. The damage occurrence in the side 
shell of ship structures, modeled as a stiffened plate, was 
identified using the random decrement technique.  

Zubaydi et al. [7] also proposed a Neural Network (NN) 
technique to identify the damages in the side shell of a ship’s 
structure with the autocorrelation function of the structure 
vibration response being the input to the NN. The theoretical 
response was obtained using a finite element model of the 
structure. A considerable amount of all fatigue damage in 
ship hulls occurs in the side shell plating, especially at the 
connection between longitudinal and heavy transverse parts, 
as reported in [8], [9]. The studies by Strathaus et al. [8] and 
Sucharski [9] have shown that fatigue due to wave-induced 
loads is the main cause of ship structural damage, especially 
for structures having high stress concentrations at the 
connection between the longitudinal and the heavy 
transverse members of the side shell. Recently Kappatos et 
al. [10] presented an evolutionary algorithm as a means to 
select relevant features from a larger set of “primitive” 
features [11].  

In this research work we examine and test the 
effectiveness of a different set of features extracted from AE 
signals using the discrete time wavelet transform (DTWT). 
During the last 20 years, researchers from the field of applied 
mathematics and signal processing have developed powerful 
wavelet methods for the multiscale representation of signals 
[12]. This kind of representation allows the decomposition of 
a signal into a number of scales, each scale representing a 
particular “coarseness” of the signal under study [13]. This 
approach can be quite useful when we try to extract 
information from signals that contain more than one 
component. In the proposed here approach, we use the 
DTWT to condense the information from quite long time 

series in order to feed a simple, but nevertheless, effective 
classifier. 

The remainder of the paper is organized as follows: 
Section II is a brief introduction to wavelet transform and 
DTWT. Section III describes the experimental structure, 
which was used to test a metal structure and the data 
acquisition system. In Section IV the proposed classification 
procedure and how it was used in the experimental data set is 
presented. Section V discusses the classification results, and 
in Section VI some conclusions and future directions are 
drawn.  

II. WAVELET TRANFORM 

In the past few years, wavelet analysis has been found to 
be particularly useful as an alternative -and sometimes even 
more suitable- to the short-time Fourier transform. The 
intrinsic property of the wavelet transform to localize well 
both in time and frequency domain makes it very appealing 
in case of nonstationary signals. Even for stationary signals, 
it can be sometimes difficult to choose a good resolution to 
analyze the signal. This is the case when the signal contains a 
mixture of features at different resolutions [13]. 

The continuous wavelet transform (CWT) of signal s(t) is 
produced taking the inner product of the signal with 
translated and scaled versions of a (real or complex)  
analyzing function, also called mother wavelet ψ.  

Translations and dilations of this “mother” (or analyzing) 
wavelet (Eq. 1) are used to transform the signal into another 
form (time-scale representation).  
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In the case of discrete parameter wavelet transform 
(DPWT) [14], the dilation and translation parameters α, b are 
restricted only to discrete values leading to the following 
expression:  
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The choice of a0=2 and b0=2 (dyadic grid arrangement) is 
quite usual:  
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For discrete time signals the discrete time wavelet 
transform (DTWT) [14] is given by:  
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 As it is obvious, different mother wavelets give rise to 
different classes of wavelets, and thus, the characteristics and 
features of the decomposed signal can be quite different.  In 
this work, we have experimented using Daubechies, 
symmlets, coiflets and biorthogonal families trying different 
number of vanishing moments. All the aforementioned 
wavelets were developed by Daubechies [12] and they 
demonstrate the appealing property of having compact 
support and the wavelet transform can be computed with 
finite impulse response conjugate mirror filters using a fast 
filter bank algorithm. 

III. EXPERIMENTAL SETUP 

The side shell of a ship hull was modeled using a 
stiffened plate model (SPM) whose dimensions are shown in 
Fig. 1. The outside side shell was dyed with oil-paint in order 
to simulate as closely as possible the ship’s outer side. 

Reflections at the end of the SPM were reduced by 
wrapping the ends in putty. The fixed boundary condition of 
the model was obtained by clamping the side shell using 
three heavy bases. Insulation material was placed between: 
a) the SPM and the three bases, b) the three bases and the 
bottom of the tank, and c) the bottom of the tank and the 
floor to eliminate external noise. The SPM and its supports 
were fixed in a water tank. The putty at the edges of the SPM 
prevents water from passing in the inside side shell of the 
plate. The putty was dyed with oil-paint for better water-
tightness and to prevent putty corrosion. 

The Physical Acoustics Corporation (PAC) R15-Alpha 
sensors were used to detect the wave in the steel stiffened 
plate. The sensors were stuck on the plate with grease-
couplant.  

 

Figure 1.  The SPM  under test along with the sensors’ positions 

In order to detect the AE-signal coming from any 
possible position, the four sensors were set into symmetrical 
positions, taking into account the structure of the ship-hull. 
The first, the second and the third sensor were located in the 
middle of the face plate of the heavy/longitudinal/side shell 
respectively, minimizing the total distance between the 
welding seam points and the nearest sensor. The fourth 
sensor was located in the middle of the distance between the 
heavy transverse face and the faceplate of longitudinal. A 
detailed description of the sensor types and their 
configuration can be found in [10]. 

The studies by Strathaus et al. [3] and Sucharski [4] have 
shown that fatigue due to wave-induced loads is the main 
cause of ship structural damage, especially for structures 
having high stress concentrations at the connection between 
the longitudinal and the heavy transverse members of the 
side shell. 

IV. LOCALIZATION OF AE SOURCES IN SHIP HULLS 

In this research work, we propose a new method for AE-
source localization, which consists of three modules:  

• the feature extraction module, where a set of features 
is derived from the AE signal based on the wavelet 
decomposition of the signal,  

• a dimensionality reduction stage based on the well-
known technique of principal component analysis 
(PCA) and  

• a classification module.   

In the remainder of this section each one of the three 
modules is presented in brief along with the data sets 
involved in this work.   

A. Data sets 

In this research work, we put much emphasis in locating 
the AE source coming from 3 “distinct” locations:  

1.   AE source in the welding seam between the 
longitudinal and the heavy transverse member (web) 
(class-A), 

2.   AE source in the welding seam between the 
longitudinal and the side shell (class-B), 

3.   AE source in the welding seam between the heavy 
transverse member (web) and side shell (class-C). 

Data for each class (A, B, C) were generated at 90 
different positions almost uniformly distributed in the 
welding-seam areas. At each position the pulser is triggered 
five times to simulate the signal variance of AE events at the 
same position.  

During continuous monitoring, time-frames of 32 msecs 
are used to extract the features set. In this time-frame the 
direct crack signal and the most important reflections are 
included. The complete set of recordings consists of 450 
signals, 150 from each class (A, B, C). Taking into account 
the high levels of noise encountered in ship hulls, emphasis 
should be placed for the case of low SNRs. Therefore the 
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localization method was evaluated in the presence of white 
Gaussian noise with zero mean value at -20, -10, 0, 10, SNR 
(dB). 

B. Feature Extraction 

The most appealing characteristic of wavelets is that they 
have the ability to decompose a signal into a number of 
scales, where each scale represents a particular “coarseness” 
of the signal under study [13]. As a result different scales 
capture different intrinsic characteristics of the signal.  

For this work we performed DTWT up to level 12 using 
various mother wavelets. Fig 2 shows the detail coefficients 
of a signal coming from the first sensor produced using a 
Daubechies mother wavelet with 14 vanishing moments. 

For each level we have calculated the standard deviation 
of the detail coefficients. The standard deviation at each 
scale is a means to quantify the “energy” concentration of 
the signal at this particular level. Having four sensors and by 
performing wavelet decomposition up to scale 12 
automatically creates a feature vector of dimension 48. Due 
to the quite large number of features a dimensionality 
reduction stage was also incorporated. 

C. Dimensionality Reduction 

In pattern recognition tasks, usually, potential 

improvement (better generalization) can be achieved by 

using fewer features than those available [15]. Actually, in 

order to build a classifier we tend to extract several features, 

which may convey redundant information about the pattern-

class of interest. Therefore, in this proposed approach, we 

have incorporated a PCA stage in order to both decorrelate 

the input features and possibly reduce the dimension of the 

input vector.  

 
Figure 2.  The original signals and the detail coefficients up to level 5 

produced using a Daubechies wavelet with 14 vanishing moments 

PCA, or Karhunen-Loeve transformation, is a well 
known approach to perform dimensionality reduction by 
linear combination of the original features in such a way that 
preserves as much of the relevant information as possible 
[15], [16]. This method computes eigenvalues of the 
correlation matrix of the input data vector and then projects 
the data onto the subspace spanned by the eigenvectors 
(principal components) corresponding to the dominant 
eigenvalues. Even if the whole set of the eigenvectors is 
retained, this can also lead to an improvement of the 
classification performance, because the new set has features 
that are uncorrelated and this, in general, improves the 
classification capabilities of a classifier. 

D. Classification stage 

In this research work we are not interested in detecting 
the exact location of the crack. Our aim is to classify the 
signal into one of the three classes described previously in 
subsection IV.C. Thus, we treat the crack location problem 
using a pattern recognition approach. Therefore, having a 
(reduced) feature vector we fed a classifier to assign them to 
one of the three predefined classes.  

Many algorithms and models have been developed over 
the past years to tackle the supervised pattern recognition 
problem [17]-[19]. New variants and improvements of 
existing methods are developed every day. However the 
improvements attributed to the more advanced and recent 
methods and algorithms are usually small and in real life 
problems the theoretical or “empirically” proven advantages 
are irrelevant or even unreal [20].  

As a result in this research, we put attention to the 
selection and extraction of features and we decided to use a 
simple linear classifier, the minimum Mahalanobis distance 
classifier and a nonlinear k-nearest neighbor classifier (with 
k=1 and k=5) [17], [18]. 

V. RESULTS 

In order to test the performance of the proposed approach 
we divided the 450 cases into 6 (non-overlapping) subsets; 
each one consisting of 25 examples from each class (A, B 
and C) (i.e. 75 cases in total). The classifier was trained on 
all subsets except for one, and the validation error was 
measured by testing it on the subset left out. We repeated this 
procedure 6 times, each time using a different subset for 
testing and we averaged the performance over the 6 
experiments. We tried different number of principal 
components (PCs) and different number of vanishing 
moments for each one of the wavelet families. It must be 
noted that the selection of the configuration (number of 
vanishing moments and number of retained PCs) was 
performed based on the training set and then applied to the 
testing set in order to avoid “optimistic” results. Fig 3 depicts 
the performance (accuracy / location rate) as a function of 
the number of PCs retained and the number of vanishing 
moments of the Daubechies wavelet for the case of -10 dB of 
additive Gaussian noise using the linear classifier.  
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Figure 3.  Classification accuracy of the minimum Mahalanobis distance 

classifier for the case of -10 dB additive noise for the Daubechies family. 

 

Tables I to III summarize the best location rate achieved 
for each wavelet family and each noise level for the 3 
different classifiers employed in this research work 

TABLE I.  LINEAR 

SNR (dB) wavelet 

families 10 0 -10 -20 

Daubechies 89.1111 89.7778 83.5556 68.6667 

Symmlets 88 89.1111 83.7778 68.4444 

Coiflets 89.7778 90.6667 83.1111 67.7778 

Biorthogonal 89.5556 90.4444 88.2222 70.8889 

TABLE II.  NEAREST NEIGHBOR (NN) 

SNR (dB) wavelet 

families 10 0 -10 -20 

Daubechies 87.5556 77.1111 68.6667 66 

Symmlets 86.2222 80.4444 70.2222 66.8889 

Coiflets 84.6667 77.7778 68.4444 69.7778 

Biorthogonal 80.6667 79.7778 75.5556 72.2222 

TABLE III.  5-NN 

SNR (dB) wavelet 

families 10 0 -10 -20 

Daubechies 87.7778 81.3333 72.4444 73.3333 

Symmlets 87.7778 78.2222 73.1111 72.4444 

Coiflets 86 77.7778 70.6667 68.8889 

Biorthogonal 89.1111 80.8889 76.4444 72.8889 

 

VI. CONCLUSIONS 

In this research work, a novel set of features based on the 
wavelet transform was extracted and used in order to locate 
cracks by monitoring AE events in the presence of additive 
white-Gaussian noise. This set of features is quite robust 
giving satisfactory localization rates of a single event in very 
noisy environments. The proposed features could be 
embodied in real-time crack monitoring systems of large and 

complex structures improving the performance reliability in 
noisy environments. From an industrial point of view, the 
development of fast and efficient monitoring machines can 
be easily achieved using few features in low-cost hardware. 
The crack characterization rate of the extent of damage is 
very promising; however, more work has to be done for 
accurate location of crack using fewer sensors. 

The results show that the use of wavelet based features 
and a simple classifier can give remarkable results even in 
the presence of large levels of noise. These results 
outperform our previous work [10], [21] where evolutionary 
approaches and NNs (a multilayer perceptron in [10] and a 
probabilistic NN in [21]) were combined to perform the 
same task using conventional features for every noise level 
except for the case of 10 dB SNR [10]. This indicates that a 
good set of features is more important than the use of 
extremely complex models that sometimes tend to uncover 
artificially hidden relations among the input-output data.  

In almost all cases the use of biorthogonal wavelets 
resulted in the optimal or near optimal performance (Tables 
I-III) without however completely overwhelming the other 
families. This indicates that the selection of the wavelet 
family is not that crucial after all. For very high levels of 
noise the performance of all three classifiers is comparable 
and in addition the number of PCs doesn’t play such an 
important role. However in general for lower noise levels 
more PCs give better results. 

Moreover in this research work only one type of features 
has been investigated (standard deviation). This is by no 
means the only choice and there are other transformations 
that can be applied to the wavelet coefficients in order to 
come up with useful features. Furthermore a level selection 
process, in other words a mechanism to pinpoint the levels 
that contain the most relevant information instead of using 
the details of each level could be beneficial. In addition, the 
use of global statistics (standard deviation in this work) even 
though quite useful as it is proven by our results, does not 
exploit the time scale capabilities of the wavelet transform. 
In other words the evolution of the phenomenon is not 
captured and only the scale information is used. In future 
work we will also examine more thoroughly this matter. 

We must also note that the propagation behaviour of 
crack and crack growing signals are influenced by the kind 
and size of ship-hull, materials etc. leading not necessarily to 
the same set of features for  detection of AE events. This 
means that the proposed method has to be tailored for the 
specific application. Nevertheless, the methodology is 
generic enough and can be used as it is. 
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