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a  b  s  t  r  a  c  t

•  We  analyzed  fetal  heart  rate  of  normal  and  acidemic  fetuses.  •  We  used  conventional  and  nonlinear
features  for  the signal  analysis.  •  Addition  of  nonlinear  features  improves  accuracy  of  classification.  •  The
best nonlinear  features  are:  Lempel  Ziv  complexity  and  Sample  entropy.  •  Combination  of  conventional
and  nonlinear  features  provides  the  best  accuracy.
Abstract: Fetal  heart  rate  (FHR)  is  used  to evaluate  fetal  well-being  and  enables  clinicians  to  detect  ongo-
ing hypoxia  during  delivery.  Routine  clinical  evaluation  of  intrapartum  FHR  is  based  on  macroscopic
morphological  features  visible  to the  naked  eye.  In  this  paper  we  evaluated  conventional  features  and
compared  them  to  the  nonlinear  ones  in  the  task  of  intrapartum  FHR  classification.  The  experiments  were
performed  using  a database  of  217  FHR  records  with  objective  annotations,  i.e.  pH measurement.  We  have
proven that  the  addition  of  nonlinear  features  improves  accuracy  of  classification.  The best  classification
lassification results  were  achieved  using  a  combination  of  conventional  and  nonlinear  features  with  sensitivity  of
73.4%, specificity  of  76.3%,  and  F-measure  of 71.9%.  The  best selected  nonlinear  features  were:  Lempel
Ziv  complexity,  Sample  entropy,  and  fractal  dimension  estimated  by  Higuchi  method.  Since the  results
of  automatic  signal  evaluation  are  easily  reproducible,  the  process  of  FHR  evaluation  can  become  more
objective  and  may  enable  clinicians  to  focus  on  additional  non-cardiotocography  parameters  influencing
the  fetus  during  delivery.
. Introduction

Accurate evaluation of fetal status, based on available informa-
ion, is crucial when difficulties occur during delivery. Even though

 fetus is equipped with a defense mechanism to tackle the delivery
nduced stress, in some cases only timely intervention can prevent
otential long-term consequences such as cerebral palsy, neuro-
evelopment disability, neonatal encephalopathy or even death,
esulting from excessively long oxygen insufficiency [1,2].

The introduction of cardiotocography (CTG—recording of fetal
eart rate (FHR) and force/pressure of contractions) in the 1960s
as accompanied by great expectation since it offered a new con-

inuous fetal surveillance method. However, meta-analysis of large
ulti-centric studies [3] did not prove any significant improve-
ents in the delivery outcomes. Some studies even disproved any

vidence of advantages of continuous monitoring compared to

ntermittent one. Moreover, CTG became the main suspect for an
ncreased rate of cesarean sections [4].  Therefore, in 1986 CTG inter-
retation guidelines were introduced in order to lower the number
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of asphyxiated neonates as well as the number of cesarean sec-
tions [5,6]. Nowadays CTG remains the most prevalent method for
intrapartum fetal surveillance [7,8], often supported by ST-analysis
method (Neoventa Medical, Sweden) which is based on analysis
of fetal electrocardiogram (fECG). The introduction of additional
ST-analysis into the clinical practice improved the labor outcomes
slightly [9,10] but its use is not always possible or feasible since it
requires invasive measurement.

A recently published paper [4] concluded that the weakness of
CTG still lies in a generally poor standard of interpretation and the
contribution of the human factor, demonstrated by high intra and
inter observer variability. Either more education and training on
CTG interpretation should be performed [1,2] or one should use
a more cost-effective solution by developing a decision support
system serving as a source of additional information [4].

First attempts for automatic analysis were completely based on
clinical guidelines for CTG assessment [5].  Recently, other meth-
ods such as those derived from adults HRV research were used for
FHR analysis [11]. The statistical description of CTG tracings was

employed in [12] and in [11]. A short overview of papers which ana-
lyzed the spectrum of FHR either antepartum or intrapartum was
published in [13]. An extension of frequency analysis, the wavelet
transform, was employed in [14,15]. Recently, a system identi-
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cation approach to estimate parameters from FHR and uterine
ressures was  described in [16].

Use of nonlinear methods for FHR analysis has its roots in adults
RV research. The measure of fractal dimension was  performed
y [17–19].  Another attempt was to measure the length of FHR
urve using the Higuchi method [20]; the different estimations
f fractal dimension were reviewed by [21]. Probably the most
uccessful nonlinear methods for FHR analysis are approximate
ntropy (ApEn) and sample entropy (SampEn). They are widely
sed for examination of nonlinear systems and also proved their
pplicability in FHR analysis [22–24].  Another method for nonlinear
nalysis is Lempel Ziv complexity used by [25].

For classification of the FHR many different approaches were
sed, e.g. Support Vector Machines [15,16,26],  hybrid approach
tilizing grammatical evolution [27], and also conventional meth-
ds, such as k-nn (k-nearest neighbors), ldc (linear discriminant
lassifier), and qdc (quadratic discriminant classifier) [26].

There are also several complete systems for fetal assessment.
mong the best known are: Omniview SisPorto® developed at Uni-
ersity of Porto, Portugal [28] and the NST-Expert (Non-Stress Test)
nd its successor CAFE (Computer Aided Fetal Evaluation) [29]. Both
ystems use a holistic approach to CTG evaluation including infor-
ation about the state of the mother. Processing of the FHR in these

ystems is mainly based on morphological features provided by
IGO guidelines.

The purpose of our work is to distinguish between two  groups:
ormal fetuses and fetuses with developed acidemia. The general

dea of this paper is not novel; most of the features were used in
apers before (cited in previous paragraph) though they were usu-
lly employed in ad hoc settings and tested on small datasets. In
his paper we provide a general approach using a sufficiently large
ataset and we evaluate a comprehensive set of features that origi-
ated from different domains. In addition, we consider thoroughly
he applicability of nonlinear methods to FHR.

. Data description

Data was acquired at the Dept. of Obstetrics and Gynaecology of
he General University Hospital in Prague during 2007 and 2009;
ll women signed informed consent. The FHR signals used in this
ork were measured using Neoventa’s STAN S21 system.

Recordings were checked for patient anamnesis and only one
old pregnancies delivered during the 38th–42nd week of preg-
ancy were chosen for the final database. Umbilical artery pH
alues were obtained to serve as objective evaluation of hypoxia.
he neonatal acidemia is defined as pH below 7.05—these values
ere suggested in the work of Sundstrom [30]. Nevertheless there

xist other works suggesting different values 7.10 [31], 7.15 [32].
onsidering these facts and after consultation with obstetricians at
he General University Hospital value of pH lower than 7.15 was
onsidered not normal—further referred to as pathological.

Our database contained 217 recordings. Arterial pH values were
vailable for all records and, based on pH threshold, 94 were consid-
red as pathological. For comparison the expert annotations were
athered, using an in-house developed annotation system, from
hree experts in the field of obstetrics in the Czech Republic. Two

easures were used for evaluation: intra-observer agreement as
 percentage of consistently annotated records to all annotations
nd inter-observer agreement as a percentage of equally annotated
ecords among the three experts to all annotations.
. Signal preprocessing

Signals were measured either externally using Doppler ultra-
ound or internally by scalp electrode. Fetal heart rate recorded
ing and Control 7 (2012) 350– 357 351

externally has lower signal to noise ratio than that recorded
internally but there is no clinical difference between these two
approaches.

Values of extracted features and further classification are highly
dependent on the quality of signal preprocessing. Preprocessing
steps could distort the data and add stochastic components making
the use of nonlinear methods unsuitable.

In our case, the preprocessing consisted of three main steps:
segment selection, artefacts removal and interpolation. An appro-
priate segment should be chosen as close as possible to delivery
because during the last minutes major changes in fetal condition
can occur. However, as it is shown in Fig. 1, FHR directly preceed-
ing the delivery is largely contaminated with artefacts and noise.
Therefore, we evaluated the signal in terms of quality and auto-
matically chose a segment with sufficient quality that is closest to
delivery. Segments were 20 min  long, i.e. 4800 samples using 4 Hz
sampling frequency.

The FHR signal contains a lot of artefacts caused by mother and
fetal movements or displacements of the transducer. In general, the
amount of data being removed as artefacts or missing values is in
the range between 20% and 40% of all data. The algorithm suggested
by Bernades et al. [33] was used for artefact removal. Any succes-
sive five beats with a difference lower than 10 bpm among them
are considered as a stable segment. Then, whenever the difference
between adjacent beats is higher than 25 bpm, the sample is sub-
stituted by linear interpolation between the previous beat and the
new stable segment. Thus, all abrupt changes in FHR are removed
and replaced. The result of artefacts removal is presented in Fig. 2.

We used cubic Hermite spline interpolation [34], implemented
in MATLAB®, to replace the missing data. We  did not compute
across a gap [35] when the length of the missing data was 20 s or
more—the value obtained based on our experiments. For the pur-
pose of this paper cubic Hermite spline interpolation was  used for
equidistant 4 Hz data re-sampling since it is convenient for signal
analysis and also it is the least prone to errors when frequency
spectrum is estimated [36]. The spline interpolation also intro-
duces nonlinearity, however, the amount of nonlinearity should
be approximately the same for normal and pathological FHR.

For the use of nonlinear methods signals were detrended using
second order polynomial, estimated, such that uninteresting trend
was  removed but interesting dynamics preserved. Also we normal-
ized signals to zero mean and unit variance.

Despite the stress caused by delivery, the FHR is also affected
by fetal activity (active and quiet state) as described by [37]. Nev-
ertheless, the fetus is mostly awake during delivery, therefore, we
neglected changes in FHR caused by active–quiet states. We  also
neglected sex differences of FHR since we expected the difference
between normal and pathological fetuses to be more profound [38].

4. Conventional features

To be able to compare our results to those of clinical praxis,
we computed the morphological features introduced by the FIGO
guidelines [5].  These features describe shape and changes of the
FHR baseline such as baseline mean and median, number of accel-
erations and decelerations, long-term and short term variability,
interval index, etc. Detailed description of these features is not the
purpose of this paper and can be found in [11,32].

Another type of features were those used routinely in adult HRV
evaluation such as NN50, RMSSD, and Poincaré plot as well as the
frequency features describing the amounts of energy in different

energy bins. The power spectral density was estimated using the
fast Fourier transform (FFT). For more information about statisti-
cal HRV features refer to [39] and about frequency bands to [37].
Note that Poincaré plot is a nonlinear feature that is commonly
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Fig. 1. Raw record of CTG: (a) fetal

sed in HRV; hence it is considered as conventional. The nonlinear
eatures were computed over the whole 20 min  segments of the
reprocessed data.

. Nonlinear features

The nonlinear approach may  reveal relevant clinical informa-
ion of FHR hidden to conventional time series analysis. Goldberger
t al. [40] observed that a human heart beat fluctuates on different
ime scales and is self-similar; despite that there remains ongo-
ng controversy over whether a normal heart rate is chaotic or not
41], tools used for examination of chaotic time series could also
e useful for FHR analysis. There exist several approaches for non-
inear time series analysis; in this work fractal dimension, entropy,
nd complexity measures were utilized. When analyzing FHR by
onlinear methods we have to be aware of at least two major pit-

alls. First, FHR contains stochastic components induced by motion
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Fig. 2. Removing of artifacts: (a) raw signal with ar
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 rate and (b) intrauterine pressure.

artefacts and measurement process especially when an external
ultrasound electrode is used for signal acquisition. These distor-
tions could severely damage the nature of FHR; therefore we used
a surrogate data test to establish nonlinearity of FHR. Second, a cer-
tain data length is necessary to reliably estimate values of nonlinear
methods. The required data length for each method is discussed in
the corresponding sections below.

5.1. Fractal dimension

There are two  approaches to estimate dimension of a signal
either by direct measurement of the waveform or by operating in
reconstructed state space. The former approach considers a signal

in R

2 as a geometric object and directly uses it without any further
transformation. On the other hand the state space is reconstructed
from coordinates representing the variables needed to specify the
state of a dynamical system.

1500 2000 2500

ime [s]

1500 2000 2500
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tifacts and (b) signal after artefacts removal.
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pace  is shown below. (a) FHR and state space for normal fetus. The optimal delay 

as  � = 5 s. The low complexity of FHR for fetus with developed acidemia, (b), is clea
pan  less area thus showing reduced variability.

The state space can be reconstructed using Taken’s embedding
heorem [42]. It states that it is possible to reconstruct state space
rom signal x(t) delayed by time � as long as the embedding dimen-
ion m is larger than 2d + 1, where d is a box counting dimension.
(t) → y(t) = [x(t), x(t + �), . . .,  x(t + (m − 1) · �)]. Different choice of �
nd m leads to different reconstruction. We  adopted a mutual infor-
ation approach [43] to search � and considered a first marked
inimum as the optimal time delay. For examination of embed-

ing dimension we can use the Cao’s method [44]. However, the
orrelation dimension, D2, is invariant to m. It is therefore conve-
ient to estimate D2 for different m, e.g. increasing from 2 to 16, and
bserve when a value of D2 saturates. This approach is computa-
ionally less efficient but minimizes errors introduced by a single m
stimate. The state space reconstruction from FHR for normal and
athological fetus is shown in Fig. 3; see figure caption for details.

There are many theories about required data length with a gen-
ral agreement that required data length increases exponentially
ith data dimension. We  followed data size requirements sug-

ested by [45]; for estimating a dimension d, a minimum data
ength Nmin = 10d/2 is required.

.1.1. Correlation dimension
Correlation dimension D2 is based on an estimation of the cor-

elation sum C(r) which gives the probability that two randomly
hosen points are close to each other with a distance smaller than
.

(m, r) = 1
N(N − 1)

N∑

i

N∑

i>j

�(r − ‖yi − yj‖), (1)

here y are m-dimensional delay vectors, N the number of
oints, and � is the Heaviside function: �(x) equals zero for x < 0
nd one for x ≥ 0. If we consider the limit when r approaches

ero (theoretically) the correlation dimension is estimated as:
2 = lim r→0(log C(r)/log r). The D2 is usually estimated as a slope
n log–log plot where log C(r) is plotted as a function of log r. Since
he D2 cannot be estimated for all radii we used local slope approach
as  � = 2.5 s. (b) FHR and state space for pathological fetus. The optimal delay time
sible in both time and state space. In the state space the delayed coordinates of FHR

to estimate a proper scaling region (rl, ru). Also we  employed
Takens–Theiler estimator [46,47] which uses the maximum like-
lihood approach:

D2 = C(ru) − C(rl)∫ ru

rl

C(r)
r dr

(2)

5.1.2. Box-counting dimension
The box-counting dimension expresses the relationship

between the number of boxes that contain part of an object and
the size of the boxes. In the case of a signal, the minimal number of
boxes N of side length �, needed to cover whole signal is counted
and then the side length of the boxes is decreased. The box counting
dimension is estimated as follows: D0 = lim �→0(log N/(log (1/�))),
though � could not reach zero for real signal.

5.1.3. Higuchi’s dimension
The Higuchi method [48] calculates fractal dimension from

the estimated length of a signal. From an original signal x(1),
x(2), . . .,  x(N) of length N a new signal, Xm

k
, is constructed:

X(m), X(m + k), X(m + 2k), . . . , X(m +
[
(N − m)/k

]
) (m =

1, 2, . . . , k), where [] denotes the Gauss’ notation, m defines
the initial time, and k the time interval. The k represents time
displacement and the number of new created subsets is equal to k.
Then for each m the length Lm(k) of Xm

k
is computed. The length of

the curve for time interval k, 〈L(k)〉, is defined as the average value
over k set of Lm(k):

〈L(k)〉 =
k∑

m=1

Lm(k)
k

(3)
The computed curve length 〈L(k)〉 for different k is related to the
fractal dimension D by the exponential formula 〈L(k)〉 ∝ k−D. The
fractal dimension is estimated as a slope of fitted regression to log-
log plot of 〈L(k)〉 versus k.
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.1.4. Variance dimension
The variance fractal dimension is based on properties of frac-

ional Brownian motion (fBm). Let the signal x(t) be continuous
n the time t and �t  is the time increment. The variance �2

s related to the time increments �t  of signal x(t) according to
he power law [49]. Var{�x(tn, �t)} = ∝ | �t  | 2H, where �x(tn,

t) = x(tn + �t)  − x(tn) and H is the Hurst exponent computed from
 log-log plot using

 = lim
�t→0

1
2

log Var{�x(tn, �t)}
log(�t)

(4)

inally, the variance dimension is defined as D� = E + 1 − H, where E
s the Euclidean dimension which is one for the time series.

.2. Approximate entropy

Entropy describes behavior of a system in terms of random-
ess, and quantifies information about underlying dynamics. The
pproximate Entropy (ApEn) is able to distinguish low-dimensional
eterministic system, chaotic system, stochastic and mixed sys-
ems [50]. It has its roots in the work of Grassberger and Procaccia
51] and Eckmann and Ruelle [52]. A time series xn of length N is
ivided into a set of m-length vectors um(i). Then the number of
ectors um(i) and um(j), close to each other, in an Euclidean sense
[um(i), um(j)] ≤ r, is expressed by the number nm

i
(r). This number is

sed to calculate the probability of vectors being close according to
m
i

(r) = nn
i
/(N − m + 1). Let’s define the function �m(r) = 1/(N −

 + 1)
∑N−m+1

i=1 ln Cm
i

(r). Consequently the ApEn can be defined as

pEn(m, r) = lim
N→∞

[�m(r) − �m+1(r)]. (5)

enerally, the tolerance r is r = (0.15;0.2) · SD (SD stands for stan-
ard deviation) and the embedding dimension m = 2 [22]. ApEn is
roadly applicable for a data series of length N > 100 [50]. Never-
heless, this was  suggested for a wide spectrum of applications. In
ur case, a meaningful data length for ApEn is N ≥ 1000.

.3. Sample entropy

A slightly modified estimation of approximate entropy was
roposed by [53] and resulted in sample entropy (SampEn). This
stimation overcame the shortcomings of the ApEn mainly because
he self-matches are excluded. Secondly, conditional probabilities
re not estimated by a template-wise approach. SampEn requires
nly that one template finds a match of length m + 1. The calculation
f SampEn is as follows:

ampEn(m, r) = lim
N→∞

− ln
Cm+1(r)
Cm(r)

. (6)

he values for parameters r and m were the same as for the ApEn.
lso the data requirements hold.

.4. Lempel Ziv complexity

The Lempel Ziv Complexity (LZC) [54] estimates reoccurring pat-
erns contained in the time series irrespective of time. A periodic
ignal has the same reoccurring patterns and low complexity while
n random signal individual patterns are rarely repeated and signal
omplexity is high.

A signal, x(1), x(2), . . .,  x(n), is encoded to form a sequence S such
hat an increase in value, x(i + 1) > x(i), is encoded by 1 and decrease,
(i + 1) ≤ x(i), by 0. The algorithm counts distinct patterns in S; for

ach new pattern the complexity c(n) is increased by 1. By conven-
ion, when the last element of S is reached, the c(n) is also increased
y 1. The c(n) is dependent on the length of the original sequence
. We  used the normalization form to avoid this dependence on
ing and Control 7 (2012) 350– 357

the number of data points [54]. The normalized C(n) is defined as
C(n) = c(n) · log 2(n)/n. Binary encoding was used in order to avoid
a dependence of results on quantification criteria and normaliza-
tion procedures. The required data length for binary encoded data
is 1000 samples [55].

6. Surrogate data test

Since the FHR is a signal with finite length, finite precision, and,
more importantly, is contaminated with noise, we  performed a
surrogate data test. The surrogate data has the same distribution
and autocorrelation function as the original data but the nonlinear
properties are destroyed. We  used iterative Amplitude Adjusted
Fourier Transform method [56] with endpoint matching to gen-
erate 39 surrogates and tested the null hypothesis that the data
originates from Gaussian linear stochastic process. All methods
were used as a discriminator between original data and its sur-
rogates; the level of significance was set to p < 0.05.

7. Feature selection/dimensionality reduction and
classification

7.1. Feature selection/dimensionality reduction

Since we acquired 33 features in total (11 FIGO-like, 14 HRV-
based, and 8 nonlinear features) an automatic selection of attributes
was  performed. First, features were separated based on their
“origin”—thus we created four sets: FIGO-like (morphological fea-
tures based on FIGO-guidelines), HRV-based (features inspired by
adult HRV analysis features), nonlinear (features described in Sec-
tion 5), and features selected from all domains (FS-Complete). Then,
based on our experience, we employed three completely unrelated
feature selection/dimensionality reduction algorithms to produce
a more informative input to the classifier. Therefore we  employed:
principal component analysis (PCA) [57]; Information gain (Info-
Gain) [58] – both implemented in WEKA [58] – and Group of
adaptive models evolution neural network (GAME-NN) developed
at the Czech Technical University in Prague [59].

The last step of the feature selection consisted of feature meta-
selection, where only features selected by at least two methods
were included in the final sets. The purpose of features division
based on their “origin” was  to prove that within each group there
are features with information value and, hence, their computations
were performed correctly.

7.2. Feature classification and performance evaluation

The different features sets were used to train the following
classifiers: Naive Bayes, Support Vector Machine (SVM), and C4.5
decision tree; all implemented in WEKA [58]. The description of
these methods could be found, e.g. in [60]. Using 10-fold cross
validation the best parameters for the SVM (radial basis function
kernel) were sought: the radius � = 1/2�2 and cost parameter C.

The most common measures for the evaluation of experi-
mental results are: sensitivity, specificity, and F-measure. The
F-measure is computed using precision (= positive predictive value)
PR = TP/(TP + FP)  and recall (= sensitivity) RE = TP/(TP + FN):

Fˇ = (1 + ˇ2)(PR · RE)
ˇ2 · PR + RE

. (7)

Parameters TP, FP, and FN stand for true positive, false positive and
false negative, respectively. The parameter  ̌ is usually set to one.

This means that precision and recall have equal priority. Another
useful measure is receiver operator curve (ROC) and the area under
this curve (AUC). The ROC defines the relationship between sensi-
tivity and specificity for the model parameters. Given the ROC and
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Fig. 4. Distributions of selected features: 0 – normal class and 1 – pathological class.

Table  1
Selected features organized by their origin: FIGO-like, HRV-based; nonlinear, FS-
Complete.

Feature set Selected features

FIGO-like baselineSD, meanII
HRV-based Poincaré SD2, LF/(HF + MF), energyLF, energyMF,

energyVLF
Nonlinear SampEn(2,0.20), LZC, FdVariance, FdHiguchi
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Table 2
Classification results for all features and with nonlinear features excluded.

Feature set All in [%] Naive Bayes SVM C4.5 tree

All features Sensitivity 67.0 66.0 55.3
Specificity 75.6 78.9 71.5
Precision 67.7 70.5 59.8
F-measure 67.4 68.0 57.5
AUC 0.74 0.74 0.63

Nonlinear features
excluded

Sensitivity 60.6 53.2 54.3

Specificity 71.5 78.9 69.9
Precision 62.0 65.8 58.0
F-measure 61.3 58.7 56.0
AUC 0.69 0.74 0.64

Table 3
Classification results for selected features from different groups: FIGO-like, HRV-
based; nonlinear, FS-Complete.

Feature set All in [%] Naive Bayes SVM C4.5 tree

FIGO-like Sensitivity 66.0 53.2 55.3
Specificity 68.3 81.3 65.9
Precision 61.4 68.5 55.3
F-measure 63.6 64.2 55.3
AUC 0.70 0.71 0.60

HRV-based Sensitivity 44.7 56.4 59.6
Specificity 82.1 83.6 69.9
Precision 65.6 72.5 60.2
F-measure 53.2 67.4 59.9
AUC 0.71 0.73 0.60

Nonlinear Sensitivity 68.9 70.1 53.3
Specificity 73.2 78.1 85.0
Precision 64.6 71.0 71.6
F-measure 66.7 70.6 61.1
AUC 0.74 0.75 0.68

FS-Complete Sensitivity 72.3 73.4 60.6
Specificity 75.6 76.3 71.5
Precision 69.4 70.3 62.0

When the nonlinear features were excluded and only conven-
tional features were used the classification performance decreased
as is shown in Table 2. The best results were achieved using the
SVM with FS-Complete feature set, shown in bold in Table 3.

Table 4
Classification results of clinicians when comparing their evaluation of FHR to objec-
tive  pH annotation.

All in [%] Expert #1 Expert #2 Expert #3

Sensitivity pH 34.4 49.0 40.5
FS-Complete baselineSD, Poincaré SD2, LF/(HF + MF), energyMF,
SampEn(2,0.20), LZC, FdHiguchi

UC we can estimate which parameters are the best for model-
ng and if the model is suitable for the task in the first place. The
xperimental results were computed using 10-fold cross validation.

The difference between individual classifiers trained using dif-
erent feature sets should be statistically confirmed. Although there
s no unified framework the use of McNemar’s test is recommended
61]. However, when dealing with a relatively small dataset (217
ecords in our case) there is not enough data to acceptably mini-
ize both errors: (i) when estimating classification performance,

ii) in statistical testing. Apparently, the better way is to minimize
he former error and refrain from statistical testing.

. Results

The FHR signals were analyzed by conventional and nonlin-
ar methods. For the correlation dimension, D2, we  found optimal
ime delay to be equal to � = 3.9 ± 2.5 s. We  performed the surro-
ate data test with all methods as discriminators and rejected the
ull hypotheses that data originate from Gaussian linear stochastic
rocess on p < 0.05.

We performed feature selection for each group of features with
he results presented in Table 1. The distributions of features
rom the FS-Complete set are present in Fig. 4. The discrimination
etween normal and pathological examples is most apparent for
eatures: Poincaré SD2, SampEn(2, 0.20), and LZC. The projection of
he 7-dimensional feature space (FS-Complete set features) into 2-
imensional space was performed by a self organizing map  [62,63]
20 × 20 units in hexagonal topology and Gaussian neighborhood
rained for 200 iterations of rough training phase and 200 iterations
f fine tuning phase; a sequential training algorithm was used).
his map  is shown in Fig. 5; the discrimination between patholog-
cal (red) and normal (green) examples is clearly visible, however
here are also a number of cases that could not be easily separated.
his corresponds to the classification accuracy shown in Table 3
elow.

We found optimal settings for SVM (radial basis function ker-
el): � = 0.01, cost parameter C = 14. Results for all features and

ith nonlinear features excluded are presented in Table 2. Classifi-

ation results for each feature set, described in Table 1, are shown
n Table 3. Results based on the expert’s annotations for the same
ata are presented in Table 4 for comparison.
F-measure 70.8 71.9 61.3
AUC 0.75 0.78 0.68
Specificity pH 14.1 16.2 8.6
Intra-observer agreement 70.7 56.1 76.7
Inter-observer agreement between

the three experts
80.5
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Fig. 5. Projection of 7-dimensional FS-Complete feature set using self organizing
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[8] O. Palomäki, T. Luukkaala, R. Luoto, R. Tuimala, Intrapartum
ap  into 2-dimensions. Green – normal class, red – pathological class, grey scale
epresents distance between examples.

. Discussion

When analyzing the FHR one has to be aware of its proper-
ies especially when using nonlinear methods. As an example we
an use correlation dimension D2. The values of D2 for all records
2 = 2.42 ± 0.61 were low in comparison to D2 ≈ 6 of adult HRV

64]. There are two possible explanations. First, the RR intervals
rom external (ultrasound) records were corrupted by the mea-
urement process, such as quantization, filtering, and averaging.
o be more specific, the external monitoring uses Doppler ultra-
ound for fetal heart beat detection which are usually determined
rom a periodicity of Doppler envelope using autocorrelation func-
ion. This function tends to average slight successive changes of
eart beats resulting in loss of FHR variability [65]. Second, during
he preprocessing stage, artefacts were linearly interpolated, i.e.

 possible complex behavior was replaced by a line. Both factors
ay  contribute to decreased value of D2. Nevertheless, the non-

inear methods are still applicable since the surrogate date test
howed significant difference between FHR and its surrogates on

 < 0.05. However, there is also a limitation to the surrogate test due
o nonlinearity introduced by the cubic spline interpolation.

Regarding the classification results there are two important
uestions that need to be carefully considered. How to interpret
he results acquired and presented in Tables 2–4?  How to relate
hem to the works already done? The answer is not straightfor-
ard since there are two  quite distinct approaches to processing

nd classification of the FHR signal intrapartum.
The first one is a more technical approach that uses the objective

valuation of the data. This approach was used in many papers dur-
ng the last decade and was  also adopted in this paper. Our results of
3.4% sensitivity, 76.3% of specificity, and F-measure 71.9% compare
avourably to those of [26,66] especially considering the small sam-
le size they used. However, this technical approach suffers from, at

east, two major drawbacks. The relation of hypoxia to the fetal cord
rterial pH after delivery is widely discussed in several papers [31].
he predominant conclusion is that only an overall examination of
he baby at about four years of age can bring a confident enough
onclusion on the occurrence of effective asphyxia during the deliv-
ry. In addition, in many cases where timely interventions based on
uspect/pathological FHR signal is made, the arterial pH values of
he instrumentally delivered baby will be above the pathological

hreshold.

A second approach to the evaluation of FHR recordings is to
cquire expert evaluation of signals and use the classification pro-
ing and Control 7 (2012) 350– 357

cess to try to adopt an expert behavior. Nevertheless, this approach
has several drawbacks as well. First, the inter and even the intra
observer variabilities are quite substantial as presented in Table 4.
Second, the experts categorize the signals usually according to
FIGO-based guidelines into the three classes (normal, suspect, and
pathological). Large subset of signals are evaluated as suspect, but
suspect class does not exist after delivery, there is usually normal
or (possibly) asphyxiated baby (about whom, there will likely not
be any decisive proof for at least the next several months). More-
over, in the clinical practice there is always additional information
involved in the decision making process—pushing the decision pro-
cess more in one direction.

10. Conclusion

This paper, for the first time, evaluates the behavior of the full
set of nonlinear methods on one reasonably large database. In addi-
tion we  considered the usability of these methods with respect to
FHR properties. We compared a full spectrum of nonlinear features
to the conventional features already used in other papers, and we
showed that classification based on feature sets including nonlin-
ear features performs the best. It also performs on-par with the best
results obtained in other works such as [26,66].

The evaluation of FHR still remains subjective [67]. Clinicians
say that they use conventional features like accelerations, decel-
erations, and variability though there is a contributing factor of
pattern-like memory acquired during working experience. In con-
trast to the previous works, we proved that nonlinear features are
useful in combination with conventional ones on a large database.

To be able to affect the way the data is processed in the clinical
settings there is a need to include additional information describ-
ing the environment in which the FHR signal is acquired (maternal
preexisting condition, drugs used, length of delivery, etc.) which
are an integral part of the obstetrician’s decision making progress.
Nevertheless, it is evident that proper processing of the FHR will
remain an important part of any future decision support system.
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