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Abstract

Fuzzy Cognitive Maps (FCMs) constitute an attractive knowledge-based methodology, combining the robust properties of fuzzy logic

and neural networks. FCMs represent causal knowledge as a signed directed graph with feedback and provide an intuitive framework

which incorporates the experts’ knowledge. FCMs handle available information and knowledge from an abstract point of view. They

develop behavioural model of the system exploiting the experience and knowledge of experts. The construction of FCMs is based mainly

on experts who determine the structure of FCM, i.e. concepts and weighted interconnections among concepts. But this methodology may

not be a sufficient model of the system because the human factor is not always reliable. Thus the FCM model of the system may requires

restructuring which is achieved through adjustment the weights of FCM interconnections using specific learning algorithms for FCMs. In

this article, two unsupervised learning algorithms are presented and compared for training FCMs; how they define, select or fine-tuning

weights of the causal interconnections among concepts. The implementation and results of these unsupervised learning techniques for an

industrial process control problem are discussed. The simulations results of training the process system verify the effectiveness, validity

and advantageous characteristics of those learning techniques for FCMs.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fuzzy Cognitive Map (FCM) is a soft computing
technique capable of dealing with situations including
uncertain descriptions using similar procedure such as
human reasoning does. FCM is a modeling method based
on knowledge and experience for describing particular
domains using concepts (variables, states, inputs, outputs)
and the relationships between them. The advantageous
modelling features of FCMs, such as simplicity, adapt-
ability and capability of approximating abstractive struc-
tures encourage us to enhance their structure using learning
e front matter r 2006 Elsevier Ltd. All rights reserved.
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s).
techniques, so that to broaden the FCMs functionality for
complex problems.
In general, there is a great demand for modelling

complex systems that can be achieved taking advantage
of human like reasoning. There is also a need for advanced
techniques which can take into consideration the various
requirements of complex systems such as high autonomy
and intelligence.
FCM was introduced by Kosko (1986), who expanded

cognitive maps introducing causal algebra operating in the
range of [0, 1] for propagating causality. Kosko proposed
that negative influences be converted into positive ones by
using the idea of dis-concepts. But this solution doubles the
size of the concept set and increases computation time and
space, particularly for large cognitive maps. In the same
vein, Zhang and his colleagues proposed the POOL2
(Zhang et al., 1989), which is a generic system FCM for
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decision analysis. This system uses an approach in which
both negative and positive assertions are weighted and kept
separately based on the negative–positive–neutral (NPN)
interval [�1, 1] instead of values in [0, 1]. The same team
went on to propose the D-POOL system (Zhang et al.,
1992). The NPN causal inference was proposed to study a
fuzzy time cognitive map with time lag on each arrow (Park
and Kim, 1995).

FCMs have been used for representing knowledge
(Taber, 1991), as artificial intelligence techniques appro-
priate for engineering applications, (Jain, 1997); for fault
detection (Pelaez and Bowles, 1996), and modelling process
control and supervision of distributed systems (Groumpos
and Stylios, 2000; Stylios et al., 1999). FCMs have been
used to model complex dynamical systems with chaotic
characteristics, such as social and psychological processes
and the organizational behaviour of a company (Craiger
et al., 1996). FCMs have been also used for several tasks
such as web-mining inference amplification (Lee et al.,
2002), medical decision in radiotherapy, which is a complex
process and is characterized by hard nonlinearities
(Papageorgiou et al., 2003a), and computer-aided medical
diagnosis for tumor characterization (Papageorgiou et al.,
2003b).

Liu and Satur (1999) conducted extensive research on
FCMs investigating their inference properties and they
proposed contextual FCMs based on the object-oriented
paradigm of decision support and applied contextual
FCMs to geographical information systems (Liu, 2000).
Other research efforts proposed FCMs to support the
esthetical analysis of urban areas (Xirogiannis et al., 2004),
and the management of relationships among organiza-
tional members in airline service (Kang et al., 2004).
Furthermore, evaluation procedure for specifying and
generating a consistent set of magnitudes for the causal
relationships of a FCM, utilizing pair-wise comparison
techniques have been presented (Muata and Bryson, 2004).

The development of a FCM requires that the expert
provide information on both the sign and magnitude of
each causal relationship. Although it is relatively easy to
determine the relevant sign, experts often have difficulty in
specifying the relevant magnitude. Thus, simple FCMs are
often used to provide a first cut analysis of the given
problem, but their value is often limited by the coarse
granularity of the input information.

The methodology of developing FCMs is easily adap-
table and relies on human expert experience and knowl-
edge. However, it exhibits weaknesses in utilization of
learning methods. The external intervention (typically from
experts) for the determination of FCM parameters, the
recalculation of the weights and causal relationships every
time a new strategy is adopted, as well as the potential
convergence to undesired regions for concept values are
significant FCM deficiencies. It is necessary to overcome
these deficiencies in order to improve efficiency and
robustness of FCM. Weight adaptation methods are very
promising as they can alleviate these problems by allowing
the creation of less error prone FCMs where causal links
are adjusted through a learning process.
FCM learning involves updating the strengths of causal

links so that FCM concept values converge in a desired
equilibrium region. A learning strategy is to modify FCM
by fine-tuning its initial causal links based on ideas coming
from the field of artificial neural networks (ANNs)
training.
Learning methodologies for FCMs need to be developed

in order to update the initial knowledge of human experts
and to enhance the human experts’ structural knowledge
using training. So far there have been attempts to
investigate and propose learning technique suitable for
FCMs (Kosko, 1986; Koulouriotis et al., 2001; Aguilar,
2002; Papageorgiou et al., 2003c, d, 2004a; Papageorgiou
and Groumpos, 2004; Khan et al., 2004; Stach et al., 2005).
Here two learning techniques have been proposed to

adapt the cause–effect relationships of the FCM model
improving the efficiency and robustness of FCMs. The
introduction of FCM weight adaptation technique elim-
inates the deficiencies in the usage of FCM, enhances the
dynamical behaviour and flexibility of the FCM model and
enables it to learn nonlinear mappings. The aim of this
paper is to present and compare the two proposed
unsupervised learning algorithms for fine-tuning FCM
causal links.
In this paper Section 2 describes the theoretical aspects

of FCMs, while Section 3 presents a literature review on
the learning algorithms for FCMs. Section 4 proposes the
two learning algorithms, the Active Hebbian Learning
(AHL) and Nonlinear Hebbian Learning (NHL) for FCM
and how these learning techniques are implemented in
general problems/case-studies. In Section 5, an industrial
process control problem is described; the simulation results
on modelling and controlling the process problem, using
the proposed weight adaptation methods are presented in
Section 6. Section 7 compares the two proposed learning
techniques with each other as well as with other learning
techniques for the same problem and concludes the paper.

2. Theoretical aspects of fuzzy cognitive maps

FCM is a soft computing technique used for causal
knowledge acquisition and supporting causal knowledge
reasoning process. FCM permits the necessary cycles for
knowledge expression within their feedback framework of
systems. FCMs are useful methods for exploring and
evaluating the impact of inputs on dynamical systems that
involve a set of objects such as processes, policies, events
and value as well as the causal relationships between those
objects.
More specifically, a FCM illustrates the whole system by

a graph showing the effect and the cause among concepts.
FCM is a simple way to describe the system’s model and
behaviour in a symbolic manner, exploiting the accumu-
lated knowledge for the system. A FCM integrates the
knowledge and experience with the operation of the
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system, as a result of the method by which it is constructed,
i.e. using human experts who monitor, supervise and know
the system behaviour in different circumstances. Moreover
the FCM can utilize learning techniques to fine-tune the
FCM causal links.

Nodes for the FCM stand for the concepts used to
describe the behaviour of the system and are connected by
sighed and weighted arcs representing the causal relation-
ships that exist between the concepts (Fig. 1). All the values
in the graph are fuzzy, thus concepts take values in the
range between [0, 1] and the weights of the arcs are in the
interval [�1, 1]. These weighted interconnections represent
the direction and degree with which one concept influences
the interconnected concepts.

The interconnection strength between two nodes Cj and
Ci is wji, with wji taking on any value in the range �1 to 1.
There are three possible types of causal relationships
between concepts: wji40, which indicates positive causality
between concepts Cj and Ci, wjio0, which indicates
negative causality between concepts Cj and Ci, and
wji ¼ 0, which indicates no relationship between Cj and
Ci. The directional influences are presented as all-or-none
relationships, thus the FCMs provide qualitative informa-
tion about these relationships.

The value of each concept is calculated, computing the
influence of other concepts to the specific concept, by
applying the following calculation rule:

A
ðkÞ
i ¼ f A

ðk�1Þ
i þ

X
jai

A
ðk�1Þ
j � wji

 !
, (1)

where A
ðkÞ
i is the value of concept Ci at iteration step k,

A
ðk�1Þ
j the value of the interconnected concept Cj at

iteration step k � 1, wji the weighted arc from Cj and Ci,
and f is a threshold function. Two threshold functions are
usually used. The unipolar sigmoid function where l40
determines the steepness of the continuous function
f(x) ¼ 1/(1+e�lx). When concepts can be negative and
Fig. 1. A simple Fuzzy Cognitive Map.
their values belong to the interval [�1, 1], threshold
function f ðxÞ ¼ tanh ðxÞ is used.
The simplicity of the FCM model becomes apparent

from its mathematical representation and operation.
Suppose that a FCM consists of n-concepts. An 1� n

matrix A represents the values of the n concepts and an
n� n matrix W represents the causality of the relationships.
Each element eij of the matrix W indicates the value of the
weight wji between concept Cj and Ci. Eq. (1) can be
transformed as follows to describe the FCM operation with
a compact mathematical equation:

A kð Þ
¼ f A k�1ð Þ

þ
X

Aðk�1Þ � w

 !
(2)

where A(k) is the matrix with values of concepts at iteration
step k, and f is the threshold function.
The FCM model of the system takes the initial values of

concepts based on measurements from the real system and
it is free to interact. The interaction is also caused by the
change in the value of one or more concepts.
This interaction continues until the model:
�
 Reaches equilibrium at a fixed point, with the output
concept values stabilizing at fixed numerical values.

�
 Exhibits limit cycle behaviour, with the concept values

falling in a loop of numerical values under a specific-
time period.

�
 Exhibits a chaotic behaviour, with each value reaching a

variety of numerical values in a non-deterministic,
random way.

Simplest FCMs act as asymmetrical networks of thresh-
old or continuous concepts and converge to an equilibrium
point or limit cycles. They differ from neural networks in
the way they are developed as they are based on extracting
knowledge from experts. FCMs have nonlinear structure of
their concepts and differ in their global feedback dynamics
(Kosko, 1992, 1997).

2.1. Constructing fuzzy cognitive maps

The development and construction method of FCM has
great importance for its potential to sufficiently model a
system. The method used is dependent on the group of
experts who operate, monitor, supervise the system and
they develop the FCM model. This methodology extracts
the knowledge on the system from the experts and exploits
their experience of the system’s model and behaviour
(Stylios and Groumpos, 2000).
The group of experts determines the number and kind of

concepts that comprise the FCM. An expert from his/her
experience knows the main factors that describe the
behaviour of the system; each of these factors is
represented by one concept of the FCM. Experts know
which elements of the system influence other elements; for
the corresponding concepts they determine the negative or
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positive effect of one concept on the others, with a fuzzy
degree of causation. In this way, an expert transforms his/
her knowledge in a dynamic weighted graph, the FCM.
According to the developing methodology experts are forced
to think about and describe the existing relationship between
the concepts and thus justify their suggestions. Each expert,
indeed, determines the influence of one concept on another
as ‘‘negative’’ or ‘‘positive’’ and then evaluates the degree of
influence using a linguistic variable, such as ‘‘strong
influence’’, ‘‘medium influence’’, ‘‘weak influence’’, etc.

More specifically, the causal interrelationships among
concepts are declared using the variable Influence which is
interpreted as a linguistic variable taking values in the
universe U ¼ ½�1; 1�. Its term set T(influence) is suggested
to comprise nine variables. Using nine linguistic variables,
an expert can describe in detail the influence of one concept
on another and can discern between different degrees of
influence. The nine variables used here are: T(influen-

ce) ¼ {negatively very strong, negatively strong, negatively
medium, negatively weak, zero, positively weak, positively
medium, positively strong and positively very strong}. The
corresponding memberships functions for these terms are
shown in Fig. 2 and they are mnvs, mns, mnm, mnw, mz, mpw, mpm,
mps and mpvs.

Thus, every expert describes each interconnection with a
fuzzy linguistic variable from the set, which describes the
relationship between the two concepts and determines
the grade of causality between the two concepts. Then, all
the proposed linguistic variables suggested by experts, are
aggregated using the SUMmethod and an overall linguistic
weight is produced, which with the defuzzification method
of Centre of Gravity (COG) (Lin and Lee, 1996), is
transformed to a numerical weight wji, belonging to the
interval [�1, 1]. A detailed description of the development
of FCM model is given in (Stylios and Groumpos, 2004).
3. Learning methods for fuzzy cognitive maps

Utilization of appropriate learning algorithms can over-
come the most significant weaknesses of the FCMs, namely
Fig. 2. Membership functions of t
the potential convergence to undesired regions and the
recalculation of the weights when new strategies are
adopted. The learning procedure is a technique which
increases the efficiency and robustness of FCMs, con-
tributing to more intelligent methods by modifying the
FCM weight matrix. Moreover, the learning rules supply
FCMs with useful characteristics such as the ability to
learn arbitrary nonlinear mappings, capability to generalize
situations, adaptively.
Experts involved in the construction of FCM determine

concepts and causality among them. This approach may
yield to a distorted model, since it is possible that experts
have not considered appropriate factors and they may have
assigned inappropriate causality weights among FCM
concepts. The best conductance of FCMs is obtained by
combining them with neural network characteristics and
integrating their advantages. Specifically, neural learning
techniques are used to train the FCM and determine
appropriate weights of interconnections among concepts.
The result is a hybrid neurofuzzy system. Learning
methods have been proposed for FCM training, where
the gradient for each weight is calculated by the application
of the general rule:

w0ij ¼ gðwij ;Ai;Aj ;A
0
i;A
0
jÞ. (3)

Learning rules can train FCMs, meaning adjusting the
interconnections between concepts, as in the case of
synapses of neural networks.
The learning algorithms, proposed for FCMs are mostly

based on ideas coming from the field of ANNs training.
Adaptation and learning methodologies based on unsu-
pervised Hebbian-type rules to adapt the FCM model and
adjust its weights were proposed for the first time by Kosko
(1986). Kosko presented the Differential Hebbian Learning
(DHL), as a form of unsupervised learning, to train FCM,
but without mathematical formulation and implementation
in any problem (Kosko, 1992; Dickerson and Kosko,
1994). The balanced differential learning algorithm to train
FCM from data, based on the DHL has been proposed
(Huerga, 2002). This algorithm is a modified version of the
he linguistic variable Influence.
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DHL and seems to work better in learning patterns and
modelling a given domain than the classical approach.
Another proposed approach for FCMs training is the
Adaptive Random FCMs based on the theoretical aspects
of Random Neural Networks (Aguilar, 2002).

Recently, there have been proposed two approaches for
FCM training, the AHL and the NHL algorithms. The
AHL algorithm have been proposed and implemented
successfully in a practical control problem (Papageorgiou
et al., 2004a). This algorithm takes into consideration the
initial experts’ knowledge and experience starting from
the initial values of elements of the weight matrix as they
are derived from the summation of experts’ opinions. The
AHL introduced a sequence of activation concepts
depending on the specific problem’s configuration and
characteristics. The AHL is described briefly in the
following section.

The initial idea and description of using the nonlinear
Hebbian rule in FCMs has been proposed in (Papageor-
giou et al., 2003b), but the mathematical formalism for
incorporating the NHL into FCM structure as well as the
methodology for implementing this algorithm in a case-
study scenario are introduced and presented in this article.

In addition to this some methods based on Evolutionary
Computation techniques have been proposed for FCMs.
Particle Swarm Optimization (PSO) methods were pro-
posed for FCM learning giving very promising results
(Papageorgiou et al., 2003d, 2004b). PSO algorithms
belong to swarm intelligence, a rapidly growing area of
artificial intelligence. This method provides a search
procedure, which optimizes a problem-depended fitness
function jð Þ, by maintaining and evolving a swarm of
candidate solutions. The individual of the swarm yielding
the best fitness value throughout all generations gives the
optimal solution. Using this learning approach a number
of appropriate weight matrices were derived leading the
system to desired convergence regions. This approach is
very fast and efficient to calculate the optimum cause–
effect relationships of the FCM model and to overcome a
main drawback of the FCM, which is the recalculation of
the weights every time a new real case is adopted.

Another approach for learning FCM connection matrix
involves application of Evolution Strategies (ESs) (Kou-
louriotis et al., 2001). This technique is exactly the same
used for neural networks training. One of its main
drawbacks is that it does not take into consideration the
initial structure and experts’ knowledge for the FCM
model, but uses data sets determining input and output
patterns in order to define the cause–effect relationships
which satisfy the fitness function. Another main drawback
is the need for multiple state vector sequences (input/
output pairs), which might be difficult to obtain for many
real-life problems. The calculated weights appear as large
deviations from the actual FCM weights. In real problems
they do not appear to have any accepted physical meaning.

Recently, two different approaches based on application
of genetic algorithms for learning FCM connection matrix
have been proposed. The first approach involving genetic
algorithms performs a goal-oriented analysis of FCM
(Khan et al., 2004). This learning method did not aim to
compute the weight matrix, but to find the initial state
matrix, which leads the predefined FCM (with a fixed
weight matrix) to converge to a given fixed-point attractor
or limit cycle solution. They viewed the problem of the
FCM backward inference as one of optimization, and they
applied a genetic algorithm-based strategy to search for the
optimal stimulus state.
The second more powerful genetic algorithm-based

method has been proposed to develop FCM connection
matrix which is based on historical data consisting of one
sequence of state vectors. It uses a real-coded genetic
algorithm (RCGA) which allows eliminating expert in-
volvement during development of the model and learns the
connection matrix for a FCM that uses continues
transformation function, which is a more general problem
that the one considered in (Stach et al., 2005). The main
advantage of this method is the absence of human
intervention but the RCGA method needs investigation
in terms of its convergence and more investigation towards
to associate the GA parameters with the characteristics of a
given experimental data. Its usefulness is restricted in only
specific problem domains. Learning algorithms for FCMs
based on evolutionary computation methods need more
investigation.
4. Unsupervised learning techniques

4.1. The active hebbian learning algorithm

A new unsupervised learning algorithm has been
proposed recently suitable for training FCMs, namely
AHL algorithm, which introduces the sequence of activa-
tion concepts (Papageorgiou et al., 2004a). The novelty of
this algorithm is based on accepting sequence of influence
from one concept to another, in this way the interaction
cycle is dividing in steps. When the experts develop the
FCM, they are asked to determine the sequence of
activation concepts, the activation steps and the activation
cycle. At every activation step, one (or more) concept(s)
becomes Activated concept(s), triggering the other inter-
connecting concepts, and in turn, at the next simulation
step, may become Activation concept. When all the
concepts have become Activated concepts, the simulation
cycle has closed and a new one starts until the system
converges in an equilibrium region. An activation cycle
consists of steps; at each activation step one or more
concepts are the Activation concepts that influence the
interconnected concepts until the termination of the
sequence of activation closes the cycle.
In addition to the determination of sequence of

activation concepts; experts select a limited number of
concepts as outputs for each specific problem which are
defined as the Activation Decision Concepts (ADCs).
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These concepts are in the centre of interest; they stand for
the main factors and characteristics of the system, known
as outputs and their values represent the final state of the
system.

Suppose there is the FCM shown on Fig. 3, where
experts determined the following activation sequence:
C1 ! C2, Cj ! Ci ! Cm ! Cn. At second step of the
cycle, according to the activation sequence concept Cj is the
triggering concept that influences concept Ci, as shown in
Fig. 3. This concept Cj is declared the Activation concept,
with the value Aact

j and triggers the interconnected
corresponding concept Ci, which is the Activated concept.
At the next iteration step, concept Ci influences the other
interconnected concepts Cm and so forth. The learning
algorithm has asynchronous stimulation mode that means
when concept Cj becomes the Activation concept that
triggers Ci the corresponding weight wji of the causal
interconnection is updated and the modified weight w

ðkÞ
ji is

derived for each iteration step k.
Fig. 3 is a shot of the FCM model during the activation

sequence. The FCM-model consists of n-nodes and it is the
2nd activation step where the Activation concept Cj,
influences the Activated concept Ci. The following para-
meters are depicted:

Ci: is the ith concept with value Ai(k), 1pipn.
wji: is the weight describing the influence from Cj to Ci.
Aj

act(k): is the activation value of concept Cj, which is
triggering the interconnected concept Ci.
g: is the weight decay parameter.
Z: is the learning rate parameter, depending on simula-
tion cycle c.
Ai(k): is the value of Activated concept Ci, at iteration
step k.

The value Ai(k+1) of the Activated concept Ci, at
iteration step k+1, is calculated, computing the influence
of other Activation concepts with values Aact

l to the specific
concept Ci due to modified weights wli(k) at iteration step
Fig. 3. The activation weight-learning process for FCMs.
k, through the equation:

Aiðk þ 1Þ ¼ f ðAiðkÞ þ
X
lai

Aact
l ðkÞ � wliðkÞÞ, (4)

where Al are the values of concepts Cl that influence the
concept Ci, and wliðkÞ are the corresponding weights that
describe the influence from Cl to Ci.
For example, in Fig. 3, l takes values 1,2 and j, and A1,

A2 and Aj are the values of concepts C1, C2 and Cj that
influence Ci. Thus value Ai of concept, after triggering at
step k þ 1, is calculated:

Aiðk þ 1Þ ¼ f ðAiðkÞ þ Aact
1 ðkÞ � w1iðkÞ

þ Aact
2 ðkÞ � w2iðkÞ þ Aact

j ðkÞ � wjiðkÞÞ. ð5Þ

The AHL algorithm relates the values of concepts
and values of weights to the FCM model. We introduced
a mathematical formalism for incorporating the learning
rule, with the learning parameters and the introduction
of the sequence of activation (Papageorgiou et al.,
2004a, b).
The proposed rule has the general mathematical form:

wjiðkÞ ¼ ð1� gÞ � wjiðk � 1Þ þ Z � Aact
j ðk � 1Þ � Aiðk � 1Þ,

(6)

where the coefficients Z, g are positive learning factors
called learning parameters.
In order to prevent indefinite growing of weight values,

we suggest normalization of weight at value 1, Wk k ¼ 1, at
each step update:

wjiðkÞ ¼
ð1� gÞ � wjiðk � 1Þ þ Z � Aact

j ðk � 1Þ � Aiðk � 1Þ

P
j¼1
jai

ðð1� gÞ � wjiðk � 1Þ þ Z � Aact
j ðk � 1Þ � Aiðk � 1ÞÞ2

2
4

3
5
1=2

,

(7)

where the addition in the denominator covers all of the
interconnections from the Activation concepts Cj to the
Activated concepts Ci.
For low learning rates of parameters Z, g, Eq. (7) can—

without any loss of precision—be simplified to:

wjiðkÞ ¼ ð1� gÞ � wjiðk � 1Þ þ Z � Aact
j ðk � 1Þ

� ½Aiðk � 1Þ � wjiðk � 1Þ � ðAact
j ðk � 1ÞÞ�. ð8Þ

Eq. (1) that calculates the value of each concept of FCM
takes the form of Eq. (4), where the value of weight wjiðkÞ is
calculated using Eq. (8).
The learning parameters Z and g are positive scalar

factors. The learning rate parameter Z is exponentially
attenuated with the number of activation–simulation cycles
c so that the trained FCM converges fast. Thus Z(c) is
selected to be decreased where the rate of decrease depends
on the speed of convergence to the optimum solution and
on the updating mode. Thus, the following equation is
proposed:

ZðcÞ ¼ b1 expð�l1 � cÞ. (9)
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Depending on the problem’s constraints and the
characteristics of the specific case, the parameters b1 and
l1 may be values within the following bounds
0:01ob1o0:09 and 0:1ol1o1, which are determined using
experimental trial and error method for fast convergence.

The parameter g is the weight decay coefficient which
may decrease depending on the number of activation cycles
c. The parameter g can be selected for each specific problem
to ensure that the learning process converges in a desired
steady state. If the parameter g is selected as a decreasing
function at each activation cycle c, the following form is
proposed:

gðcÞ ¼ b2 expð�l2 � cÞ, (10)

where b2 and l2 are positive constants determined by a trial
and error experimental process. These values influence the
rate of convergence to the desired region and the
termination of the algorithm.

In addition, in AHL algorithm, two criteria functions
have been proposed (Papageorgiou et al., 2004a). The first
one is the criterion function J that examines the desired
values of outputs concepts, which are the values of
Activation Concepts we are interested in.

The criterion function J has been suggested as

J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ð ½ADCj � Amin
j �

2 þ ½ADCj � Amax
j �

2Þ

vuut , (11)

where Amin
j is the minimum target value of concept ADCj

and Amax
j is the corresponding maximum target value of

ADCj. At the end of each cycle, the value of J calculates the
Euclidean distance of ADCj value from the minimum and
maximum target values of the desired ADCj, respectively.
The minimization of the criterion function J is the ultimate
goal, according to which we update the weights and
determine the learning process.

One more criterion for this learning algorithm of FCMs
has been proposed. This second criterion is determined by
the variation of the subsequent values of ADCj concept, for
simulation cycle c, yielding value e, which has to be
minimum and takes the form:

jADC
ðcþ1Þ
j � ADC

ðcÞ
j joe, (12)

where ADCj is the value of jth concept.
The term e is a tolerance level keeping the variation of

values of ADC(s) as low as possible and it is proposed as
equal to e ¼ 0:001, satisfying the termination of iterative
process.

Thus, for training FCM using the asynchronous AHL
algorithm two criteria functions have been proposed. The
first one is the minimization of the criterion function J and
the second one is minimization of the variation of the two
subsequent values of ADCs, represented in Eqs (11) and
(12), respectively, in order to determine and terminate the
iterative process of the learning algorithm.

The proposed algorithm is based on defining a sequence
of concepts that means distinction of FCM concepts as
inputs, intermediates and outputs, which depends on the
modeled system and the focus of experts. During the
training phase a limited number of concepts are selecting as
outputs (those we want to estimate their values). The
expert’s intervention is the only way to address this
definition. This learning algorithm extracts the valuable
knowledge and experience of experts and can increase the
operation of FCMs and implementation in real case
problems just by analysing existing data, information and
experts’ knowledge about the given systems.
The training process implementing the AHL into an

n-concept FCM is described analytically in (Papageorgiou
et al., 2004a). The schematic representation of this training
process is given in Fig. 4. This learning algorithm drives the
system to converge in a desired region of concepts values
within the accepted-desired bounds for ADCs concepts.

4.2. Nonlinear Hebbian Learning algorithm for Fuzzy

Cognitive Maps

The second proposed algorithm for training FCMs is
based on the nonlinear Hebbian-type learning rule for
ANNs learning (Hebb, 1949; Oja, 1989; Hassoun, 1995).
This unsupervised learning rule has been modified and
adapted for the FCM case, introducing the NHL algorithm
for FCMs.
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The NHL algorithm is based on the premise that all the
concepts in FCM model are synchronously triggering at
each iteration step and change their values synchronously.
During this triggering process all weights wji of the causal
interconnections of the concepts are updated and the
modified weight w

ðkÞ
ji are derived for iteration step k.

The value A
ðkþ1Þ
i of concept Ci at iteration step k+1 is

calculated, computing the influence of interconnected
concepts with values Aj to the specific concept Cj due to
modified weights w

ðkÞ
ji at iteration step k, through the

following equation:

A
kþ1ð Þ

i ¼ f A
kð Þ

i þ
XN

jai
j¼1

A
ðkÞ
j � w

ðkÞ
ji

0
B@

1
CA. (13)

Taking the advantage of the general nonlinear Hebbian-
type learning rule for neural networks (Oja et al., 1991; Xu,
1994; Hassoun, 1995), we introduce the mathematical
formalism incorporating this learning rule for FCMs. This
algorithm relates the values of concepts and values of
weights in the FCM model, and it may take the general
mathematical form:

Dwji ¼ ZA
ðk�1Þ
i ðA

ðk�1Þ
j � w

ðk�1Þ
ji A

ðk�1Þ
i Þ, (14)

where the coefficient Z is a very small positive scalar factor
called learning parameter and is determined using experi-
mental trial and error method in order to optimize the final
solution.

Eq. (14) is modified and adjusted for FCMs and the
following form of the nonlinear weight-learning rule for
FCMs is proposed:

w
ðkÞ
ji ¼ g � wðk�1Þji þ ZA

ðk�1Þ
i ðA

ðk�1Þ
j � sgnðw

ðk�1Þ
ji Þw

ðk�1Þ
ji A

ðk�1Þ
i Þ,

(15)

where the g is the weight decay learning coefficient.
The value of each concept of FCM is updated, through

Eq. (13) where the value of weight w
ðkÞ
ji is calculated using

Eq. (15).
Indeed, when experts develop a FCM they usually

propose a quite sparse weight matrix W. Using the NHL
algorithm the initially non-zero weights are updating
synchronously at each iteration step through Eq. (15),
until the termination of the algorithm. The NHL algorithm
does not assign new interconnections and all the zero
weights do not change value. When the algorithm
termination conditions are met, the final weight matrix
WNHL is derived.

Implementation of NHL algorithm requires determina-
tion of upper and lower bounds for the learning parameter
Z; using trial and error experiments the values of learning
rate parameter Z was determined to belong in 0oZo0:1.
For any specific case-study problem a constant value for Z
is calculated (Papageorgiou et al., 2003b).
4.2.1. Two termination conditions

During the FCM development stage, experts define the
Desired Output Concepts (DOCs). These concepts stand
for the main characteristics and outputs of the system that
we want to estimate their values, which reflect the overall
state of the system. The distinction of FCM concepts as
inputs and outputs is determined by the group of experts
for each specific problem. Experts select the output
concepts and they consider the rest as initial stimulators
or interior concepts of the system. The proposed learning
algorithm extracts hidden and valuable knowledge of
experts and it can increase the effectiveness of FCMs and
their implementation in real problems.
Two complementary termination conditions of the NHL

process have been proposed: The first termination condi-
tion is the minimization of the following cost function F1:

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOC

ðkÞ
j � Tj

��� ���2
r

, (16)

where Tj is the mean target value of the concept DOCj. At
each step, the value of F1 calculates the square of the
Euclidean distance of actual DOCj value and mean target
value Tj of the DOCj values.
Let us assume that we want to calculate the cost function

F1 of concept Cj. It is required that DOCj take values in the
range DOCj ¼ ½T

min
j ;Tmax

j �. Then the target value Tj of the
concept Cj is determined as

Tj ¼
Tmin

j þ Tmax
j

2
(17)

If we consider the case of an FCM-model, where there
are m DOCs, then for the calculation of F1, we take the
sum of the square differences between the m-DOCs values
and the m-T’s mean values of DOCs, and Eq. (16) takes the
following form:

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ðDOC
ðkÞ
j � TjÞ

2

vuut (18)

The objective of the training process is to find the set of
weights that minimize function F1.
In addition to the previous statements, one more

criterion for the NHL has been introduced so as to
terminate the algorithm after a limited number of steps.
This second criterion is based on the variation of the
subsequent values of DOCj concepts, for iteration step k,
yielding a very small value e, taking the form:

F2 ¼ jDOC
ðkþ1Þ
j �DOC

ðkÞ
j jo0:002, (19)

where DOC
ðkÞ
j is the value of jth concept at iteration step k.

The constant value e ¼ 0:002 has been proposed after a
large number of simulations for different FCM cases.
When the variation of two subsequent values of DOCj is
less than this number then it is pointless for the system
operation to continue the training process.
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Algorithm: “Nonlinear Hebbian Learning” 

Step 1:   Read input concept state A0 and initial weight matrix W0 

Step 2:   For iteration step k. 

Step 3:       Update the weights: 

wij 
(k) =+ wij 

(k−1) + ηAj
(k−1)(Aj

(k−1) − sgn (wij) wij 
(k−1) Aj

(k−1))

Step 4:       Calculate Aj
(k)  according to the eq. (13)

Step 5:       Calculate the two termination functions  

Step 6:   Until both the terminati on conditions are met, go to step 2

Step 7:   Return the final weights WNHL. 

Fig. 5. NHL algorithm for Fuzzy Cognitive Maps.
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When both terminations functions F1 and F2 are
satisfied, the learning algorithm terminates and the desired
equilibrium region for the DOCs is reached.

A generic description of the proposed NHL Algorithm
for FCMs is given in Fig. 5.

A series of steps are performed to simulate a case-study
scenario, implementing the proposed learning method.
These steps are described in the following section.
4.2.2. Simulation steps of the NHL-based training technique

Let us assume that concept Ci was defined as DOCi and
it has the initial value Ai. We want to train FCM using
NHL so that the DOCi to reach a target value Ti. The series
of steps to simulate a hypothetical scenario are as follows:

Step 1: Using the initial weight matrix and following
the FCM model implications in Eq. (1) we calculate the
value Ai.

Step 2: The proposed bounds for DOCi are set.
Step 3: IF the calculated value Ai is within the accepted

bounds THEN the process STOPs and the initial weight
matrix is sufficient and it is not requiring training. IF the
calculated value for DOCi is non-accepted THEN GO TO
next step.

Step 4: The NHL algorithm is applied and updated the
weights until the DOCi converges in the target value Ti.

Step 5: When the NHL algorithm has been applied for
over 100 times AND both the termination conditions are
not met THEN experts are asked to reconstruct the FCM
model. The new weight matrix Winitial

new of the reconstructed
FCM is used in Eq. (1) and calculates the Ai again, GO TO
step 3.

Step 6: IF DOCi does not reach an accepted value THEN
GO TO step 4, determine the parameter Z and implement
the NHL technique again. ELSE the process STOPs and
the updated weight matrix is appropriate for the case-study
scenario.
The flowchart in Fig. 6 describes the NHL-based
algorithmic procedure.

5. Illustrative comparison example—an industrial process

control problem

In this section the two proposed unsupervised learning
algorithms, the AHL and the NHL are implemented to
train the FCM that models a simple process control
problem encountered in chemical industry.
A simple process example is considered where there is

one tank and three valves that influence the amount of
liquid in the tank; Fig. 7 shows an illustration of the
system. Valve 1 and Valve 2 empty two different kinds of
liquid into Tank 1 and during the mixing of the two liquids
a chemical reaction takes place in the tank. A sensor is
located inside the tank that measures the specific gravity of
the produced liquid in the tank. When the value of the
specific gravity is in the range between (Gmax) and (Gmin),
this means that the desired liquid has been produced in the
tank. Moreover, there is a limit on the height of liquid into
tank, which cannot exceed an upper limit (Hmax) and a
lower limit (Hmin). The control target is to keep these
variables in the following range of values:

GminpGpGmax,

HminpHpHmax.

A FCM that models and controls this system is
developed and depicted in Fig. 8. Three experts constructed
the FCM. They jointly determined the concepts of the
FCM and then each expert drawn the interconnections
among concepts and assigned fuzzy weight for each
interconnection (Stylios and Groumpos, 2000). The ADCs
in this problem, as experts proposed them, are the concept
C1 representing the height of liquid and C5 representing the
specific gravity of the produced liquid into the tank.
The FCM model for this process control problem

consists of five concepts:

Concept 1—the amount of the liquid that Tank 1
contains, it depends on the operational state of Valves 1,
2 and 3.
Concept 2—the state of Valve 1 (it may be closed, open
or partially opened).
Concept 3—the state of Valve 2 (it may be closed, open
or partially opened).
Concept 4—the state of Valve 3 (it may be closed, open
or partially opened).
Concept 5—the specific gravity of the liquid into the
tank.

For this specific chemical control problem, experts asked to
describe the behaviour of the system as well as to infer the
sequence of activation. They explained that they usually
monitor the height of liquid in tank (C1) and according to
this value, the operator of the system close Valve 1 (C2) and
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Fig. 6. Flowchart of the training process using the NHL technique.

Fig. 7. The illustration for the process control example.

Fig. 8. The FCM model of the practical process problem.
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Valve 2 (C3). Then, experts monitor the value of specific
gravity of produced liquid (C5) and according to this value
open Valve 3 (C4). Thus, concept C1 is defined as the first
Activated concept. Concepts C2 and C3 are the synchro-
nously Activated concepts, at next sub-step, that are the
second Activation concepts. Concept C4 is the third
Activated concept and concept C5 is the fourth Activated
concept. Then, the c-cycle consists of 4 sub-steps.

The sign and the weight of each interconnection have
been determined by three experts, using the methodology
described in Section 2.1. All the experts agreed on the
direction of the interconnections between the concepts and
then every one of the experts proposed a linguistic variable
for each weight. These linguistic values for each one of the
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Table 1

The values of concepts at each step of FCM interaction

Steps Tank 1 Valve 1 Valve 2 Valve 3 Cauger

1 0.40 0.7077 0.612 0.717 0.30

2 0.5701 0.6743 0.6253 0.6921 0.6035

3 0.6157 0.6918 0.6184 0.7054 0.6845

4 0.6244 0.7019 0.6141 0.7132 0.7046

5 0.6252 0.7058 0.6125 0.7160 0.7093

6 0.6249 0.7071 0.6121 0.7168 0.7103

7 0.6248 0.7075 0.6120 0.7171 0.7105

8 0.6247 0.7076 0.6120 0.7171 0.7105

9 0.6247 0.7077 0.6120 0.7171 0.7105
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corresponding weights are the following:

w12 7!negatively� weakðmnwÞ

w13 7!negatively� weakðmnwÞ

w21 7!positively� weakðmpwÞ

w15 7!positively� weakðmpwÞ

w31 7!positively�mediumðmpmÞ

w41 7!negatively� smallðmnsÞ

w52 7!positively�mediumðmpmÞ

w54 7!positively�mediumðmpmÞ

The fuzzy linguistic weights proposed for each inter-
connection are aggregated and then defuzzified through the
COG defuzzification so that the crisp weights values are
produced:

� 0:5pw12p0

� 0:5pw13p0

0pw21p0:5

0pw15p0:5

0:25pw31p0:75

� 1pw41p� 0:5

0:25pw52p0:75

0:25pw54p0:75 ð20Þ

Thus, the weight matrix of the FCM model is the
following:

Winitial ¼

0 �0:4 �0:25 0 0:3

0:36 0 0 0 0

0:45 0 0 0 0

�0:9 0 0 0 0

0 0:6 0 0:3 0

2
6666664

3
7777775
. (21)

Experts also determined the desired regions for the
output concepts, which reflect the proper operation of the
modelled system:

0:68pA1p0:74;

0:74pA5p0:80:
(22)

For this FCM model of the process problem we will
examine two scenarios. The first one supposes that all the
values of concepts are changed synchronously in the same
time units and this is referred to as an iteration step, so the
NHL algorithm can be implemented. The second scenario
supposes that the values of concepts are changed asyn-
chronously through the sequence of activation, so that the
AHL algorithm is applied.

6. Experimental results

First, before the implementation and testing of the
proposed learning algorithms, for the chemical process
control problem described in Section 5, we apply the
typical Eq. (1) to find the equilibrium final state after the
FCM modelling interactions. The initial values of concepts
given in matrix A0

¼ [0.4 0.7 0.6 0.7 0.3] represent the
measured data of the physical process (after thresholding).
These values and the initial weight matrix W

initial of
Eq. (21) are used in Eq. (1) to calculate the equilibrium
region of the process when no learning algorithm is
applied. After 9 iteration steps, the FCM concept
values do not change, so the equilibrium region is reached
(Table 1 gives the subsequent values of calculated
concepts). It is observed that the values of concepts C1

and C5 are out of the suggested desired regions by Eq. (22).
Thus, learning algorithms are required to train the FCM

so as to converge in the desired regions. The AHL and
NHL algorithms can be applied to fine-tuning FCM causal
links by modifying the weight values. Two different
training scenarios will be considered. In the first scenario,
experts either propose the initial values of concepts or
concepts’ values are derived from real measurement data of
the physical process. Thus, two updating weight matrices
are derived when the proposed learning techniques are
implemented for the asynchronous triggering mode (apply-
ing AHL) and synchronous triggering mode (applying
NHL). In the second scenario, the AHL and NHL
algorithms are implemented for an initial set of random
concepts values, calculating new values for ADCs and
DOCs and examining the convergence of the FCM model.
6.1. First case-study

This case-study scenario examines the implementation of
the two proposed algorithms for the same initial set of
concepts values and weights of the FCM. This scenario
concerns the weight adaptation of the FCM model so as to
converge in the desired region, determining the appropriate
values of weights among concepts (weights).
6.1.1. Implementation of the AHL technique

The AHL algorithm is applied to modify the weights and
control the process. The AHL steps were presented at
Section 4.1; at first step, it takes the initial vector A0 and
the initial weight matrix Winitial.
At second learning step, the learning parameters Z, g

have been determined for the specific process control
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Fig. 9. Variation of concepts values implementing the AHL algorithm.
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problem after experimental trials and the followings have
been suggested:

ZðcÞ ¼ 0:02 expð�0:1 � cÞ, (23)

gðcÞ ¼ 0:04 expð�cÞ. (24)

At third learning step (which is the first sub-step) and for
iteration number k ¼ 1, as described in the AHL procedure
(Fig. 4), the concept C1 is defined as the first Activated
concept, triggered by the corresponding interconnected
concepts C2, C3, C4, which behave as Activation concepts,
using their previous values of A0

first ¼ ½A
ð0Þ
1 A

ð0Þ
2 A

ð0Þ
3 A

ð0Þ
4 A

ð0Þ
5 �.

The value of Activation concept A
ð1Þ
1 , at iteration step

k ¼ 1, is calculated by Eq. (4), where the updated weight
values are calculated by Eq. (8). At second sub-step, the
concept C1, with its new value A

ð1Þ
1 , triggers the other

interrelated concepts and becomes the Activation concept.
The concepts C2 and C3 are now the second Activated
concepts, affected by the Activation concept C1, and their
activation values A

ð1Þ
2 and A

ð1Þ
3 , for iteration number k ¼ 2,

are also calculated by Eq. (4). At the third sub-step the
previously activated concepts affect the concept C5, which
now is the Activated concept with value A

ð1Þ
5 , for k ¼ 3. All

the previously Activated concepts C1, C2, C3, C5, with their
calculated values A

ð1Þ
1 , A

ð1Þ
2 , A

ð1Þ
3 , A

ð1Þ
5 , respectively, act as

Activation concepts, triggering the concept C4. The C4 as
the fourth Activated concept, takes the value A

ð1Þ
4 , using

Eq. (4) for iteration k ¼ 4. Notably, those only the weights
connect the Activation Concepts to the Activated concepts
are updated at each iteration step using Eq. (8). All other
weights remain unchanged at each iteration sub-step.
When a cycle closes, then all the weights become updated.

The activation process implementing the AHL algorithm
stops when the two proposed criteria, Eqs. (11) and (12) are
satisfied, for this example it happens after 18 cycles.

When the AHL algorithm terminates and the output
concepts values are within the desired regions, which mean
that the values of decision-output concepts are accepted, a
new updated weight matrix is derived, determining new
cause–effect relationships between the concepts of FCM
model. The equilibrium region for this scenario is reached,
after 18 recursive cycles, and here is the equilibrium
concept values A1

AHL ¼ [0.7270 0.7708 0.7065 0.7807
0.7771]. Fig. 9 shows the values of concepts for 18
activation cycles after implementing the AHL algorithm.

The updated weight matrix after the 18 activation cycles
is the following:

W1
AHL ¼

0 �0:1822 �0:0855 0:1055 0:316

0:3528 0 0:101 0:115 0:110

0:4134 0:102 0 0:105 0:100

�0:5038 0:114 0:102 0 0:111

0:1052 0:532 0:098 0:322 0

2
6666664

3
7777775
.

(25)

A new FCM model for the chemical process has been
produced with this updated weight matrix. It is noticeable
that the initial zero weights no longer exist and new
interconnections have been assigned. This means that all
concepts affect the related concepts, and the weighed arcs
show the degree of this relation. If we examine some of the
new assigned weights, we see that a weight interconnection
between concepts C1 and C4 has been assigned—meaning
that a new influence among these concepts exists. This
interconnection means that the concept C1 which repre-
sents the height of the tank influences positively low the
concept C4 which represents the ‘‘Valve 3’’. This is a
reasonable interconnection, with engineering meaning. In
the same way the following interconnections have been
added between concepts C2 and C3 (weight w23), C2 and C4

(weight w24), C2 and C5, C3 and C2, C3 and C4, C3 and C5,
C4 and C2, C4 and C3, C4 and C5, C5 and C1, and between
C5 and C3.
In addition to this the AHL algorithm modified some of

the initially proposed cause–effect relationships. As an
example the influence of concept C3 towards C1 (initial
value �0.4) has been modified after 18 cycles taking the
value �0.4134, which is a very small decrease. In the same
way, the weighted arc w12with initial value �0.4, after 18
cycles, takes the value �0.1822, which means that the initial
influence from C1 towards C2 decreases negatively at a small
amount. The initial zero value of weights w23 has changed
and after 18 cycles is 0.101, which means that the concept C2

affects the concept C3. The same happens with all the other
cause–effect relationships among concepts. Thus, this
training affects the dynamical behaviour of the system.
Then, we tested this new produced weight matrix for

1000 different cases using random initial values. For all
these cases the results for the ADCs where within the
intervals:

0:68pADC1p0:74;

0:74pADC5p0:79:
(26)
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It may be observed that the two ADCs, the ADC1

and ADC5, take values in the desired regions suggested in
Eq. (22).

Therefore, it is proved that using the AHL algorithm we
have improved the FCM model, which exhibits equilibrium
behaviour within the desired regions. With the proposed
procedure the experts suggest the initial weights of the
FCM and the sequence of activation, and then using the
AHL algorithm a new weight matrix is derived which can
be used for any set of initial values of concepts.
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Fig. 10. Variation of concepts values implementing the NHL algorithm.
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Fig. 11. Equilibrium state for concepts using the weight matrix W1
NHL.
6.1.2. Implementation of the NHL algorithm

Here, it is the second phase of the first scenario where the
NHL algorithm is applied to train the FCM and control
the process. To implement the NHL steps given in Section
4.2.2 are followed. The training process starts by applying
the initial values of concepts A

0 and the weight matrix
Winitial. Notably, only the initially non-zero weights that
connect the triggering concepts are updated at each
simulation step using Eq. (15). All other weights remain
zero.

For this specific control problem, the suggested value of
learning rate parameter Z is 0.04, which was defined after
trial and error experiments, so as to fulfill the requirements
of the specific system. If the learning parameter Z, takes any
other value than the proposed one, then the FCM will
converge in undesired regions.

The proposed NHL procedure continues until the two
termination criteria are met, which in these experimental
tests is achieved after 17 iteration steps. The result of
training the FCM is a new set of connection weights at the
weight matrix W1

NHL:

W1
NHL ¼

0 �0:1736 �0:0265 0 0:479

0:5103 0 0 0 0

0:5753 0 0 0 0

�0:90 0 0 0 0

0 0:707 0 0:493 0

2
6666664

3
7777775
.

(27)

This updated weight matrix leads the FCM in the
equilibrium region given in: A1

NHL ¼ [0.6830 0.7632 0.6538
0.7534 0.7440].

We examine the influence of NHL algorithm by
comparing Winitial and the new produced matrix W1

NHL.
The weight w15 (initial value equal to 0.3) takes the value
0.479 after training which mean that the influence of the
height of tank (concept C1) to the Gauger (concept C5)
increases positively at an important large amount. Also the
weight w13 (initial value equal to �0.4) takes the value
�0.0265 which means that the influence of the height of
tank (concept C1) to the valve 2 (concept C3) decreases at a
large amount. In practice this means that the influence is
almost zero. Some of the weights have changed signifi-
cantly their values from the initial ones in order to obtain
the desired output values of concepts. More specifically, the
weights w31, w52 and w47, have updated their values at a
significant amount to satisfy the constraints for DOCs.
Fig. 10 represents the variation of values of concepts

after 17 simulation steps implementing the NHL algorithm.
We observe that the values of DOCs in the equilibrium
state are within the desired regions.
Thus the weight adaptation method adjusts the FCM

cause–effect relationships and controls the system’s output
concepts in accepted-desired regions.
We evaluate the derived weight matrix W1

NHL using
a set of random values (random vector A0

¼ [0.27 0.01 0.08
0.63 0.23]). The calculated values of concepts in equilibrium
point are given in Aequil ¼ [0.6837 0.7632 0.6538
0.7543 0.7451]. Fig. 11 represents variation of concepts
values starting with random initial concepts values. We
have tested this FCM model for 1000 test cases with
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random initial values of concepts, using the weight matrix
W1

NHL and we come up with the same result for concepts
values.

6.2. Second case-study

6.2.1. Implementation of the AHL algorithm

In this scenario, initial random values of concepts are
suggested to adapt the weights of the FCM model. Let us
consider a set of initial random values A0

¼ [0.13 0.405
0.20 0.85 0.04]. Here the following values of ZðcÞ ¼
0:02 expð�0:1 � cÞ and gðcÞ ¼ 0:04 expð�cÞ are used which
were used in Section 6.1. The AHL algorithm is applied
following the proposed procedure in the Section 4.1 as it
was implemented in the first scenario.

Implementing the AHL algorithm the FCM concepts
converge after 17 recursive cycles and the following weight
matrix is derived:

W2
AHL ¼

0 �0:1695 �0:076 0:106 0:315

0:3520 0 0:0839 0:115 0:114

0:4116 0:106 0 0:104 0:105

�0:4953 0:114 0:0830 0 0:115

0:1101 0:5275 0:102 0:320 0

2
6666664

3
7777775
.

(28)

The interpretation of the obtained cause–effect relation-
ships among concepts is similar to the first case study. The
equilibrium values of concepts are given in matrix
A2

AHL ¼ [0.7283 0.7724 0.7101 0.7793 0.7779]. It is ob-
served that the values for all ADCs are within the accepted
bounds. The same results are taken using any other
random set of initial values (It was tested for 1000 different
cases using initial random values).

6.2.2. Implementation of the NHL algorithm

In the second phase of the second test case scenario, the
NHL algorithm is implemented for the same initial values
of concepts as above. The first set of initial random values
is A0

¼ [0.13 0.405 0.20 0.85 0.04]. The following value for
the learning parameter Z ¼ 0:04 is used as in the first
scenario.

Implementing the NHL algorithm the system’s concepts
converge after 15 iteration steps and the following weight
matrix is derived:

W2
NHL ¼

0 �0:177 �0:0246 0 0:472

0:509 0 0 0 0

0:5751 0 0 0 0

�0:877 0 0 0 0

0 0:702 0 0:481 0

2
6666664

3
7777775
.

(29)

The values of concepts at converge region are given in
A2

NHL ¼ [0.6885 0.7619 0.65418 0.7523 0.7446]. It is clearly
shown that the values of DOCs in the equilibrium state are
within the desired regions (accepted bounds). Similar
results are derived using any other random set of initial
values and running the algorithm for 1000 different cases.
The weight values have been modified according to the

system’s characteristics retaining the meaning of the
results. Some of the weights have changed significantly
their values from the initial ones to obtain the desired
values for output concepts. The weights w21, w13, w15 and
w54, have also updated their values at a significant amount
to satisfy the accepted bounds for DOCs. These new values
for weights after training describe new cause–effect
relationships between the concepts of FCM. Thus the
weight adaptation method adjusts the FCM cause–effect
relationships and controls the system convergence in
accepted regions.
Both the proposed AHL and NHL algorithms have been

implemented and tested successfully to a process control
problem, adapting the cause–effect relationships between
concepts of FCM and eliminating some of deficiencies that
appear in operation of FCMs. Through the iteration
training processes, the weights keep their signs and
direction and their values, after redefinition of cause–effect
relationships, are within the initially determined weight
ranges in Eq. (20). In this way, we take into account the
dynamic characteristics of the learning process and the
environment and finally, help the output concept values to
converge in desired bounds.

7. Comparison and discussion of the two unsupervised

learning techniques

The main difficulty of proposing learning algorithms for
FCMs is that the FCM allows feedback. The first proposed
unsupervised learning algorithms for FCMs, the DHL
algorithm (Kosko, 1988) and the Balanced Differential
Hebbian Learning (BDHL) algorithm (Huerga, 2002) were
applied only to FCMs with binary concepts values which
significantly restrict their application areas and can not be
used in practical problems. Some other learning ap-
proaches are based on conventional learning methods
and they introduce the broken of the feedback causal links
of the FCM. It is clear that there is a limitation of
transplanting existing learning methods from Neural Net-
work domain into FCMs. The AHL and NHL algorithms
have been proposed for fine tuning FCM causal links
increasing the effectiveness and reliability and eliminating
the main drawbacks of FCMs.
In this direction, we proposed two suitable learning

methods for adjusting FCMs weights, depending on each
specific problem’s characteristics and constraints. The
AHL algorithm introduce the asynchronous adaptation
mode for weights, it requires the definition of Activation
sequence and introduces the distinction of Activated and
Activation concepts. The AHL adds causal links between
all the concepts so as to succeed the desired behaviour of
the system, and not only modify the initial causal links. In
this manner, all the weights are updated at the end of
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learning cycle and new causal interconnections are
assigned. Moreover, two criteria have been proposed for
the termination of the algorithm and the convergence of
the output concepts within desired values.

The second algorithm, the NHL suppose synchronous
adaptation mode, all the non-zero weights of FCM are
adjusted at the same learning step. These weights are
updated synchronously at each iteration step through Eq.
(15), until the satisfaction of the two proposed error
function that terminates the algorithm. In the case of NHL,
not new interconnections are assigned and the entire initial
zero weights remain.

The AHL and NHL algorithms are problem-dependent
and they use the initial weight matrix. However, both the
processes are independent from the initial values for
concepts and the system’s output concepts manage to
converge in desired equilibrium points for appropriate
learning parameters. Table 2 gathers the main character-
istics and differences between the two learning techniques.

Here, we compare the two proposed learning algorithms
with the swarm-based learning approach, that is the PSO
algorithm, because the PSO algorithm has been proposed
and implemented for the same practical process control
problem (Papageorgiou and Groumpos, 2004). The PSO
algorithm has the advantage of being independent of the
initial concepts values. It takes into consideration all the
initial knowledge suggested by human experts and not only
the initial elements of the weight matrix, and for every
scenario PSO determines appropriate ranges for the non-
zero weights in order to satisfy the requirements. For the
same process problem, PSO algorithm was implemented for
two different scenarios and a large number of appropriate
weight matrices were derived. All the derived weight
matrices drove the output concepts to converge in desired
regions. The algorithm was applied in a search space that is
restricted to certain FCM concepts values and imposes
constrains on the connection matrix, all of which are
specified by domain expert(s). Experimental results have
shown that PSO algorithm can determine optimum ranges
for weight values for specific problems in real domain, in
order to drive the output concepts within desired regions.

Here we compare the proposed learning algorithms with
the genetic-based learning algorithms for FCMs. A recently
proposed genetic algorithm-based learning FCM approach
Table 2

The main differences between the AHL and NHL algorithms

AHL

1 Asynchronous sequence of Activation concepts

2 Asynchronous updating of weights

3 All weights are updated

4 Arise new cause–effect relationships between concepts of FCM

5 Introduction of activation cycle consisting of Activation steps

6 Two criterion functions based on constraints for concepts

7 Exponential attenuation of learning parameters Z, g
(Khan et al., 2004) did not aim to compute the weight
matrix, but rather to find initial state vector and its
usefulness is restricted in real problems’ domain. The
RCGA aims to develop FCM weight matrix (Stach et al.,
2005) and it has been implemented for four different FCM
models with increasing number of nodes and the results
have been promising. The large number of tests which
involve ten cross-validation experiments for FCMs of
varying sizes and densities show the first trial for
optimization of FCM weight matrix, but this method
needs investigation in terms of the sequence of input data
used and the large number of weight matrices produced as
well as its convergence and the determination of its GA
parameters.
Here, it was presented and compared the two proposed

unsupervised weight-learning techniques for FCMs. It is
proved that using the AHL and NHL algorithms we
improve the FCM model and the output concept values
can converge to desired values. With the proposed
procedures the experts suggest the initial weights of the
FCM, and then using these algorithms new weight matrices
are derived, respectively, that can be used for any set of
initial values of concepts.

8. Conclusions

In this paper, two unsupervised weight adaptation
techniques, namely AHL and NHL have been introduced
to fine-tune FCM causal links. These algorithms accom-
pany the good knowledge of a given system or process can
contribute towards the establishment of FCMs as a robust
technique. They update the initial information and experts’
knowledge so that to keep the values of output concepts of
FCM model within desired bounds.
The two proposed unsupervised learning techniques

sustain the following advantageous features:
�
 Strengthen the dynamical behaviour of the FCM model.

�
 Provide the FCM developers with learning parameters

to adjust the influence of concepts and drive the system
in convergence.

�
 Enhances the FCM adaptability and functionality and

effectiveness.

�
 Improves the functional FCM reliability.
NHL

Synchronous triggering and interaction of all concepts

Synchronous updating mode for weights

Only the initially non-zero weights are updated

No new cause–effect relationships between concepts

No cycle, just one step

Two termination conditions for the algorithm

Constant values for learning rate parameter, Z after trial and error

experiments
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These types of learning rules accompanied with the good
knowledge of the given system guarantee the successful
implementation of the proposed processes. Moreover,
these are suitable methodologies for practical applications
as the obtained results can be interpreted and have direct
relation to the successful system operation. They can also
contribute towards the convergence of FCM’s output
concepts in desired regions.

The proposed learning techniques contribute towards
the establishment of FCM as a robust technique, as they
can efficiently update the cause–effect relationships among
FCM concepts and their effectiveness in real problems
have been proved through a number of simulations for
different case studies.

Our future work will concern the improvement of the
proposed learning methods in terms of their computational
complexity and convergence. Furthermore, future work
will be directed towards the investigation of robust
evolutionary FCM learning techniques.
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