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Abstract— Salient muscle activity identification via the 

phasic electromyographic metric (PEM) in human 

polysomnograms/sleep studies (PSGs) represent a potential 

quantitative metric to aid in differentiation between 

neurodegenerative disorder populations and age-matched 

controls. A major impairment to the implementation of PEM 

analysis for clinical assessment of neurodegenerative disorders 

includes the time consuming aspects for both visual and 

automated supervised methods, which require exhaustive 

expert scoring of PEM and non-PEM events. In order to 

surmount the aforementioned concerns, we propose a semi-

supervised classification methodology encased within an easy-

to-use graphical user interface (GUI) utilizing an embedded 

Minimum Description Length (MDL) criterion to automatically 

classify PEM and non-PEM events based on expert labeling of 

a single PEM instance. Results indicate that the application of a 

semi-supervised approach for PEM identification provides an 

excellent option to reduce the labeling burden within current 

human PSG muscle activity identification schemes. 

I. INTRODUCTION 

Identification of salient muscle activity characteristics in 
human polysomnograms /sleep studies (PSGs) via the phasic 
electromyographic metric (PEM) provides a candidate 
quantitative metric to assist in discerning between 
neurodegenerative disorder populations and age-matched 
controls [1]. Despite the potential usefulness of PEM 
detection in assessment of neurodegenerative conditions a 
standardized processing scheme has yet to be widely 
accepted in clinical practice [2]. A major barrier to the usage 
of PEM analysis in clinical practice is attributed to the time 
consuming aspects for current visual and automated 
supervised methods, both based on exhaustive expert scoring 
of PEM and non-PEM events [3]. To decrease the labelling 
burden of the aforementioned methods, in this work, we 
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propose the implementation of a semi-supervised 
classification methodology.   

In our previous works [3]-[5], the EMG signal was parsed 
using a one second non-overlapping moving window for the 
extraction of features capable to characterize segments 
containing relevant muscle activity. Therefore, candidate 
PEM events were obtained from all EMG signals. Finally, a 
supervised classification scheme was implemented to assign 
candidate PEM events to the PEM or non-PEM class. 

Although the aforementioned works documented an 
enhanced streamlined approach for PEM scoring, compared 
to visual labelling our current software tool includes a major 
drawback impairing immediate translation from research 
application to clinical usage. More specifically, our selection 
of a supervised method to classify candidate PEM events 
relied upon the robustness of the selected training data. Thus 
the performance efficiency of our method depended upon the 
amount of available labelled data. Furthermore, labelled data 
is often hard to obtain, expensive, and may frequently require 
exhaustive human intervention. However, an intermediate 
exists between Supervised Learning and Unsupervised 
Learning which is known as Semi-Supervised Learning 
(SSL) [6]. More importantly, human intervention is 
significantly reduced in SSL compared to Supervised 
Learning being that fewer events of interest are required for 
labelling and more unlabeled instances are accommodated.  

Therefore, to build upon our previous findings we extend 
our work, [7] and [3], based upon the approach proposed in 
[8] with a subtle modification, described in the next section. 
However, unlike our previous framework, which required the 
user to select multiple training events, this revised approach 
consists of labelling only a single true PEM event that is 
utilized to detect unlabeled PEM events. Next, we run a 
stopping criterion using a Minimum Description Length 
(MDL) ([9], [10]) scheme to classify all unlabeled data as 
PEM or non-PEM events. Implementation of the MDL within 
our revised methodology ensures a more robust PEM scoring 
scheme. Furthermore, the user/expert has the option to accept 
or disagree/revise any annotations our software proposes. 
This allows for quick parsing of the signal and immediate 
correction of possible misclassifications. Finally, the user 
also has the option to add PEM events, to the final annotation 
set, that were left undetected by our software. 

The rest of the paper is structured as follows: Section II 
delineates the data collection procedure and processing 
methods. Section III summarizes our preliminary results, 
while Section IV concludes the paper along with providing 
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some guidelines for future research and potential 
improvements. 

II. MATERIALS AND METHODS 

A. Data Collection 

Data sets utilized in this study were obtained in 
compliance with Institutional Review Board (IRB) guidelines 
established by Emory University (Atlanta, Georgia, USA) 
and sanctioned by the approved IRB00024934 protocol. 
Polysomnogram (PSG) data were recorded using an Embla 
Model N7000 (MedCare, Bloomfield, CO) data acquisition 
unit outfitted with the software program Somnologica® 2.0. 
PSG records were exported from Somnologica into .edf 
format for EMG processing. The numerical computing 
program MATLAB (MathWorks© version 8.4.0 R2014b) 
was used to adapt the biosig toolbox version 2.93 [11] for 
conversion of all edf files into a .mat format, with a sampling 
rate of 200 Hz. Pre-processing included the manual removal 
of artifacts/spurious events from the final data set. 

B. Brief Description of the Tool 

 

Figure 1.  Flowchart of the PEM Scoring tool. 

Our approach consists of the following steps:  

i) The user must provide a PEM event,  

ii) the signal is parsed using a one second window,  

iii) for each window the bag-of-words representation is 
computed with the help of Symbolic Aggregate 
approXimation (SAX) method 

iv) the list of PEM events is computed and  

v) Post-processing/Expert feedback to correct/remove 
misclassifications of PEM and Non-PEM events. 

The flowchart of the proposed PEM annotator is depicted in 
Fig. 1, while a descriptive video is provided in 
(https://www.youtube.com/watch?v=kTTKq0xYoTM) in 
order to understand the use of the tool. Fig. 2a depicts a 
screenshot of the developed GUI, while Fig. 2b depicts the 
spectrum of the specific PEM event.  

 

Figure 2.  PEM annotator screenshot of the right leg EMG data from S002. 

The PEM event is demarcated by the red arrow. 

C The Hypothesis & Signal Parsing 

The cornerstone of the proposed method is that the user 
selects one PEM event. Pressing the “Provide Hypothesis” 
button, in the GUI annotator, the user can parse the signal 
quickly and find one PEM event using the mouse. The 

sample hx  which is closer to the point the user clicked is 

identified. Then a window of size of 200 points (one second 

long window) is defined centered at the point hx . After the 

extraction of the window containing the PEM event, the bag-
of-words representation for this window is computed. 

D. Bag–of-Words Computation 

One of the most well know methods to transform a time 
series into a symbolic string is the Symbolic Aggregate 
approXimation (SAX) method [12]. Given a real valued 

signal of N  samples the SAX method produces a lower 

dimensional discrete representation of the original signal. 
However, two parameters need to be estimated: the size of 

the alphabet to use (i.e. A ) and the size of the words to 
produce (i.e. w ). The algorithm first normalizes the data and 

thus create a Piecewise Aggregate Approximation (PAA) 
representation [13], [14].  

PAA transforms the original signal into a user defined 
number of segments. A signal X  of length N  can be 

represented in a n -dimensional space by a 
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vector 1, , nX x x . The i -th element of X  is calculated as 

follows: 

   
( 1) 1
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  

   (1) 

First the signal is normalized to have zero mean and 
standard deviation equal to zero. Then, equal sized windows 
( n ) are used in order to reduce the time series from N  

dimensions to n  dimensions. The mean value of the data 

falling within a frame is extracted and a vector of these 
values becomes the data-reduced representation. An example 
of the PAA of a time series is shown in Fig. 3. 
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Figure 3.  The PAA representation of a signal  

of length N=200 with n =50. 

The normalization of the EMG signal results in an output 
that follows a Gaussian distribution from which breakpoints 
are selected such that equal sized areas under the Gaussian 
curve are obtained [15]. Finally, discrete signal representation 
is obtained using the following guidelines: 

i) all the PAA coefficients which are smaller than the 

smallest break point are transformed to the 

symbol a 

ii) all the PAA coefficients which are bigger or equal to 

the smallest break point and are smaller than the 

second smallest break point transformed to the 

symbol b 

iii) all the PAA coefficients which are bigger to the 

second smallest break point and are smaller than 

the third smallest break point are transformed to 

the symbol c 

iv) All the PAA coefficients which are bigger than or 

equal to the third smallest break point and are 

smaller than the fourth smallest break point 

transformed to the symbol d 

v) Etc. 

 

Figure 4.   The discretization of the time series depicted in Fig. 3 using an 

alphabet of length 4 ( 4A ). 

Fig. 4 depicts the process described above for the signal 
displayed in Fig. 3, after the PAA transformation the 
parameters are set to 200N   and 50n  , and the time 

series is mapped to the string: 

bbbbbbbbbbbbbbbbbbccbbbdabcccccccccccbbbcccbbbbbbbXSAX   (2) 

After the computation of the SAX representation we have 
to transform the SAX string into the word-sequence matrix 
[16]. Given the size of the alphabet and the size of the words 

A  and w  respectively, the possible SAX words that can be 

produced are 
wA . For example, for 4A   and 2w  , our 

dictionary size is only 16. In [16] it has been shown 

experimentally that the choice of A  does not critically affect 
the performance and a value of 3 or 4 works well for most 
time series. 

The first attempt to map the sequence of letters into a 
bag–of-words representation would be to count the 
frequency of each letter. This can be extended by counting 
the frequency of words of length two etc. We can continue 
this process until the desired word length w . Thus from 

each one second window we compute the bag-of-words 
representation of each extracted SAX word. This is shown in 
Fig. 5. 

 

C.  PEM event detection 

Only a single PEM event is required as the initial training 
set. During the detection of the PEM events, the whole set 
will be increased by more PEMs as the algorithm parses the 
signal. In the original proposal [8], each time series (each 
time segment in our case) would have been represented using 
SAX. However, because time invariance of PEM event 
occurrence within a time segment is important we adopt 
instead of the SAX representation the bag-of-words 
representation. 
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Figure 5.  The bag-of-words computation for a PEM signal. 

Therefore, the single labelled PEM bag-of-words 
representation which is called hypothesis ( Hs ), will be 

considered as our model. If an unlabeled instance is very 
similar (considering a distance function) to Hs, its probability 
to be a PEM event will be high. However, the following 
method presents a significant disadvantage: without a 
stopping criterion the method will add all the unlabelled 
events to the PEM events set. 

Let us define the Description Length (
LD ) of a bag-of-

words representation, Words , to be the total numbers of bits 

required for encoding: 

  
2( ) log (Card)LD Words L  , (3) 

where L is the length of the representation and Card  is the 

cardinality of the time series, we can define the Reduced 

Description Length of Words  given hypothesis Hs , 

(Words | Hs)LD , as the sum of the number of bits needed to 

encode Words  and the number of bits required for Hs  

itself, ( )LD Hs : 

 (Words,Hs) (Hs) (Words | Hs)L L LD D D  , (4) 

The candidate events are labelled as PEM events as long 
as a compression reduction is achieved. Therefore, we encode 
the candidate event in terms of the hypothesis keeping the 
rest of the candidate events uncompressed as described here: 

(Words,Hs) (Hs) (Words | Hs) (uncompressed)L L L LD D D D   , (5) 

So as long we achieve compression, 

( ) ( | ) 0L LD Words D Words Hs  , we continue adding 

candidate events to the PEM events set. 

The following 3 step procedure summarizes our 
algorithm:  

i) The nearest neighbor of any instance of our training 

set, which has not yet been labelled, is found. 

ii) This unlabeled instance, is added to the training set.  

iii) Repeat i) and ii) as long as 

( ) ( | ) 0L LD Words D Words Hs  . 

The user/expert can set all the SAX parameters and the 
cardinality of the bag-of-words representation (alphabet, 
word length and cardinality) using the GUI as it is shown in 
Fig. 6. 

 

Figure 6.   Screen shot of toolbox, in annotation GUI, for setting SAX 

parameters . 

F. Post-processing 

The user/scorer can use the post processing module to 
access the PEM events visually and manually correct any 
automated misclassifications, from the previous step as 
shown in Fig. 7. 

 

Figure 7.  The post processing module of the GUI. 

III. RESULTS 

In order to conduct preliminary validation of the proposed 

approach for PEM annotation, the algorithm was tested on 

one EMG leg signal coming from a single subject. Table I 

contains a summary of PEM and non-PEM event 

classifications obtained using our approach, outlined in 

section II, where the golden-standard is visual/manual expert 

scoring [7]. 
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TABLE I.   CONFUSION MATRIX. 

 
True Class 

PEM  Non-PEM 
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PEM 18 30 

Non-
PEM 

20 801 

 

Fig. 8 illustrates the reduction in the description length of 
PEM events coming from the aforementioned single subject’s 
dataset. 
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Figure 8.   A plot of the reduction in description length with respect to 

using our algorithm for a single subject’s PEM dataset. 

IV. CONCLUSIONS 

In this work we presented a semi supervised method for 
annotation of PEM using the bag-of-words representation of 
time series.  

The novelty of the proposed approach stems from the 
fact that only one training sample is needed. Furthermore, 
the proposed approach relies on a modification of the 
approach proposed in [8]. In our case the MDL technique is 
not applied on the SAX representation, but on the bag-of-
words representation which allows for time invariance in the 
occurrence of the PEM pattern.  

Our preliminary results can be considered promising but 
further tuning of the method is needed using also data from 
more than one subjects. In future research we plan to test 
also an ensemble based approach allowing for the 
combination of different representations such as those 
relying on Fast Fourier Transform (FFT) [17], as well as 
accommodation for multiple training samples acting as 
“seeds” to the algorithm. 
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