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This paper examines fuzzy cognitive map (FCM) theory and its use in supervisory control
systems. An FCM is a graph used to depict cause and e�ect between concepts that stand for
the states and variables of the system. An FCM represents the whole system in a symbolic

manner, just as humans have stored the operation of the system in their brains, thus it is
possible to help man's intention for more intelligent and autonomous systems. FCM repre-
sentation, construction and a mathematical model are examined; a generic system is proposed

and the implementation of FCM in a process control problem is illustrated and a model for
supervisors of manufacturing systems is discussed. Although an FCM seems to be a simple
model of system behaviour, it appears to be a powerful and e�ective tool describing the
behaviour of a system and representing the accumulated knowledge of a system.
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1. Introduction

The challenge of using FCMs to model the upper part or
supervisor of a process or plant is investigated. A brief
discussion will denote the growing interest of scientists in
the application of FCMs, then the structure and the con-
struction of an FCM will be examined: it will be described
as a generic system in which the supervisor is modelled as
the FCM, and the ability of FCM to control a simple
practical process will be shown. Finally, the implementa-
tion of FCMs as a model of the supervisor of a manufac-
turing system is proposed.

FCM theory developed recently (Kosko, 1986) as an
expansion of cognitive maps that had been employed to
represent social scienti®c knowledge (Axelrod, 1976), to
make decision analysis (Zhang et al., 1989) and to analyse
extend graph±theoretic behaviour (Zhang and Chen, 1988).
FCMs have been used for planning and making decisions
in the ®elds of international relations, in modelling political
developments and social systems (Taber, 1991, 1994) in
administrative science, in management science, in opera-
tions research and organizational behaviour (Craiger and
Coovert, 1994; Craiger et al., 1996). Styblinski and Meyer
(1991) have used FCMs to analyse electrical circuits, and
Dickerson and Kosko (1994) have used FCMs to structure
virtual worlds. From a di�erent point of view, FCMs have
been used by Gotoh et al. (1989) to model plant control

and we have proposed the application (Stylios et al., 1997)
of FCMs in the modelling of supervisors.

The purpose of this paper is to represent the construction
of a knowledge-based supervisory control system with a
FCM. In this FCM, the knowledge and experience that the
human operator has gathered on the operation of a com-
plex plant will be depicted. FCMs lie in some sense between
fuzzy logic (e�cient in representing heuristic, common-
sense rules) and neural networks (e�cient at learning
heuristics from data). This may increase the intelligence of
the system; as the more intelligent a system becomes, the
more symbolic and fuzzy representation is used.

2. Fuzzy cognitive maps

An FCM is a methodology for representing the behaviour
of models and it is a combination of fuzzy logic and neural
networks (Kosko, 1986, 1992). An FCM describes the be-
haviour of a system in terms of `concepts' and e�ects
among concepts. An FCM (Fig. 1) is a fuzzy signed di-
rected graph with feedback, where nodes of the graph
represent concepts or elements that comprise the model
and are connected by signed and weighted arcs represent-
ing the causal relationships that exist among concepts. An
FCM is a fuzzy-graph structure that exhibits desirable
properties, has the ability to specify any model of any
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complexity, shows linear or non-linear relations and allows
causal propagation, in particular forward and backward
chaining.

Each node-concept represents one of the key-factors of
the described system; in general it stands for states, vari-
ables, events, actions, goals and trends of the system. Each
concept is characterized by a number, Ai, that represents its
value and it results from the transformation of the real
value of the system's variable, for which, this concept
stands, in the interval [0, )1]. For the real system, rela-
tionships among its characteristics are considered in order
to describe its behaviour; how and which factor in¯uences
others? It must be mentioned that all values in the graph
are fuzzy, so weights of the arcs take values in the interval
[)1, 1]. Thus, there are three possible types of causal re-
lationship between concept Ci and concept Cj according to
the sign of the arc:

(1) Wij > 0 indicates positive causality between concept
Ci and concept Cj ± this means that an increase in the value
of concept Ci leads to an increase of the value of concept Cj

and vice versa;
(2) Wij < 0 indicates negative causality between concept

Ci and concept Cj ± this means that an increase in the value
of concept Ci leads to a decrease of the value of concept Cj

and a decrease of the value of concept Ci leads to an in-
crease of the value of concept Cj; and

(3) Wij � 0 indicates no relationship between concept Ci

and Cj.

The strength of Wij indicates how strongly concept Ci in-
¯uences concept Cj. The sign of Wij indicates whether the
relationship between concepts Ci and Cj is direct or in-
verse. The direction of causality indicates whether concept
Ci causes concept Cj, or vice versa. These three parameters
have to be considered when assigning a value to Wij.

An FCM is not only graphically described, but mathe-
matically, using vectors and matrices. It uses an 1� n state
vector A, which gathers the values of each one of the n
concepts and an n� n edge matrix, F. Each element, eij of
the matrix, F, represents the value of the relationship, Wij,
between concept Ci and Cj. The matrix F has n rows and n

columns, where n equals the total number of distinct con-
cepts used by experts to construct the FCM and the matrix
diagonal is zero because it is assumed that no concept can
cause itself.

The value Ai for each concept Ci is calculated by the
following rule:

Ai � f
Xn

j�1; j6�i

AjWji

 !
�1�

Ai is the value of concept Ci at time t + 1, Aj is the value of
concept Cj at time, t, and Wji is the weight arc from Cj to Ci

and f is a threshold function that transforms the result of
the multiplication in the interval [0, 1] where concepts take
values.

A more general and compact mathematical model for
FCMs is presented by the following equation:

Anew � Aold � F �2�
So, Equation 2 computes the new state vector, A, that re-
sults from the multiplication of the old, at time, t, state
vector A, by the edge matrix, F. The new state vector holds
the new values of the concepts after interaction among
concepts of the map. The interaction was caused by a
change in the value of one or more concepts.

Values of each one of the concepts of the FCM belong in
the range [0, 1] based upon expert opinion for the current
state, and then the concepts are free to interact. In each
step of the interaction the new state vector, A, is computed
according to Equation 2; and this interaction, after a
number of steps, would lend FCMs in:

(1) a ®xed equilibrium point;
(2) a limited cycle; and
(3) chaotic behaviour.

An FCM represents the human knowledge on the opera-
tion of the system, so in order to build a map one expert is
asked to draw an FCM according to his/her experience.
With this procedure, concepts are determined; one expert
knows the factors that in¯uence the behaviour of the sys-
tem, each one of these factors is represented by a concept
on the FCM. Moreover, the expert has observed which
elements of the system in¯uence the other elements; for
corresponding concepts the expert determines the negative
or positive e�ect of one concept on the others, with a fuzzy
degree of causation.

It is possible to exploit the experience of a group of
operators and experts on the operational behaviour of the
system. First of all, experts are pooled and they determine
the relevant factors that should be present on the map as
concepts. Then, experts are individually asked to express
the relationships that exist among these concepts±factors.
In this manner, a collection of individual FCMs is con-
structed and it must be combined into one collective map.
If it is considered that some of the experts are more or less

Fig. 1. A fuzzy cognitive map.
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knowledgeable about the operation of the system, di�erent
credibility factors must be applied for each expert. So,
there are experts with varying credibility, whose maps are
multiplied by a non-negative `credibility' weight, bi, before
combining them with other experts' constructions. If there
is an expert who is extremely knowledgeable about certain
parts of the system and not others, or someone else who
does not have a very good knowledge on some parts of the
system, di�erent credibility weights have to be posed on
di�erent links of the FCM. Thus, the construction of a
consummate FCM demands the determination of the
credibility weights: the matrix, F, of the whole FCM is
constructed by adding the matrices Fi, of various FCMs:

F �
XN

1

biFi �3�

where F is the whole FCM, bi is the credibility weight for
the ith expert and Fi is the weight matrix of the FCM of ith
expert, and N is the number of experts.

An FCM is able to manage and model systems of un-
limited complexity with an unlimited number of concepts
and with feedback causal relations among concepts. It
avoids many of the knowledge-extraction problems that
are usually posed by rule-based systems and it is e�cient in
modelling, managing and controlling any complex system.

3. The generic system

From the previous discussion, the FCM will be used as the
process model in the upper level of a process. So a generic
model is proposed, which is depicted in Fig. 2, that can be
used for any technological process or complex system.

The proposed model consists of three levels:

(1) the lower level ± this is the physical system of com-
plementary devices that measure the variables of the pro-
cess and can actuate the process;

(2) the middle level ± this constitutes the interface be-
tween the physical process and the supervisor;

(3) the upper level ± is the supervisor of the system, i.e.
the FCM.

The FCM in Fig. 2 is constructed by the method described
in the previous section. An expert who knows the operation
of the process, draws an FCM, and determines the con-
cepts and the relationships among them that re¯ect the
operation of the process. So this FCM will contain some
human knowledge of the modelling, behaviour and oper-
ation of the complex lower-level system and this is depicted
in the upper level by the expert item that in¯uences the
FCM. After primitive construction, the FCM can be re-
®ned using training methods, based on unsupervised neural
networks and learning algorithms (Kosko, 1986, 1992), i.e.
the Hebbian learning algorithm. During the learning peri-
od, the weights of the interconnections will be adjusted
according to existing measurements and data on the op-
eration of the system, and then a more integrated FCM,
will have been constructed.

After the construction and training of the supervisor, the
FCM concepts take their initial values and the operation of
the system starts. In the lower level, sensors measure the
variables of the process and this information passes to the
middle level; at this stage, the information is organized,
clustered and transformed into FCM terms; then, it passes
into the FCM, which lies in the upper level. This new in-
formation causes changes in the values of one or more
concepts, then the FCM concepts interact and an equilib-
rium point is reached. So, there are new values to concepts,
which means new values for some variables of the system.
The new values must pass to the process level and so, in the
middle level of the interface the reverse procedure is fol-
lowed; values of concept are transformed in suitable output
information, are categorized, cause control signals and
in¯uence the process through the actuators.

4. Practical process control problem

In this section, a well known problem from the process
industry is utilized to show how an FCM is constructed,
concepts are chosen and values are assigned to the inter-
connections between concepts. This FCM will be used to
control the process, and for this example it is not equipped
with the advanced characteristics that a supervisor has.

The process considered (Fig. 3) consists of one tank and
three valves that in¯uence the amount of liquid in the tank.
Valves 1 and 2 empty two di�erent kinds of liquid into the
tank; during mixing of the two liquids a chemical reaction
takes place in the tank. In the tank there is an instrumentFig. 2. A general model of the plant.
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that measures the speci®c gravity of the liquid that is
produced during the mixing: when the measured speci®c
gravity lies in a speci®ed range between Gmax and Gmin,
then a liquid of desired chemical composition is produced
in the tank. Moreover, a limit is placed on the height of the
liquid in the tank, which cannot exceed an upper limit,
Hmax, and a lower limit, Hmin. So, the control target has to
keep these variables in the middle of their range of values:

Gmin � G � Gmax

Hmin � H � Hmax

�4�

In order to construct an FCM that will model and control
this simple system, the concepts of the map must be de-
termined. The concepts represent the variables and states
of the plant as it is at the height of the liquid in the tank, or
the state of the valve. So a primitive FCM will have ®ve
concepts and later any new concept that will help our view
and control of the system can be added:

(1) Concept 1 ± the amount of the liquid that Tank 1
contains is dependent on the operational state of Valves 1,
2 and 3;

(2) Concept 2 ± the state of Valve 1 (it is closed, open or
partially opened);

(3) Concept 3 ± the state of Valve 2 (it is closed, open or
partially opened);

(4) Concept 4 ± the state of Valve 3 (it is closed, open or
partially opened); and

(5) Concept 5 ± the reading on the speci®c gravity in-
strument.

After having selected the concepts that can represent the
model of the system and its operational behaviour, the
interconnections between concepts must be decided. At
®rst, it is decided for each concept to which another con-
cept is connected. Then, the sign and weight of each con-
nection is determined. This procedure is done by a
specialist who has experience of the system's operation; or
for better results, FCMs could be trained with an unsu-
pervised method.

The connections between concepts are:

� Event 1 ± connects Concept 2 (Valve 1) with Concept 1
(Valve 1 causes the increase, or not, of the
amount of liquid in the tank, i.e. Concept 1);

� Event 2 ± relates Concept 3 (Valve 2) with Concept 1 (it
relates the state of Valve 2 with the amount
of liquid in the tank;

� Event 3 ± connects Concept 4 (Valve 3) with Concept 1
(the state of Valve 3 causes the decrease, or
not, of the amount of liquid in the tank;

� Event 4 ± relates Concept 1 with Concept 2 (when the
height of the liquid in the tank is high, Valve
1, i.e. Concept 2, needs closing and so the
amount of incoming liquid into the tank is
reduced);

� Event 5 ± connects Concept 1 (tank) with Concept 3
(when the height of the liquid in the tank is
high, the closing of Valve 2, i.e. Concept 3,
reduces the amount of incoming liquid);

� Event 6 ± connects Concept 5 (the speci®c gravity) with
Concept 4 (Valve 3) (when the speci®c
gravity of the liquid in the tank takes a value,
Valve 3 is opened and the liquid produced
continues to another process);

� Event 7 ± shows the e�ect of Concept 1 (tank) on
Concept 5 (speci®c gravity), when the
amount of liquid in the tank is varied, this
in¯uences the value of the speci®c gravity of
the liquid; and

� Event 8 ± relates Concept 5 (speci®c gravity) with
Concept 2 (Valve 1), when the speci®c grav-
ity is very low then Valve 1 (Concept 2) is
opened and liquid from this source comes
into the tank.

It is obvious that the FCM permits the addition or removal
of any concept if this improves the system's description
and, furthermore, the addition or removal of any connec-
tion between the concepts that describe the system. This is
a very useful ability that will help the designer of a system
to evaluate the in¯uence of a process on some of the
characteristics of a system.

Figure 4 shows the FCM that is used to describe and
control this simple system, the initial value of each concept,

Fig. 3. The illustration of a simple process.

Fig. 4. The initial FCM, with the ®rst values for the concepts.
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the interconnections and the weights between concepts.
The values of the concepts correspond with the real mea-
surements of physical magnitude. The values of each event
(connection between concepts) have been arbitrarily de-
termined after observation of the changes in the real ex-
perimental system, by the specialist who designed the map.

Each concept has a value that ranges between [0, 1] and
it is obtained after thresholding the real value of the con-
cept. It is apparent that an interface is needed, which will
transform the real measures of the system to their repre-
sentative values in the FCM and vice versa. It should be
mentioned that the transformation from the real values of
the physical measurements to the values of the concepts,
needs investigation and must take into consideration the
actual mechanisms depicted in the FCM.

At each running step of the FCM, the values of the
concepts are calculated according to Equation 1. The value
of each concept is de®ned by taking all the causal event
weights pointing into this concept and multiplying each
weight by the value of the concept that causes the event.
Then the sigmoid function is used and so the result is in the
range [0, 1].

The weights of the interconnections are considered ®xed
and then the FCM interacts for the ®rst initial values.
Figure 5 shows the FCM after six running cycles; it must
be mentioned that each running cycle holds for a time unit.
It can be seen that after only four running cycles, the FCM
reaches a ®xed point. In Table 1 the value of each concept
for the ®rst ®ve cycles is represented.

5. Supervisor of manufacturing systems modelled
as an FCM

Manufacturing systems are complex systems for which it is
impractical and impossible to construct a realistic mathe-
matical model. For such systems, the human operator of-
fers supervisory intelligent control through the use of an
imprecise and robust control methodology. The FCM is a

symbolic representation for the description and modelling
of complex systems, describing di�erent aspects in the be-
haviour of complex systems in terms of concepts; interac-
tion among concepts shows the dynamics of a system.

For the modelling of a manufacturing control system, a
two-level approach is proposed in order to achieve a more
sophisticated manufacturing system. On the lower level
conventional control methodologies are used, and in the
upper level lies an `intelligent supervisor' that attempts to
emulate a human control capacity using an FCM.

Figure 6 depicts the two-level hierarchy that is used to
model a general manufacturing system. Each machine-
process on the lower level has its own local controller that
performs usual control actions. The supervisor is used for
more generic purposes: to organize all the machines in
order to accomplish a task, to help the operator make
decisions, to plan strategically and to detect and analyse
failure.

The control problem that is illustrated in the previous
section can be improved if this two-level structure is con-
sidered. In the lower level of the structure will lie the FCM
that has just been constructed, which will play the role of a
conventional controller and will re¯ect the process model
during normal operational conditions. In the upper level, a
supervisory FCM will include advanced features such as
fault diagnosis, e�ect and cause analyses (Pelaez and
Bowles, 1995, 1996), prediction capabilities, decision
analysis, and strategic planning. The FCM will consist of
concepts that stand for the irregular operation of some
elements of the system, for failure mode variables, for
failure e�ects variables, for failure cause variables, severity
of e�ects, design variables. The construction of a map will
be based on the operator's heuristic knowledge about
alarms, faults, what are their causes, and when will they
happen. Moreover, this FCM will include concepts for
description and determination of a speci®c operation of the
system, or other qualitative preferences for the planning
and scheduling of the process. In this FCM, analysis can be
implemented of the data coming from the lower level,
which will represent vital components of the plant, de-
tecting features that re¯ect the operational state of the
plant. To draw this FCM, the integration of several expert
opinions will be needed in order to achieve its diagnosis
and predictive task, which is extremely di�cult.Fig. 5. The FCM after six running cycles.

Table 1. The values of FCM concepts for the ®rst six running
cycles

Tank Gauger Valve 1 Valve 2 Valve 3

1 0,10 0,01 0,45 0,39 0,04
2 0,57 0,51 0,49 0,49 0,50
3 0,49 0,54 0,52 0,46 0.54
4 0,48 0,54 0,53 0,47 0,54

5 0,48 0,54 0,53 0,47 0,54
6 0,48 0,54 0,53 0,47 0,54
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The most important use of an FCM is for supervisory
control of a conventional control element, thus comple-
menting rather than replacing a conventional controller. In
this case, the role of the FCM is to extend the range of
application of a conventional controller by using a more
abstract representation of the process, general control
knowledge and adaptational heuristics, and to enhance the
performance of the whole system. Thus, the FCM may
replicate some of the knowledge and skills of the control
engineer and it is built using a combination of knowledge
representation techniques as causal models, production
rules and object hierarchies and it is used to perform more
demanding procedures such as failure detection, decision
making and planning (tasks usually performed by a human
supervisor of the controlled process).

6. Conclusions

In this paper a new methodology, an FCM, for modelling
the supervisor of a complex control system has been pre-
sented. The paper has examined the presentation and
construction of an FCM and a generic system has been
proposed for modelling complex systems. An FCM has
been implemented in a simple process control problem that
makes apparent the qualities and characteristics of the
method. It has been observed how simply an FCM de-
scribes a system's behaviour and its ¯exibility in any
change of the system. A more integrated approach, i.e. a
two-level structure, where the FCM in the upper level is
used for more sophisticated supervisory control of manu-
facturing systems, has been proposed.

An FCM provides accessible modelling of a system's
operation and it best exploits man's knowledge on the
operation and behaviour of the system. For complex sys-
tems it is not easy, sometimes it is impossible, to construct
a precise mathematical model and it is more useful to
model it, in a symbolic manner, which may lend to more
e�cient autonomous and intelligent systems. After this
presentation, an FCM seems to be a prospective method in
the description of the supervisor of complex control sys-
tems, which can be teamed up with other methods and will
lead to next-generation manufacturing systems.
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