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174 Intelligent and Adaptive Systems in Medicine

6.1 Introduction_

Radiotherapy is the clinical and technological endeavor devoted to cure
patients suffering from cancer (and other diseases) using ionizing radiation,
alone or combined with other modalities. The aim of radiation therapy is to
design and perform a treatment plan for how to deliver a precisely measured
dose of radiation to the defined tumor volume with as minimal damage as
possible to the surrounding healthy tissue. Successful radiation treatment
results in eradication of the tumor, thus high quality of patient’s life, and
prolongation of survival at a reasonable cost.

The implementation and clinical practice of irradiation is a complex pro-
cess that involves many professionals who have to take into account a variety
of interrelated measurements, tasks, functions, and procedures. Profession-
als while determining the treatment of a patient have to know how this par-
ticular tumor will be destroyed and how the surrounding healthy tissue is
likely to be adversely affected by the applied radiation dose. A large number
of parameters—factors (medical and technological), which are complemen-
tary, similar, and conflicting, are taken into consideration when the radia-
tion treatment procedure is designed. Each factor has a different degree of
importance in determining (or influencing) the dose and all factors together
determine the success of the therapy [1]. :

Experts determine the radiation treatment planning taking into consid-
eration a variety of parameters—factors. The number, nature, and charac-
teristics of factors increase the complexity of the procedure and require
the implementation of an advanced technique similar to human reasoning,
such as the soft-computing modeling technique of fuzzy cognitive maps
(FCMs) [2].

Till today, many approaches and methodologies, algorithms, and math-
ematical tools have been proposed and used for optimizing radiation ther-
apy treatment plans [34]. Dose-calculation algorithms [5,6], dose—volume
feasibility search algorithms [7], and biological-objective algorithms have
been utilized [8]. Dose distributions have been calculated for the treatment
planning systems, satisfying objective criteria and dose—-volume constraints [4].
Some algorithms have been proposed for optimizing beam weights and |
beam directions to improve radiotherapy treatment [9]. Moreover, steepest- |
descent methods and gradient-descent methods have been used to optimize
the objective functions, based on biological or physical indices, and have
been employed for optimizing intensity distributions [10,11]. Dose—volume
histograms analyses the resultant dose distributions, which appears to
indicate some merit [12]. Furthermore, methods related to knowledge-based
expert systems and neural networks have been proposed for optimizing the
treatment variables and developing decision-support systems for radiother-
apy planning [13,14]. Much scientific efforts have been made to optimize
treatment variables and dose distributions. Toward this direction, there is
still a need for a flexible, efficient, and adaptive tool based on an abstract
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cognitive model, which will be used for clinical practice simulation and
decision making [15,16,17].

The complexity and the vagueness of the decision-making process for
radiotherapy treatment planning may be handled with soft-computing
methods [18]. FCMs is a soft computing technique that incorporates ideas
from artificial neural networks (ANNs) and fuzzy logic (FL). Their advan-
tageous modeling features are the flexibility in system design, model, and
control; the comprehensive operation; and the abstractive representation of
complex systems. We propose the use of FCMs to create a dynamic model
for estimating the final dose delivered to the target volume and normal
tissues with the ability to evaluate the success of radiotherapy. FCMs have
been used to model complex systems that involve discipline and different
factors, states, variables, and events. FCMs can integrate and include the
partial influence or controversial factors and characteristics in the decision-
making problem [18]. The main advantage of implementing FCM in this
area is that they can take under consideration causal effect among factors
in recalculating the value of concepts that determine the radiation dose,
keeping it in a minimum level and at the same time having the best result
in destroying tumor with minimum injuries to healthy tissues and organs
at risk. This is in accordance with the main goal of any radiation therapy
treatment planning [1,19,20].

A decision system based on human knowledge and experience is proposed
and developed here, having a two-level hierarchical structure with an FCM
in each level, which creates an advanced decision-making system. The lower
level FCM models the treatment planning taking into consideration all the
factors and treatment variables and their influences. The upper level FCM
models the procedure of the treatment execution and calculates the opti-
mal final dose for radiation treatment. The upper level FCM supervises and
evaluates the whole radiation therapy process. Thus, the proposed two-level
integrated structure for supervising the procedure before treatment execu-
tion seems a rather realistic approach to the complex decision-making pro-
cess in radiation therapy [21].

6.2 Soft Computing Techniques for Decision Making

Soft computing differs from conventional (hard) computing. It is tolerant
to imprecision, uncertainty, partial truth, and approximation. In effect, the
role model for soft computing is the human mind. The principle of soft com-
puting is to exploit the tolerance for imprecision, uncertainty, partial truth,
and approximation to achieve tractability and robustness. Soft computing
can be seen as a combination and contribution of FL, neural computing
(NC), evolutionary computation (EC), machine learning (ML), and proba-
bilistic reasoning (PR), with the latter subsuming belief networks, chaos
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theory, and parts of learning theory [22-24]. Soft computing can be seen
as a partnership where every partner contributes discipline and different
methodologies for addressing problems in its domain. In this perspective,
the constituent methodologies of soft computing are complementary rather
than competitive.

However, it is widely accepted that complex real-world problems require
intelligent methods that combine knowledge, techniques, and methodolo-
gies from various sources and areas. Intelligent systems are desired to pos-
sess humanlike expertise within a specific domain, adapt themselves and
learn to do better in changing environments, and explain how they make
decisions or take actions. In confronting real-world computing problems, it
is frequently advantageous to use several computing techniques synergis-
tically rather than exclusively, resulting in construction of complementary
hybrid intelligent systems.

The synergism allows soft computing to incorporate human knowledge
effectively, deal with imprecision and uncertainty, and learns to adapt to
unknown or changing environment for better performance. For learning
and adapting, soft computing requires extensive computation. In this sense,
soft computing shares the same characteristics as computational intelli-
gence. Soft computing applications have been used in different areas: diag-
nostics in medicine, cluster analysis, discriminant analysis, and pattern
recognition [25-29].

6.2.1 Description of Fuzzy Cognitive Maps

FCMs have their roots in graph theory. Axelord first used signed digraphs to
represent the assertions of information [30]. He adopted the term “cognitive
map” for these graphed causal relationships among variables as defined and
described by people. The term “fuzzy cognitive map” was coined by Kosko [2].
An FCM model has two significant characteristics.

Causal relationships between nodes are fuzzy numbers. Instead of only
using signs to indicate positive or negative causality, a weight is associated
with the relationship to express the degree of relationship between two
concepts.

The system is dynamic, permitting feedback, where the effect of change
in one concept affects other concepts, which in turn can affect the concept
initiating the change; the presence of feedback adds a temporal aspect to the
operation of the FCM.

Concepts of FCM model reflect attributes, characteristics, qualities, quan-
tities, and senses of the system. Interconnections among concepts of FCM
signify the cause and effect relationships among concepts. These weighted
interconnections represent the direction and degree with which concepts
influence the value of the interconnected concepts. Figure 6.1 illustrates a
graphical representation of an FCM model. ‘

The cause and effect interconnection between two ordered nodes C; and C;
is described with the weight Wiy which takes a value in the range —1 to 1.
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FIGURE 6.1
A simple FCM.

There are three possible types of causal relationships between concepts:

* w; > 0, which indicates positive causality between concepts C;and C;.
That is, the increase (decrease) in the value of C;leads to the i 1ncrease
(decrease) in the value of C..

* w; <0, which indicates negative causality between concepts C;and C;.
That is, the increase (decrease) in the value of C, leads to the decrease
(increase) in the value of C..

* w; = 0, which indicates no relationship between C; and C,.

Human knowledge and experience on the system are reflected, due to the
FCM development procedure on the type and the number of concepts, as
well as the initial weights of the FCM. The value A; of concept C; expresses
the quantity of its corresponding physical value and is derived by the trans-
formation of the fuzzy physical values to numerical ones.

FCM is used to model and simulate the behavior of any system. At each
simulation step, the value A; of a concept is calculated, computing the influ-
ence of the interconnected concepts to the specific concept according to the
following calculation rule:

N
AT =flAP + Y AP-w, 6.1
=S4 ]Z Wy ©)
=
where A(k+ is the value of concept C; at simulation step k + 1, A(k)
the value of concept C; at step k, w; is the weight of the interconnection
between concept C; and concept C, and fis a sigmoid threshold function.
The sigmoid functlon f belongs to the family of squashing functions.
Usually the following function is used

foy=—L— -8

1+ e
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which is the unipolar sigmoid function, where A > 0 determines the steep-
ness of the continuous function f(x) near x = 0.

All the values on the FCM model have fuzzy nature; experts describe FCM
characteristics and assign initial values using linguistic notion. These fuzzy
variables need to be defuzzified to use mathematical functions and calculate
the corresponding results. Thus, values of concepts belong to the interval
[0, 1] and values of weights to the interval [-1, 1]. Using Equation 6.1 with
the sigmoid function, the calculated values of concepts after each simulation
step will belong to the interval [0, 1].

6.2.2 Developing Fuzzy Cognitive Maps

The method that is used to develop and construct the FCM has great
importance to sufficiently model a system. The method used depends on
the group of experts who operate, monitor, and supervise the system and
develop the FCM model. This methodology extracts the knowledge on the
system from the experts and exploits their experience on the system’s model
and behavior [31].

The group of experts determines the number and kind of concepts that
comprise the FCM. The expert from his/her experience knows the main fac-
tors that describe the behavior of the system; each of these factors is rep-
resented by one concept of the FCM. Experts know which elements of the
systems influence other elements; for the corresponding concepts, they
determine the negative or positive effect of one concept on the others, with
a fuzzy degree of causation. In this way, an expert transforms his knowl-
edge in a dynamic weighted graph, the FCM. The methodology of develop-
ing an FCM based on fuzzy expressions to describe the interrelationship
among concepts is described analytically in Refs. 15 and 31 and is used here.
According to the developing methodology, experts are asked to think about
and describe the existing relationship between the concepts and so they jus-
tify their suggestions. Each expert, in fact, determines the influence of one
concept on another as “negative” or “positive” and then evaluates the degree
of influence using a linguistic variable, such as “strong influence,” “medium
influence,” and “weak influence.”

More specifically, the causal interrelationships among concepts are decla-
red using the variable influence, which is interpreted as a linguistic variable
taking values in the universe U = [-1, 1]. Its term set T(influence) is suggested
to comprise nine variables. Using nine linguistic variables, an expert can
describe in detail the influence of one concept on another and can discern
between different degrees of influence. The nine variables used here are:
T(influence) = {negatively very strong, negatively strong, negatively medium,
negatively weak, zero, positively weak, positively medium, positively strong,
and positively very strong). The corresponding membership functions for
these terms are shown in Figure 6.2 and they are y,,, #ny Hams Bnwr Bz Bpw

Homs Hps AN fp .
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FIGURE 6.2

Membership functions for fuzzy values of FCMs.

Thus, every expert describes each one of the interconnections with a lin-
guistic fuzzy rule; they use IF-THEN rules to justify the cause and effect
relationships among concepts, inferring a linguistic weight for each inter-
connection. Then, the inferred fuzzy weights are integrated using the SUM
method, as suggested by experts, and an overall linguistic weight is pro-
duced, which with the defuzzification method of center of gravity (CoG) [32]
is transformed to a numerical weight w;, belonging to the interval [-1, 1].
All the weights are gathered into a weight matrix n X n W, where 7 is the
number of concepts.

Every expert describes the relationship between two concepts using the
following fuzzy rule with linguistic variables.

IF a change B occurs in the value of concept C; THEN a change D in the
value of concept C; is caused.

Infer: The influence from concept C; to C; is E.

Where B, D, and E are fuzzy linguistic variables that experts use to
describe the variance of concept values and the degree of influence from

concept C; to C;.

6.2.3 Fuzzy Cognitive Map for Decision Support System

Decision support systems (DSS) are widely used in many application areas,
from management and operational research sciences to medical applications.
DSSare used to suggest solutions and provide advice to people how to conclude
to a decision. DSS suggest alternative ways of action based on the advantages,
disadvantages, and consequences of each action. DSS are developed utilizing
the experience and knowledge of experts in the distinct problem. DSS do not
take the decision by themselves but they suggest to human the most appro-
priate and suitable decision. Especially DSS play a significant role in medical
applications, where decisions include humans (patients and doctors), medical
equipment, and computers. Medical DSS are used by general practice doctors
for specific health problems in order to propose a diagnosis and treatment.
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Here, an integrated approach for modeling and medical decision making
is presented based on the soft computing technique of FCMs. A decision-
making procedure is a complex process that has to consider a variety of
‘nterrelated functions. Usually decision making involves many professionals
and a variety of interrelated functions.

A generic FCM-DSS model for diagnosis could consist of three kinds of
concepts as illustrated in Figure 6.3. There are concepts representing the
Factor-concepts, which are either laboratory tests and measurements, or
observations of the doctor and other information on patient status. Thevalues
of Factor-concepts are taking into consideration to infer the value of Selector-
concepts. Selector-concepts represent some intermediate conclusions. The
Selector-concepts influence the Output-concepts that conclude the decision.
The FCM model can include all the factors and symptoms that can infer a
decision along with the existing causal relationships among Factor-concepts,
because factors are interdependable and sometimes the existence or lack of
a factor requires the existence or lack of another. Moreover, Factor-concepts
influence Selector-concepts and the value of each Selector-concept can sub-
sequently influence the degree of the Output-concept of the FCM. This FCM
model is an abstract conceptual model of what a doctor does when he makes

Factor 1

Factor 4

FIGURE 6.3
A generic FCM-DSS model for medical decision making. (From Papageorgiou, E.IL, Stylios,
C.D., Groumpos, PP, IEEE Trans. Biomed. Eng., 50(12) 2003. With permission.)

f
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a decision; he reaches some intermediate inferences based on the inputs tak-
ing into consideration all the related symptoms, and then according to the
intermediate Selector-concepts values, he determines his final decision that
in the FCM model are presented as Output-concepts.

6.3 The Nonlinear Hebbian Learning Algorithm

In this section, the nonlinear Hebbian learning (NHL) algorithm that has
been proposed to train FCM [33] is described. The NHL algorithm is used to
overcome inadequate knowledge of experts and nonacceptable FCM simula-
tion results [33]. The weight adaptation procedure is based on the Hebbian
Jearning rule for nonlinear units [34]. The nonlinear Hebbian-type rule for
ANN s learning [35] have been adapted and modified for the FCM case, and
the NHL algorithm was proposed [33].

NHL algorithm is based on the premise that all the concepts in FCM model
trigger synchronously at each iteration step. During this triggering process,
the weight w;; of the causal interconnection of the related concepts is updated
and the modified weight w® is calculated for iteration k.

The value A*" of C, concept at simulation step k + 1, is calculated,
computing the influence of interconnected concepts with values A; to the
specific concept C; due to modified weights w](f) at simulation step k, accord-
ing to Equation 6.1, which takes the form

N
A = £l AB + Y A® - ® 6.3
i f i ]Z:_‘; ] ji ( )
171

Furthermore, during the development phase of FCM, experts have defined
which concepts of FCM are the decision output concepts (DOCs). These con-
cepts are the outputs of the system that interest us, and we want to estimate
their values, which represent the final state of the system. The distinction of
FCM concepts as inputs, intermediates, and outputs is determined by the
group of experts for each specific problem. Experts select the output con-
cepts and they also define the initial stimulators (Factor-concepts) and the
interior concepts (Selector-concepts) of the system.

Taking the advantage of the general nonlinear Hebbian-type learning rule
for ANNs, we introduce the mathematical formalism incorporating this
learning rule for FCMs, a learning rate parameter and the determination of
input and output concepts. This algorithm relates the values of concepts and
values of weights in the FCM model.

The proposed learning rule [33] has the general mathematical form for the
adjustment of the weights

= (k=1 A (k1) — oy(k-1)( A (k-1))2
iji ”kAi Aj wji (A,' ) e ; (6.4)
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where the coefficient , is a very small positive scalar factor called the
“learning parameter” and is determined using an experimental trial and
error method to converge the simulation process. A% is the value of con-
cept C;, which at next simulation step, k+1, triggers the interconnected
concepts.

This simple rule states that if A" is the value of concept C; at simulation
step k and A, is the value of the concept C; that triggers the concept C,, the
corresponding weight from concept C; toward the concept C; increases pro-
portional to their product multiplied with the learning rate parameter minus
the weight decay at simulation step k—1, that is multiplied by the value A; of
triggering concept C;. All the FCM concepts trigger at the same iteration step
and their values are updated synchronously.

Equation 6.4 takes the following form of nonlinear weight adaptation algo-
rithm, if we introduce a weight decay parameter:

wlh =y - wi® + m AFDARD ~ sign(w{ VwiDAKD) (6.5)

where 7, is the learning rate parameter and y the weight decay parameter.

The value of each concept of FCM is updated through Equation 6.3, where
the value of weight w® is calculated using Equation 6.5.

When the NHL algorithm is applied, only the initial nonzero weights sug-
gested by experts are updated for each iteration step. All the other weights of
weight matrix W remain equal to zero, which is their initial value.

For the termination of the proposed algorithm, two termination conditions
are proposed. One termination condition is the minimization of function F;.
The termination function F; that has been proposed for the NHL examines
the values of DOCs. It is supposed that for each DOC,, experts have defined
a target value T;. This target value can either be the desired value when DOC;
represents a concept, which has to take a value or the mean value when
DOC, represents a concept whose value has to belong to an interval. Thus,
the function F, is defined as

1
F = \[Z(DOCI. -T) (6.6)

i=1

where [ is the number of DOCs.

The second termination condition is the minimization of the variation
between two subsequent values of DOCs, represented by the following
equation:

F, = [DOC* - DOCY| < e 67)

This termination condition helps to terminate the iterative process of the
learning algorithm. The term e is a tolerance level keeping the variation of
‘values of DOC(s) as low as possible and it is proposed to be equal to e = 0.001,
satisfying the termination of the iterative process. '
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Algorithm 1: “Nonlinear Hebbian learning”

Step 1: Read input concept state A® and initial weight matrix wo
Step 2: Repeat for each iteration k

Step 3: Calculate Ai(k) according to Equation 6.3

Step 4: Update the weights:

k k= k- k- k-1 k-1
wji( ) — Y_wﬁ( D, ”Ai( 1)(Aj( 1) _ Sgn(wji)w/‘i( )Ai( ))

Step 5: Calculate the two termination functions

Step 6: Until the termination conditions are met

Step 7: Return the final weights Wy

FIGURE 6.4
Pseudo code of NHL algorithm.

Through this training process and when both the termination conditions
are met, the final weight matrix Wy of FCM is derived.

A generic description of the proposed NHL algorithm for FCMs is given
in Figure 6.4.

After a number of experiments and implementation the NHL algorithm in
different domains, the upper and lower bounds for the learning rate param-
eters y and # have been determined [33]. The bounds of learning rate param-
eter 7 are determined as 0 < 7 < 0.1, and for the weight-decay parameter as
09 < y < 1. Larger 5 values of 0.1, and smaller y values of 0.9 do not lead the
system in convergence for any initial values.

The flowchart of the proposed NHL procedure implemented in FCMs is
given in Figure 6.5. It is mentioned that if the learning procedure repeats for
over 1000 iteration steps without converging, it stops and experts are asked
to reconstruct the FCM.

Training FCM with the NHL algorithm enhances the FCM model and
incorporates the expert’s knowledge into a proper FCM model of the process
or system. This is the case of supervisor-FCM and when the FCM has to con-
verge in desired equilibrium points after simulation results.

6.4 Radiation Therapy Procedure: Background,
Issues, and Factors

Radiotherapy is identified as the external application of beams of photons
generated by linear accelerator machines to eliminate tumors and treat
cancer patients. There are two objectives for “3-dimensional conformal”
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Take initial
concept values
and weights -

) 4

A

Determine 7, y

NHL

Experts asked Iterations
to reconstruct k>1000
FCM model

Converge in
equilibrium states within
accepted bounds

Stop

FIGURE 6.5
- The flowchart of NHL algorithm.

radiotherapy; the first one is to deliver the highest dose to a volume shaped
exactly like the tumor and the second one is to keep the dose level at the
minimum for healthy tissues and critical organs. Before the implementa-
tion of any beam radiation, a treatment plan is required to be designed. The
treatment planning determines how to perform the radiation, which is a
complex problem because various complementary of interconnecting condi- .
tions and constraints have to be met. The performance criteria for radiation
therapy are maximization of dose and dose uniformity within the target
region and dose minimization to surrounding critical organs and normal
tissues. The process of adjusting radiation variables and displaying the cor-
responding dose distribution is repeated till the optimizations of these cri-
teria are met.

The depth of the tumor from the skin surface is probably the most impor-
tant factor in selecting the appropriate radiation therapy machine, but it is
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definitely not the only one. For treating complex tumors, a variety of factors

are taken into consideration to determine the treatment plan [36-38].

An inexhaustive list of factors may include the following:

. The depth at which the tumor is located from skin surface.
. The shape (geometrical or irregular) and the size of the tumor.
. The location of the tumor in part of the body or head and size of

cross section treated.

- The local invasive capacity of the tumor and its potential spread to

the regional lymph nodes.

. The type of tissue within the tumor, as well as the type of tissue that

surrounds the tumor. The presence of inhomogeneities within the
irradiated volume such as bone, muscle, lung, fat, and air should be
taken into consideration.

. The dose distribution within the target volume should be reason-

ably uniform (within +5%).

7. The tumor position regarding the center of the contour cross section.

8.

10.

11.

12.

13

14.

15.
16.

The existence of radiation-sensitive organs within the irradiated
volume, such as eyes, bladder, salivary glands, larynx, spinal cord,
anus, and skin. These normal critical structures should not receive
doses near or beyond tolerance.

. Damage to the healthy tissue outside the treatment volume (maxi-

mum dose =95% of prescribed dose).
Patient dimension and contour geometry in treatment region.

The number of radiation fields that must be used and the daily
dosage on the tumor based on the biological damage of the healthy
subcutaneous tissue.

Cost—this includes cost of equipment, cost of shielding, and cost of
usage of space.

The length of time required to administer the treatment—it is dif-
ficult to keep a patient immobilized for a long period of time. The
length of procedure preparation time (both for patient and staff).
The time required for obtaining the optimum treatment plan and
the time for calculating the distributed doses within the irradiated
volume.

Amount of secondary (scattered) radiation that can be tolerated by
the patient.

Matching of beam overlap volume with target volume.

Degree of difficulty in repeatability (flexibility) of setup of the patient
and treatment geometry.
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However, to achieve a good distribution of the radiation on the tumor as
well as to protect the healthy tissues, the following should be taken into
consideration:

1. Selection of appropriate size of the radiation field
2. Increase of entry points of the beam (more than one radiation field)
3. Selection of appropriate beam directions :

4. Selection of weight of each field (dose contribution from individual
fields)

5. Selection of appropriate quality, that is, energy and type of radiation
(x-rays, y-rays, and electrons)

6. Modification of field with cerrobend blocks or multileaf collimators,
_ compensating filters or bolus, and wedge filters

7 Use of isocentric stationary beam therapy versus isocentric rotation
therapy

8. Patient immobilization

9. Use of conformal (3-D) instead of conventional (2-D) radiotherapy

More information with the necessary theoretical justification and detailed
description of the concepts mentioned earlier and related terms are provided
in Refs. 36-38. ~

Treatment planning refers to the description and the selection of imple-
mentation procedures and how to reach necessary decisions that have to be
made before performing radiation treatment. Both physical and clinical pro-
cedures are part of the treatment-planning problem. The treatment-planning
process comprises several methods for treatment preparation and simulation
toward achieving a reproducible and optimal treatment plan for the patient.
Irrespective of the temporal order, these procedures include

e Patient fixation, immobilization, and reference point selection

e Dose prescriptions for target volumes and the tolerance level of organ
at risk volumes

e Dose distribution calculation

e Treatment simulation

e Selection and optimization of
e Radiation modality and treatment technique
e The number of beam portals

The directions of incidence of the beams

Beam collimation

Beam intensity profiles

Fractionation schedule
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Thus, the treatment planning is a complex process where a great number of
treatment variables have to be considered.

6.5 The Clinical Treatment Simulation Tool
for Decision Making in Radiotherapy

Radiotherapists and physicists are asked to construct the FCM model accord-
ing to their knowledge and experience, thus they are using the factors and
treatment variables that were briefly presented in Section 6.4. These factors
and characteristics will be the concepts of the FCM decision-making model
for radiotherapy treatment planning. They are considering the basic beam
data from experimental measurements [39] and the information described
at American Association of Physicists in Medicine (AAPM) Task Group (TG)
23 test package [40] to retrieve the main Factors-concepts of the FCM model,
selectors, and the relationships among them. The AAPM TG 23 test package
is useful for the quantitative analysis of treatment planning systems of pho-
ton beam radiation [40,41]. Our test package of basic beam dosimetric data
has been developed with experimental measurements [39], which are used
here for the determination of initial values of concepts and weights.

Radiotherapy experts, following the generic FCM-decision support model
presented in Section 6.2.3, identified and divided the concepts, which consist
of the FCM model for radiotherapy treatment planning, into three categories:
Factor-concepts, Selector-concepts, and Output-concepts. Factors and selec-
tors concepts could be seen as inputs, they represent treatment variables with
given, measured, or calculated values, and the corresponding causal weights
are identified from experimental data, and data from AAPM TG 23 test pack-
age [39-42]. The values of the Selector-concepts are influenced by the value of
the Factor-concepts with the corresponding causal weights. The values of the
Output-concepts are influenced and determined by the values of the Factor-
concepts and the Selector-concepts with the corresponding causal weights.
The decision-making procedure is based on the determination of the values
of the Output-concepts that lead to the final decision.

The values of concepts in the FCM model can generally take crisp,
numeric, and linguistic values. It is considered that the values of concepts in
the FCM-DSS model take five positive linguistic variables depending on the
characteristics of each particular concept, such as very high, high, medium,
weak, and near zero. When concepts represent events or discrete variables,
there is a threshold (0.5) that determines if an event is activated or not. All
the values of concepts in the FCM belong to the interval [0, 1]. The degree
of the influence between concepts is represented by a linguistic variable of
the fuzzy set {positive very high, positive high, positive medium, positive -
weak, zero, negative weak, negative medium, negative low, and negative
very low} [15,21].
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Experts developed the FCM that models the radiotherapy treatment plan-
ning procedure, according to the test packages and experimental data. So,
the clinical treatment simulation tool based on fuzzy cognitive map (CTST-
FCM) model consists of 26 concepts that are described in Table 6.1.

Concepts F-C1 to F-C13 are the Factor-concepts, concepts S-C1 to S-Cl10 are
the Selector-concepts, and the concepts OUT-C1 to OUT-C3 are the Output
concepts. The value of the Output-concept OUT-C1 represents the amount
of dose applied to the mean clinical target volume (CTV), which has to be
more than 90% of the amount of prescribed dose to the tumor. The value of
concept OUT-C2 represents the amount of the surrounding healthy tissues”
volume received a dose, which has to be as small as possible, less than 5% of
the volume receiving the prescribed dose. The value of concept OUT-C3 rep-
resents the volume of organ at risk (OAR) receiving a dose, which should be
less than the 10% of volume receiving the prescribed dose. The objective of
the FCM model is to keep the values of the OUT-Cs, in the following range:

OUT-C1 = 0.90 6.8)
OUT-C2 < 0.05 ©6.9)
OUT-C3 < 0.10 (6.10)

The values of Output-concepts are acceptable when they satisfy the perfor-
mance criteria in Equations 6.8 through 6.10.

Using the development methodology for FCMs as described in Section
6.2.2, every expert describes each interconnection using a fuzzy rule. Fuzzy
rules are evaluated in parallel using fuzzy reasoning and the inferred fuzzy
weights are combined so that an aggregated linguistic weight is produced,
which is then defuzzified and the result is a crisp value representing the
weight of each interconnection. In this way, the weights of interconnections
among Factor-concepts and Selector-concepts, Selector-concepts and Output-
concepts, and Output-concepts and Factor-concepts, are determined. Five
examples are now described to illustrate the determination of the weights
for some interconnections.

Example 6.1

One expert describes the influence from the S-C3 toward OUT-C1
representing the amount of dose to target volume using the following
fuzzy rule: '

IF a small change occurs in the value of S-C3, THEN a small change is
caused in the value of OUT-C1.

This means that if a small change occurs in the size of radiation field,
then a small change in the value of dose to the target volume is caused,
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TABLE 6.1
Concepts of the CTST-FCM: Description and Type of Values
Number and Type of
Concepts Description Values Scaled
F-C1 Accuracy of depth of tumor Five fuzzy
F-C2 Size of tumor Seven fuzzy (very small,
small, positive small,
medium, negative large,
large, and very large)
F-C3 Shape of tumor Three fuzzy (small,
medium, and large)
F-C4 Location of tumor size at cross section Three fuzzy
F-C5 Regional metastasis of tumor (sites of body) Five fuzzy
E-C6 Type of irradiated tissues—presence of Five fuzzy
inhomogeneities '
E-C7 Dose uniformity (including 90% isodose) One fixed
within target volume
F-C8 Skin sparing—amount of patient skin dose Three fuzzy (low,
medium, and high)
F-C9 Amount of patient thickness irradiated Five fuzzy
F-C10 Accuracy of patient’s contour (taken from Five fuzzy
CT-scans and portal films)
F-C11 Amount of scattered radiation received by Five fuzzy
patient
F-C12 Time required for treatment procedure or Five fuzzy
preparation
F-C13 Amount of perfect match of beam to target Three fuzzy
volume
S-C1 Quality of radiation—four types of machines Four discrete
(orthovoltage, supervoltage, megavoltage
and teletherapy)
S-C2 Type of radiation (photons, electrons, protons, Four discrete
and heavy particles)
5-C3 Size of radiation field Five fuzzy
S5-C4 Single or multiple field arrangements Two discrete
S-C5 Beam direction(s) (angles of beam orientation) Continuous
5-Cé Weight of each field (percentage of each field) Continuous
5-C7 Stationery versus rotation—isocentric Continuous
beam therapy
S-C8 Field modification (no field modification, blocks, Five discrete
wedges, filters, and multileaf-collimator
shaping blocks)
5-C9 Patient immobilization Three discrete
S-C10 Use of 2-D or 3-D conformal technique Two discrete
Out-C1 Dose given to treatment volume (must be Five fuzzy
within accepted limits)
Out-C2 Amount of irradiated volume of healthy tissues Five fuzzy
Out-C3 Amount of irradiated volume of sensitive Five fuzzy

organs (OAR)

Source: Papageorgiou, E.L, Stylios, C.D., Groumpos, P.P., IEEE Trans. Biomed. Eng., 50, 12, 2003.

With permission. ;
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increasing the amount of dose. So, the influence of S-C3 to OUT-C1 is
positively small.

The inferred linguistic weight for this interconnection will be aggre-
gated with other linguistic weights proposed by the other experts and an
overall linguistic weight will be produced, which will be defuzzified.

Example 6.2

The influence from the F-C2 toward the S-C3 representing the size of
radiation field is inferred:

IF a small change occurs in the value of F-C2, THEN a large change is
caused in the value of S-C3.

This means that the size of the tumor, determined by the radiotherapist,

- influences the size of radiation field. If the size of target volume is increased

by asmall amount, the size of radiation field is increased by a larger amount.
The influence of F-C2 to S-C3 is inferred as positively strong,

Example 6.3

The influence from F-C1 toward the OUT-C2 representing the healthy
tissues’ volume received a prescribed dose is inferred that

IF a large change occurs in the value of F-C1, THEN a very large change
is caused in the value of OUT-C2.

This means that if the depth of tumor increases the amount of healthy
tissues’ volume that received the prescribed dose increases. Thus, the
influence is positively very strong.

Example 6.4

The influence from S-C4 toward the F-C13 representing the amount of
perfect match of beam to target volume-tumor is inferred as

IF a large change occurs in the value of 5-C4, THEN a very large change
is caused in the value of F-C13.

This means that if more field arrangements are used, the match of
beam to the target volume increases by a very large amount. Thus, the
influence is positively very strong.

Example 6.5

The influence from Output-concept OUT-C1 toward the Output-concept
OUT-C2 is inferred as

IF a small change occurs in the value of OUT-C1, THEN a large change
is caused in the value of OUT-C2. ‘
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FIGURE 6.6
The CTST-FCM model with 26 concepts and 156 interrelationships. (From Papageorgiou, E.L,
Stylios, C.D., Groumpos, PP, I[EEE Trans. Biomed. Eng., 50(12), 2003. With permission.)

This means that if the dose given to the tumor increases, a larger
amount of healthy tissues” volume receives the prescribed dose given to
the tumor. The influence of OUT-C1 to OUT-C2 is inferred as positively
strong.

Analogous is the methodology of determining all the existent influ-
ences among Factor-concepts, Selector-concepts, and Output-concepts.

The CTST-FCM model for the decision making in radiotherapy is devel-
oped and illustrated in Figure 6.6. It consists of 26 concepts and 156 intercon-
nections. Initial values of concepts are taken from the data set of the AAPM
TG 23 [40, 43] and from experimental data [39], and are identified according
to each specific treatment technique, then these values are normalized and
transformed in the interval [0, 1].

6.5.1 Testing of the Clinical Treatment Simulation Tool
for Two Radiotherapy Planning Case Studies

The treatment of localized prostate cancer is commonly treated with the use of
radical radiotherapy. In this section, two different treatment cases for prostate
cancer therapy have been examined using the CTST-FCM model. In the first
case, the 3-D conformal technique consisting of six-field arrangement is sug-
gested and in the second one, the conventional four-field box technique. Radio-
therapy physicians and medical physicists choose and specify the initial values
of concepts and weights of the proposed CTST-FCM model, for each case.
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6.5.1.1 Case Study 1

Conformal radiotherapy allows a smaller amount of rectum and bladder to
be treated, by shaping the high dose volume to the prostate and low-dose
volume to bladder and rectum [44,45], where the target volume is readily
visualized and defined on computed tomography (CT) [46]. Radiotherapists
and medical physicists select the treatment variables for the field size, beam
direction, beam weights, number of beams, compensating filters, type and
quality of radiation, and moreover, they describe and determine the corre-
sponding weights on CTST-FCM.

For the specific therapy technique, a six-field arrangement with gantry
angles 0°, 60° 120°, 180°, 240°, and 300° using a 6 MV photon beam radiation
will be considered. Multiple CT-based external contours define the patient
anatomy and also isocentric beam therapy is used. Beam weights are dif-
ferent for the six fields, blocks, and wedges. The specific characteristics of
conformal therapy determine the values of concepts and weights intercon-
nections of CTST-FCM model. Thus, the S-C4 takes the value of six-field
number; S-C3 has the value of “small size” for radiation field, which means
that the influence of S-C3 and S-C4 toward OUT-Cs is great. In the same
way, the S-C5 and S-C6 have great influence on OUT-Cs because different
beam directions and weights of radiation beams are used. S-C8 takes the
value for the selected blocks and wedges, influencing the OUT-Cs. The 5-C7
takes the discrete value of isocentric beam therapy. The S-C9 takes a value
for accurate patient positioning and the S-C10 takes the discrete value of 3-D
radiotherapy.

Thus, for the specific technique considering the earlier discussion, the ini-
tial values of concepts and weights of interconnections between S-Cs and
OUT-Cs are suggested. The value of weights between S-Cs and OUT-Cs is
given in Table 6.2. Tables 6.3 and 6.4 contain the weights of interconnections

TABLE 6.2

Weights Representing Relationships among Selector-Concepts
and Output-Concepts for First Case Study

Selectors OUT-C1 OUT-C2 OUT-C3
S-C1 0.6 -0.45 -04
S-C2 0.50 -0.6 -0.5
S-C3 0.4 -0.45 -04
S-C4 0.3 -0.6 -05
S-C5 0.38 -0.40 04
S-Cé6 0.45 -0.4 0.4
S-C7 0.30 -0.30 -0.30
S-C8 04 -0.5 -045
S-C9 0.4 -0.5 -0.45
S-C10 0.6 -0.5 -0.5

Source: Papageorgiou, EI, Stylios, C.D., Groumpos, PP, IEEE Trans.
Biomed. Eng., 50, 12, 2003. With permission.
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TABLE 6.3

Weights of the Interconnections among Factor-Concepts and Selector-Concepts
Factors/

Selectors s-Ct S C2 SC3 SC4 SC5 S-C6 S-C7 S-C8 S-C9 S-C10
E-C1 0.7 0.7 0.6 0.62 0.4 0.42 0.6 0.6 0.2 0
F-C2 065 0.6 0.7 0.6 0.2 0.53 0.55 0.5 0.6 0.5
F-C3 0.4 04 0.6 0.63 045 0 0.4 0 0 0.7
F-C4 0.7 0.38 0.3 0.6 0.4 0.52 0.4 0.6 0.7 0
F-C5 0.4 0.78 0.8 0.6 0.7 0.6 0 0.45 0 0
F-Cé 0.7 0.75 032 06 0.5 0.55 0.47 0.5 0 0.6
F-C7 062  0.62 0.6 0.7 065 06 0.2 0.74 0.5 0.4
F-C8 052 075 0.65 0.67 072 0.74 045 - 0.55 0 0.6
F-C9 035 06 0.5 0.6 0.6 0.6 02 05 0.5 0
F-C10 022 05 0 0 0.6 0.58 0.72 03 0.7 0.6
F-C11 061 072 0.75 0.6 0.6 0.55 0.22 0.6 0 0
F-C12 033 0 0 0.52 0 0 0 0 0.5 0
F-C13 050  0.50 0.7 0.65 065 0.7 0.4 0.2 0.6 0.7

Source: Papageorgiou, E.L, Stylios, C.D., Groumpos, P.P., IEEE Trans. Biomed. Eng., 50, 12, 2003.
With permission.

TABLE 6.4

Weights of the Interconnections among Output-Concepts
Outputs OUT-C1 OUT-C2 OUT-C3
OuT-C1 0 0.6 0.6
OUT-C2 0.7 0 0
OUT-C3 —0.6 0 ' 0

Source: Papageorgiou, E.L, Stylios, C.D., Groumpos, P.P., IEEE Trans.
Biomed. Eng., 50, 12, 2003. With permission.

between Factor-concepts and Selector-concepts, and Output-concepts to
Output-concepts respectively.

The following matrix is formed with the initial values for this particular
treatment technique:

ower leve [075 05 05 0
AT~ 0

0 0.5 0.8 0.5 0.55 0.7 04
0510750 140.7 Q2

6
4 06051100 0]
where A, is the value of concept C,.

When the initial values of concepts have been assigned, the CTST-FCM
starts to interact and simulate the radiation procedure. Equation 6.3 calcu-
lates the new values of concepts after each simulation step and Figure 6.7
illustrates the values of concepts for eight simulation steps. From Figure 6.7,
it is concluded that after the fifth simulation step, the FCM reaches an equi-
librium region, where the resulting values of OUT-Cs are OUT-C1 = 0.99,
OUT-C2 = 0.025, and OUT-C3 = 0.04. :
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FIGURE 6.7

Variation of values of 26 concepts for the CTST-FCM for the first case for eight simulation steps.

The values of the CTST-FCM concepts at equilibrium region are Afger'v! =
[0.75 0.5 0.5 0.5564 0 0.5 0.8 0.5 0.55 0.7 0.4 0.779 0.819 0.991 0.99 0.987
0.993 099 0.995 0.987 0.99 0.978 0.99 0.025 0.040].

Based on the referred performance criteria in Section 6.5, the calculated
values of output concepts are accepted. The calculated value of OUT-C1 is 0.99,
which means that the CTV receives the 99% of the amount of the prescribed
dose, so it is accepted. The value of OUT-C2 that represents the amount of the
surrounding healthy tissues’ volume received a dose is found equal to 0.025,
so that 2.5% of the volume of healthy tissues receives the prescribed dose of
81 Gy. The value of OUT-C3 that represents the amount of the critical organ’s
volume (bladder and rectum) is equal to 0.034, which means that the 34% of
the volume receives the prescribed dose of 81 Gy. The values of OUT-Cs satisfy
the performance criteria in Equations 6.8 through 6.10. It is clear that the CTST-

FCM model with the initial values of treatment variables and their intercon- .

nections which radiotherapists and medical physicists proposed for the specific
technique of prostate cancer converged to a set of values that satisfy the perfor-
mance criteria. Thus, the CTST-FCM suggests that the treatment planning can
be executed and there will be acceptable results for the treatment.

6.5.1.2 Case Study 2

For the second case study, the conventional four-field box technique is
implemented for the prostate cancer treatment. This radiotherapy technique
consists of a four-field box arrangement with gantry angles 0°, 90°, 180 and 270°.
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A single external contour defines the patient anatomy and the isocentric beam
therapy is used. Beam weights have the same value for four fields and moreover,
no blocks, wedges, collimator settings, and compensating filters are used.

For this case, the CTST-FCM has to be reconstructed, which means that
radiotherapists have to reassign weights and interconnections because a
different treatment technique is used [45-48]. Data from AAPM TG 23 and
experiments determine the treatment variables and their interrelationships,
and they modify the CTST-FCM model.

For this case, the Selector-concept S-C4 has the value of four-field number;
S-C3 has the value of “large size” of radiation field, which means that the
influence of S-C3 and S-C4 toward OUT-Cs is very low. In the same way,
the S-C5 and S-C6 have lower influence on OUT-Cs because different beam
directions and weights of radiation beams are used. S-C8 has zero influence
on OUT-Cs because no blocks and no wedges are selected for this treatment
case. The S-C7 takes the discrete value of isocentric beam therapy and has
the same influence on OUT-Cs as the conformal treatment case mentioned
earlier. The S-C9 takes a low value for no accurate patient positioning and
the 5-C10 takes the discrete value of 2-D radiotherapy.

The weights between 5-Cs and OUT-Cs for this case are given in Table 6.5.
If we compare Table 6.5 with Table 6.2, which contains the weights for the first
case, we will see that some weighted interconnections have different values.

Using this new CTST-FCM model with the new modified weight matrix,
the simulation of the radiotherapy procedure for this case example starts
with the following initial values of concepts:

i [0505 0506 00506005 0.3 06 05
by =05075002104040600000 0]

The values of concepts are calculated using Equation 6.3 and the variation
of values of 26 concepts after eight simulation steps are illustrated in Figure 6.8.

TABLE 6.5

Selector-Concepts—Output-Concepts Weights
for the Second Radiotherapy Case Study

Selectors OUT-C1 OUT-C2 OUT-C3
S-C1 0.52 -0.45 -0.44
S-C2 0.50 -0.6 -0.48
S-C3 0.27 -0.2 -0.20
S-C4 0.24 -04 -04
S-C5 0.22 025 02
S-C6 0.25 -020 -0.20
S-C7 ' 0.30 —0.30 -0.30
S-C8 0 0 0
S-C9 0.28 -0.30 -0.2
S-C10 0.20 -0.25 -0.20

Source: Papageorgiou, EI, Stylios, C.D., Groumpos, P.P., [IEEE
Trans. Biomed. Eng., 50, 12, 2003. With permission.
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FIGURE 6.8

Variation of values of 26 concepts of CTST-FCM for the second example, with the classical treat-
ment planning case for eight simulation steps.

It shows that the CTST-FCM interacts and reaches an equilibrium region.
The values of concepts at equilibrium region are ARy '**! = [0.5 0.5 0.5
0.566 00.5 0.6 0 0.5 0.3 0.6 0.777 0.818 0.986 0.983 0.981 0.99 0.983 0.991
0.976 0.985 0.97 0.943 0.983 0.087 0.011].

At this equilibrium region, the final values of OUT-Cs are OUT-C1 = 0.983,
OUT-C2 = 0.087, and OUT-C3 = 0.11. The calculated value of concept OUT-C1
is within the desired limits but the values of concept OUT-C2 and concept
OUT-C3 are not accepted. The value of OUT-C2 is equal to 0.087, which means
that the 8.7% of the volume of healthy tissues receives a prescribed dose of
81 Gy. The calculated value of OUT-C3 describes that the 11% of volume of
organs at risk receives an amount of the prescribed dose. These values for
OUT-C2 and OUT-C3 are not accepted according to related protocols [45].

If these suggested values for Output-concepts were adopted, the patient’s
normal tissues and sensitive organs would receive a larger amount of dose
than that desired, which is not accepted. Thus, it is important to examine
all the factors and selectors and their cause and effect toward the Output-
concepts and suggest new treatment variable values in order to reschedule
the planning procedure. This prompts the need for a higher level to lead the
rescheduling and supervise the whole treatment planning.

6.5.2 Discussion of the Results on the Two Case Studies

CTST-FCM model integrates different treatment planning procedures
where treatment parameters can have different degrees of influence to the



The Soft Computing Technique of Fuzzy Cognitive Maps 197

treatment execution. CTST-FCM model estimates the final dose, which is
actually received by the target volume and the patient. CTST-FCM was mod-
ified for some standard treatment techniques that are implemented in clini-
cal practice, and then the CTST-FCM run and advised radiotherapists about
the acceptance of the treatment planning technique.

The CTST-FCM model is an efficient and useful tool especially for this case
of complex radiotherapy treatment planning problems, where the surrounding
normal tissues and organs at risk place severe constrains on the prescription
dose as in the case of prostate cancer. In practice, the patient receives a differ-
ent amount of dose than that determined during the treatment planning due
to the presence of some other factors, more general, as machine factors, human
factors, and quality processes [37,49] that influence the treatment execution. In
addition to this, there are some factors on the CTST-FCM model, such as tumor
localization and patient positioning, which change their values easily and it is
necessary to take them into consideration during the final decision-making
process with a more generic mode for all the patient cases. Thus, a better solu-
tion would be the designing of higher level with a new key-concept named
“final dose” (FD). Concept FD would be affected by the parameters referred
earlier and the OUT-Cs. The concept of “FD” is an extremely important con-
cept describing the success of radiation treatment and so the prolongation of
the patient’s life. The purpose of the proposed approach is not to accurately
calculate the amount of FD received by the patient, but to describe the success
of the radiation therapy process in general and determining the value of FD.
This highlights the need to construct a supervisor level.

6.6 Abstract Supervisor-FCM Model
for Radiation Therapy Process

The supervisor level is higher than CTST-FCM model and is used for the
parameters analyses and the final acceptance of the treatment planning
technique. The two-level structure creates an advanced integrated system,
which handles abstract information. The supervisor is modeled as an FCM
that models, monitors, and evaluates the whole process of radiation therapy.

The supervisor-FCM is developed exploiting and utilizing experts” knowl-
edge (doctors), who actually supervise the process. Radiotherapists usually
use the notion and values of tumor localization, patient positioning, and
the calculated dose by the treatment planning system to determine the FD
[49,50]. They also mentioned that human factors and machine factors play an
important role in the determination of the FD and they usually take these
values into consideration. Experts, using this method of thinking and con-
cluding, suggested the concepts of the supervisor-FCM.

The suggested supervisor-FCM consists of seven concepts to supervise
the decision-making process during the radiation therapy process and it is
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FIGURE 6.9
The Supervisor-FCM model of the radiotherapy process.

depicted in Figure 6.9. This model updates the first introduced supervi-
sor-FCM and now one more concept has been added [21]. This new concept
represents the quality assurance (QA) of the whole radiotherapy process. QA
refers to the whole range of procedures and technical systems for assuring that
* the quality parameters of the process are in accordance with the national and
international standards (preset) such as the International Standards Orga-
nization (ISO standards). Treatment planning systems, imaging devices,
simulators, treatment units, checks of beam quality and inhomogeneity, and
clinical dose measurements determine the QA process.

The concepts suggested by experts to include in the supervisor-FCM are
as follows:

UC, (tumor localization). It is dependent on the following three factors
concepts of the lower level FCM: patient contour, sensitive critical
organs, and tumor volume. It embodies the value and influences
v‘ these three Factor-concepts.

| UC, (dose prescribed from treatment planning [TPD]). This concept repre-

1 sents the prescribed dose and is dependent on the following con-

| ‘cepts of the CTST-FCM model: the delivered dose to target volume,

t normal tissues, and critical organs that are calculated at the treat-
ment planning model of the lower level FCM.
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UC; (machine factors). This concept represents the equipment character-
istics, reliability, efficiency, and maintenance.

UC, (human factors). A general concept that evaluates the experience
and knowledge of medical staff, involved in the treatment.

UC; (patient positioning and immobilization). This concept describes the
cooperation of the patient with the doctors and if the patient accu-
rately follows their instructions.

UC, (QA). This represents and evaluates the qualifications of staff, the
efficiency of therapeutic procedures, and the performance of techni-
cal systems for complying with the preset standards.

UG, ( final dose given to the target volume [FD]). An estimation of the radi-
ation dose received by the target tumor.

The methodology presented in Section 6.2 is used here to construct the
supervisor-FCM. The experts are asked to describe the relationships among
concepts and they use IF-THEN rules to justify the cause and effect relation-
ship among concepts and infer a linguistic weight for each interconnection.
The degree of the influence is a linguistic variable, member of the fuzzy set
T{influence} as illustrated in Figure 6.2.

Experts suggested the following connections among the earlier-described
concepts of supervisor-FCM:

Linkage 1. Connects UC; with UC;: it relates the tumor localization with
the delivered FD. Higher the value of tumor localization, greater the
delivered final dose is.

Linkage 2. Relates concept UC, with UC,: when the dose derived from
treatment planning is high, the value of tumor localization increases
by a small amount.

Linkage 3. Connects UC, with UC,: when the prescribed dose from treat-
ment planning is high, the FD given to the patient will also be high.

Linkage 4. Relates UC; with UC,: when the performance of machine
parameters increases, the dose from treatment planning decreases.

Linkage 5. Connects UC; with UC;: any decrease to machine parameters
influences negatively, the FD given to target volume.

Linkage. 6. Relates UC, with UC,: the human factors cause decrease in
the FD.

Linkage 7. Connects UC, with UCs: the presence of human factors causes
decrease on the patient positioning.

Linkage 8. Relates UC; with UC,: any decrease on the patient positioning
negatively influences the human factors.

Linkage 9.Connects UC; with UC,; when the patient positioning
increases, the FD also increases. »

Linkage 10. Relates UC; with UC,: any increase on the QA (control)
checks, positively influences the treatment planning, ‘
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Linkage 11. Connects UCg with UC,: any increase on the QA (Contrbl)
checks positively influences the FD. '

Linkage 12. Relates UC, with UCs: when the FD reaches an upper value,
the patient positioning is influenced positively.

Linkage 13. Connects UC, with UC;: any change in FD causes change in
tumor localization. .

Linkage 14. Connects UC, with UC,: when the FD increases to an
acceptable value, the dose from treatment planning increases to a
desired one.

After the determination of the relationships and the kind of linkages among
concepts, each one of the experts suggests one linguistic weight for each
linkage. The linguistic weights for each linkage are aggregated to an overall
linguistic weight, which is defuzzified and transformed into crisp weight,
corresponding to each linkage. Thus, the following weight matrix for the
supervisor-FCM is produced, with the following numerical linkage weights:

@ sitemanil 2i s Gadiigt 1025508
04 0 0 0 0 0 06
0 03 0 0 0 0 -022
weendled _f 9 0 0 0 -03 0 -03
gieie g gt e gt < gl Hgs
0 05 0 0 0 0 05
OB 0F., Brs 20, . 055 0 0.

Experts describe the goals of supervisor-FCM and set the objectives. One
objective of the supervisor-FCM is to keep the amount of FD, which is deliv-
ered to the patient, between some limits, an upper FD,,, and a lower limit
FD_ ;.. Another objective is to keep the TPD between maximum value TPD,,,
and minimum value TPD_; . These objectives are defined at the related
AAPM and International Commission on- Radiological Protection (ICRP)
protocols [1,11,12], where the accepted dose levels for each organ and region
of human body are determined. So, the overall objective for the upper level,
the supervisor-FCM, is to keep the values of corresponding concepts, FD
given to the target volume and TPD in the range of values:

090 = FD = 095 (6.11)
0.80 = TPD = 0.95 6.12)
The supervisor-FCM evaluates the success or failure of the treatment by

checking the value of the FD concept, whether the suggested treatment proc-
ess is within the accepted limits or not for the specified case of treatment [50]-
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The integrated two-level hierarchical structure for decision making in radiation therapy.

A two-level hierarchical structure is proposed, which isillustrated in Figure
6.10. The CTST-FCM model for the radiotherapy treatment planning process,
‘which was discussed in Section 6.5, is the lower level, where the 26 concepts
of CTST-FCM model the treatment planning and the dose distribution to the
target volume and normal tissues. Supervisor-FCM is the upper level, which
is used for the determination of acceptance of the treatment therapy.

6.7 An Integrated Hierarchical Structure
of Radiotherapy Decision Support System

The integrated hierarchical structure, consisting of the supervisor-FCM
and the CTST-FCM, is the advanced DSS, which advises the radiotherapist-
doctor on the decisions about the success of treatment therapy and the opti-
mum treatment outcome. The supervisor-FCM aims to plan strategically
and to detect and analyze unacceptable treatment before the execution of
the treatment procedure. The main supervisory task is the coordination of
the whole system, determining the amount of FD given to the target volume.

|
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The proposed two-level hierarchical structure can successfully model the
complex radiotherapy treatment planning requirements.

When the CTST-FCM model on the lower level reaches an equilibrium
region, information from the CTST-FCM concepts values pass to the super-
visor-FCM. Supervisor-FCM interacts, reaches an equilibrium region that
determines if the calculated value of FD concept is accepted or not. The flow-
chart of this procedure is depicted in Figure 6.11.

The FCMs on the hierarchical two levels interact and information must
pass from one FCM to the other. An interface is required for the transfor-
mation and transmission of information from the CTST-FCM on the lower

Initial values of CTST-FCM
)

Simulation

Equilibrium

A

Values of concepts on steady
CTST-FCM: Alower

B

A

Interface
(Fuzzy rules)

Update
Experts o 4 upper Alever
knowledge &
A
Supervisor-FCM
simulation through NHL
upper
Ay Nonaccepted Valueil
New steady

values

Accepted values

Final decision

‘FIGURE 6.11
Schematic representation of the algorithm for supervision execution.
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level to the supervisor-FCM on the upper level and vice versa. This inter-
face consists of two parts; one part transmits information from lower level to
upper level and the other part from upper level to lower level. Generally, the
information from two or more concepts on the lower level CTST-FCM pass
through the interface is aggregated and influence one concept in the upper
level, and an analogous interface exists for the inverse transformation and
transmission of information.

The interface is designed as a set of fuzzy rules. The transformation and
transmission of information between concepts of two-level structures are
representing using the IF-THEN rules that are embedded into the interface.
The fuzzy rules take the values of concept as input from the lower level and
infer the value of concepts on the supervisor-FCM. For example, information
from the concepts of machine parameters at the lower level (Selector-con-
cepts S-C7 and S-C8) pass through the interface and influence the concept of
UC, “machine factors” at the upper level. Also, information from the Output-
concepts (OUT-C1, OUT-C2, and OUT-C3) influences the UC, “dose from the
treatment planning system.” The following fuzzy rules describe the part of
the interface from lower level toward the upper level:

e IF value of OUT-C1 is very high AND values of OUT-C2 AND
OUT-C3 are very low THEN value of UC, is very high.

e IF value of OUT-C1 is the highest AND values of OUT-C2 AND
OUT-C3 are the lowest THEN value of UC, is the highest.

e IF value of OUT-C1 is high AND values of OUT-C2 OR OUT-C3 are
low THEN value of UG, is high.

e IF value of OUT-C1 is very high AND values of OUT-C2 OR OUT-C3
are low THEN value of UG, is high.

e IF value of S-C3 is very low AND values of S-C7 AND S-C8 are very
high THEN value of UC; is high.

e IF value of S-C3 is very low AND values of S-C7 AND S-C8 are the
highest THEN value of UC; is very high.

e IF value of S-C3 is very low AND values of S-C7 OR S-C8 are very
high THEN value of UC; is high.

e [F value of S-C3 is medium AND values of S- C7 OR S-C8 are medium
THEN value of UC; is medium.

e IF value of S-C9 is very high THEN value of concept UC; is very
high.

e IF value of S-C9 is the highest THEN value of concept UCj is the
highest.

In the same way, with a corresponding set of fuzzy rules, the interface from
the upper level toward the lower level is developed describing analogous

influences from the concepts of supervisor-FCM toward the Selector-concepts
of the CTST-FCM.
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6.7.1 Estimation of the Success or Failure of the Treatment Therapy

The initial values of concepts on supervisor-FCM are determined by the
values of concepts of lower level CTST-FCM model, through the interface
described earlier, and also there are some external inputs for the values of
concepts referred to as UCs “human factors” and UC, “tumor localization.”

6.7.1.1 Case Study 1

Here, the case of Section 6.5 will be discussed under the aspects of the hier-
archical two-level structure. The CTST-FCM that was used for the first test
case of prostate cancer is the lower level FCM. As presented, this CTST-FCM
after the simulation had reached an equilibrium region and the values of
Factor-concepts, Selector-concepts, and Output-concepts could be used for
the desired treatment planning and calculation of dose on the target volume,
normal tissues, and sensitive organs. These values are inputs to the fuzzy
rules consisting the interface and so they determine the initial values of con-
cepts on supervisor-FCM that are given in the following matrix:

A’ =1075 0.8 0.3 0.6 0.7 0.5 0.65]

For these values of concepts, the supervisor-FCM is able to examine if they
are within the accepted limits for the radiotherapy execution. The supervisor-
FCM simulates through Equation 6.1 using the initial matrix A(l) and the initial
weight matrix Wupperlevel to find an equilibrium region.

After 10 iteration steps, an equilibrium region is reached and Figure 6.12
gives the subsequent values of calculated concepts. Values of concepts UC,

Convergence regions
T

Value of node

0.2

1 2 3 4 5 6 7 8 9 10 1
Number of repetitions

FIGURE 6.12
Equilibrium state for Supervisor-FCM model.
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and UC,, in the equilibrium region, are equal to the values 0.8033 and 0.89
where the value of FD is out of the suggested desired regions in Equations
6.11 and 6.12. Then according to the algorithm of supervision of Figure 6.11,
we continue implementing the NHL algorithm.

The supervisor-FCM updates by the implementation of NHL algorithm,
which is described in Section 6.3. After trial and error experiments for the
specific supervisor-FCM model, the values of learning parameters # and y
have been determined as 0.04 and 0.98, respectively. The desired target values
for each of the two DOCs are the mean values of the corresponding Equa-
tions 6.11 and 6.12: T, = 0.875 for the concept TPD and T, = 0.925 for the FD.

Equation 6.5 is used to modify the weights of supervisor-FCM, and
Equation 6.3 is used to calculate the values of concepts after each simulation
step. After 11 simulation steps, the supervisor-FCM reaches an equilibrium
region, satisfying the criteria of algorithm in Equations 6.6 and 6.7:

upper level

A, = [0.8325 0.8462 0.3000 0.6055 0.7693 0.5000 0.9236]

and the new weight matrix derived after training using the NHL algorithm is

0 0 0 0 0 0 054 ]
0.465 0 0 0 0 0 061
0 01 0 0 0 -0.043
Wiervisor | () 0 0 0 -0.105 0 -0.078
0 0 0 -023 0 0 0611
0 052 0 0 0 0 0386
10409 0681 0 0 054 0 0 |

The updated weights keep their initial suggested signs and directions, and
their values within the initial ranges derived from the fuzzy linguistic vari-
ables, as suggested by expert doctors. Protocols and experimental data pre-
scribe the final dose to patient for every treatment case.

In the first example, the calculated values for output concepts are TPD = 0.8462
and FD = 0.9236, respectively, which are within the acceptable values accord-
ing to Equations 6.11 and 6.12 [50]. Radiotherapists can follow the suggested
values and the treatment will be executed with successful results.

6.7.1.2 Case Study 2

To update the values of concepts at lower level, we follow the upper-lower
interface and we change the values of the most important Factor-concepts and
Selector-concepts. Also, at the same time, for the new employed technique-
or clinical case, we redefine some of the weights between SCs and OUT-Cs
based on experts’ suggestions. So, new values are assigned to the size of
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the radiation field (S-C3), beam direction (5-C5), weight of each field (5-C6),
patient immobilization (5-C9), and increase the amount of perfect match of
beam to the target volume (F-C15). These values along with the rest of the
values of matrix Alowerlevel for the second case study result in producing the
following matrix for the lower level:

_[0505050610510050306 0.5 0.5
0750081080406 050500802 04]

The CTST-FCM with the new Algverlevel jnteracts and new values for the
26 concepts are calculated according to Equation 6.3 and the newly calcu-
lated values for Output-concepts are: OUT-C1 is 098, OUT-C2 is 0.03, and
OUT-C3 is 0.07. These calculated values of Output-concepts are within the
accepted limits for the CTST-FCM model. So, these newly updated values of
concepts from CTST-FCM model influence the upper concepts of supervisor-
FCM through the interface again, determining the next new initial concept
values:

lower level
A21

Ayprerlevel = [0.87 0.81 0.2 04 0.65 0.5 0.86]

Then implementing the NHL algorithm for the supervisor-FCM, the fol-
lowing values of concepts on upper level are calculated: A"PPe level —
[0.857 0.832 0.2 0.621 0.85 0.5 0.91].

Thus, the value of UC, is FD = 091 and the value of UC, is TPD = 0.832,
which are accepted for the treatment execution.

If the calculated values of TPD and FD were not accepted, then the pro-
cedure mentioned earlier for the final decision could continue until the cal-
culated values of concepts FD and TPD would be accepted. In this way, the
supervisor-FCM supervises the treatment for prostate cancer therapy with
external beam radiation and more generally the whole procedure.

6.7.2 Evaluation of the Proposed Model

In this research, the FCM modeling methodology is introduced and utilized
at lower level to model the process of treatment planning, adjusting the
treatment variables and calculating the corresponding dose to the target vol-
umes, organs at risk, and normal tissues. The same modeling methodology
is used at upper level to model abstractly and supervise the whole procedure
of radiation therapy. For the supervisor-FCM, a novel training algorithm, the
NHL is utilized to adjust the interconnections between the generic treatment
variables of upper level and calculate the FD.

Weight adaptation and fine-tuning of supervisor-FCM causal links have
great importance in updating the model to achieve acceptable results for
radiotherapy techniques. This is the reason why we implement the NHL in
the supervisor-FCM. Also, we should emphasize that using the NHL algo-
rithm, we combine the human experts’ structural knowledge with the data
for each specific case. This is exactly the same with the reaction of a human
expert who adapts his approach to the input data.
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The doctor in charge usually evaluates the value of the FD given to the
target volume, and the supervisor-FCM does exactly the same. In the case of
unacceptable values for TPD and FD, some concepts on the lower level CTST-
FCM have to be influenced; they take new values that causes the lower level
CTST-FCM to interact. Then, the new calculated values of lower level, through
the interface, determine again the values of upper level supervisor-FCM con-
cepts. Implementing the NHL algorithm, the supervisor-FCM interacts and
after some simulation steps, converges to an equilibrium region, which can
be accepted or not, according to the related protocols.

Thus, radiotherapists can follow the suggested values and the treatment
will be executed with successful results. The proposed approach is efficient
and very useful for the FCM-controlled clinical radiotherapy process. The
utilization of NHL algorithm recalculates all weights that participate in the
simulation process, which enhances the supervisor-FCM model that was ini-
tially determined by expert doctors. Its importance to the radiotherapists is
underlined by the fact that they will be able to introduce clinical cases based
on a range of accepted values for the Output-concepts of the model.

Some requirements and limitations of the proposed approach are

* Experts should have great knowledge and know the proper opera-
tion of the whole system to provide useful information on desired
values of Output-concepts.

* The proposed training algorithm does not derive new interconnec-
tions and there is no influence on the architecture of the FCM model.

6.8 Discussion and Conclusions

The soft computing approach of FCMs is used to determine the success of the
radiation therapy process estimating the FD delivered to the target volume.
The scope of this research is to advise radiotherapists to find the best treatment
or the best dose. Furthermore, a two-level integrated hierarchical structure is
proposed to supervise and evaluate the radiotherapy process before treatment
execution. The supervisor-FCM determines the treatment variables of cancer
therapy and the acceptance level of final radiation dose to the target volume.
Two clinical case studies have been used to test the proposed methodology
with successful results and demonstrate the efficiency of the CTST-FCM tool.

The proposed CTST-FCM model is evaluated for different treatment cases
but it raises the need for an abstract model that will supervise it. An inte-
grated two-level hierarchical structure is proposed, consisting of two-level
FCMs to evaluate the radiotherapy planning procedure. The supervisor-FCM
represents a second higher level control for prediction, decision analysis, and
determination of the FD. The supervisor-FCM model is updated with the
implementation of the NHL algorithm that adjusts the weights and ensures
the success of the treatment therapy procedure. '



208 Intelligent and Adaptive Systems in Medicine

The proposed two-level decision model for the radiation treatment proce-
dure considers an extremely large number of factors that are ensured with
the use of FCMs. This dynamic decision-making model for the radiotherapy
treatment process uses the experts’ knowledge and follows a human reason-
ing similar to that which doctor adopt while deciding on the treatment plan.

This research work was focused on the study of knowledge representation
and on the introduction of a two-level hierarchical model based on FCMs.
For the radiotherapy planning model, the CTST-FCM model on the lower
level was proposed and an abstract generic model to supervise the whole
process was suggested, which was enhanced with learning methods to have
better convergence results. Furthermore, an interface to transform and trans-
mit information between the levels of hierarchy was described and an algo-
rithm to ensure the flow and exchange of information within the integrated
hierarchical system was proposed.

The proposed modeling method based on FCMs could improve the radio-
therapist’s ability to simulate the treatment procedure and decide whether
the treatment execution will or will not be successful by taking into consid-
eration the prescribed dose between the accepted limits. In addition to this,
the radiotherapist can simulate the procedure before the treatment process
starts. This proposed approach for decision making in radiotherapy was
introduced to improve planning efficiency and consistency for treatment
cases, selecting the related factors and treatment variables, describing and
determining the causal relationships among them.

The proposed hierarchical structure can be easily implemented in clinical
practice and thus provides the physicians and medical physicists with a fast,
accurate, reliable, and flexible tool for decision making in radiotherapy pro-
cedures. The test cases, presented in this work, demonstrate the efficiency of
the proposed integrated approach and give very promising results to develop
intelligent and adaptive decision support systems for medical applications.

Acknowledgment

The work of Elpiniki I. Papageorgiou was supported by a postdoctoral
research grant from Greek State Scholarship Foundation (LKY.).

References

1. F. Khan, The Physics of Radiation Therapy, 2nd Edition, Williams & Wilkins,
Baltimore, 1994. i :
2. B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall, NJ, 1992.



The Soft Computing Technique of Fuzzy Cognitive Maps 209

10.

11.

12.

13.

14.

15.

16.

17,

18.

19.

20.

. A. Brahme, Optimization of radiation therapy and the development of multi-

leaf collimation, Int. J. Radiat. Oncol. Biol. Phys., 25(2), 373375, 1993.

. A. Brahme, Optimization of radiation therapy, Int. ]. Radiat. Oncol. Biol. Phys.,

28, 785-787, 1994.

]J.P. Gibbons, D.N. Mihailidis, and H.A. Alkhatib, A novel method for treatment
plan optimisation, Engineering in Medicine and Biology Society, Proceedings of the
22nd Annual International Conference IEEE, Vol. 4, pp. 3093-3095, July 2000.

. G.S. Mageras and R. Mohan, Application of fast simulated annealing to optimi-

zation of conformal radiation treatments, Med. Phys., 20, 447-639, 1993.

" G. Starkschall, A. Pollack, and C.W. Stevens, Treatment planning using dose-

volume feasibility search algorithm, Int. J. Radiat. Oncol. Biol. Phys., 49, 1419-
1427 2001.

. A. Brahme, Treatment optimization using physical and biological objective

functions, in: Smith A. (Ed.) Radiation Therapy Physics, Springer, Berlin, pp. 209-
246, 1995.

. C.G. Rowbottom, V.S. Khoo, and S. Webb, Simultaneous optimization of beam

orientations and beam weights in conformal radiotherapy, Med. Phys., 28, 1696,
2001.

S. Soderstrom, Radiobiologically based optimization of external beam radio-
therapy techniques using a small number of fields, Thesis, Stockholm Univer-
sity, 1995.

G. Kutcher and C. Burman, Calculation of complication probability factors for
non-uniform normal tissue irradiation: the effective volume method, Int. |.
Radiat. Oncol. Biol. Phys., 16, 1623-1630, 1989.

LJ. Beard, M. van den Brink, A.M. Bruce, T. Shouman, L. Gras, A. te Velde, and
JV. Lebesque, Estimation of the incidence of late bladder and rectum complica-
tions after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer,
using dose-volume histograms, Int. J. Radiat. Oncol. Biol. Phys., 41, 8399, 1998.
T. Willoughby, G. Starkschall, N. Janjan, and I. Rosen, Evaluation and scoring
of radiotherapy treatment plans using an artificial neural network, Int. J. Radiat.
Oncol. Biol. Phys., 34(4), 923-930, 1996.

D. Wells and J. Niederer, A medical expert system approach using artificial
neural networks for standardized treatment planning, Int. J. Radiat. Oncol. Biol.
Phys., 41(1), 173-182, 1998.

C.D. Stylios and P.P. Groumpos, Fuzzy cognitive maps in modeling supervi-
sory control systems, J. Intell. Fuzzy Systems, 8, 83-98, 2000.

E. Papageorgiou, C.D. Stylios, and P.P. Groumpos, Decision making in exter-
nal beam radiation therapy based on FCMs, Proceedings of 1st IEEE International
Symposium ‘Intelligent Systems’ 2002, 10~12 September, Bulgaria, 2002.

V.C. Georgopoulos, G.A. Malandraki, and C.D. Stylios, A fuzzy cognitive map
approach to differential diagnosis of specific language impairment, Artif. Intell.
Med., 29(3), 261-278, 2003.

A. Zadeh, Fuzzy logic, neural networks and soft computing, Commun. ACM, 37,
77-84,1994. _ :

ICRU Report 50, Prescribing, recording and reporting photon beam therapy,
International Commission on Radiation Units and Measurements, Washington, 1993.
ICRU Report 24, Determination of absorbed dose in a patient irradiated by
beams of x or gamma rays in radiotherapy procedures, International Commis-
sion on Radiation Units and Measurements, Washington, 1976.



210

N
yd

22.

23.

24.
25:

26.

27.

28.

29.

30.

3l

32,

33.

34.

35

36.

o

38.

39.

40.

Intelligent and Adaptive Systems in Medicine

. E.I. Papageorgiou, C.D. Stylios, and P.P. Groumpos, An integrated two-level

hierarchical decision making system based on fuzzy cognitive maps, IEEE
Trans. Biomed. Eng., 50(12), 1326-1339, 2003.

J.S. Jang, C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice
Hall, Upper Saddle River, NJ, 1997.

P. Bonissone, Soft computing: the convergence of emerging reasoning technol-
ogies, Soft Computing, 1, 6-18, 1997.

L.A. Zadeh, What is soft computing, Soft Computing, 1,1-2, 1997.

P. Mitra, S. Mitra, and S.K. Pal, Staging of cervical cancer with soft computing,
IEEE Trans. Biomed. Eng., 47(7), 934-940, 2000.

S.K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in Soft Comput-
ing, Wiley, New York, 1999.

V. Kecman, Learning and Soft Computing: Support Vector Machines, Neural Net-
works, and Fuzzy Logic Models (Complex Adaptive Systems), Prentice Hall, Upper
Saddle River, NJ, 2001.

H. Abbass. An evolutionary artificial neural networks approach for breast can-
cer diagnosis, Artif. Intell. Med., 25(3), 265-281, 2002.

C.A. Pena-Reyes and M. Sipper, Evolutionary computation in medicine: an
overview, Artif. Intell. Med., 19(1), 1-23, 2000. , .

R. Axelrod, Structure of Decision, the Cognitive Maps of Political Elites, Princeton
University Press, Princeton, NJ, p. 404, 1976. .

C.D. Stylios, PP. Groumpos, and V.C. Georgopoulos, An fuzzy cognitive
maps approach to process control systems, J. Adv. Comput. Intell., 3(5), 409-417,
1999.

CT.Lin and C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intel-
ligent Systems, Prentice Hall, Upper Saddle River, NJ, 1996.

E.L Papageorgiou, C.D. Stylios, and P.P. Groumpos, Fuzzy cognitive map learning
based on nonlinear Hebbian rule, in: GedeonT.D. and Fung L.C.C. (Eds.) AI 2003,
LNAI, Vol. 2903, Springer-Verlag, Heidelberg, pp. 254-266, 2003.

E. Oja, H. Ogawa, and J. Wangviwattana, Learning in nonlinear constrained
Hebbian networks, in: Kohonen T., Makisara K., Simula O. and Kangas J. (Eds.)
Artificial Neural Networks, North-Holland, Amsterdam, pp. 385-390, 1991.

M. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, Bradford
Book, MA, 1995.

ICRU Report 42, Use of Computers in External Beam Radiotherapy Procedures with
High Energy Photons and Electrons, International Commission on Radiation Units
and Measurements (ICRU), Bethesda, MD, 1987.

R. Mohan, G.S. Mageras, B. Baldwin, L.J. Brewster, G.J. Kutcher, S. Leibel, C.M.
Burman, C.C. Ling, and Z. Fuks, Clinically relevant optimization of 3D-conformal
treatments, Med. Phys., 19(4), 933-943, 1992.

I. Turesson and A. Brahme, Clinical Rationale for High Precision Radiotherapy,
ESTRO (European Society of Therapeutic Radiation and Oncology), Malmo,
1992.

E. Papageorgiou, A model for dose calculation in treatment planning using
pencil beam kernels, Master thesis in Medical Physics, University Medical
School of Patras, Patras, Greece, June 2000.

AAPM Report 55, Radiation Treatment Planning Dosimetry Verification, American
Association of Physicists in Medicine, Report of Task Group 23 of the Radiation
Therapy Committee, American Institution of Physics, Woodbury, New York,
1995. ‘



The Soft Computing Technique of Fuzzy Cognitive Maps 211

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

J. Venselaar and H. Welleweerd, Application of a test package in an intercom-
parison of the photon dose calculation performance of treatment planning sys-
tems used in a clinical setting, Radioth. Oncol., 60, 203-213, 2001.

R. Alam, G.S. Ibbott, R. Pourang, and R. Nath, Application of AAPM Radiation
Therapy Committee Task Group 23 test package for comparison of two treat-
ment planning systems for photon external beam radiotherapy, Med. Phys., 24,
2043-2054, 1997.

F. Dechlich, K. Fumasoni, P. Mangili, G.M. Cattaneo, and M. Iorij, Dosimetric
evaluation of a commercial 3-D treatment planning system using Report 55 by
AAPM Task Group 23, Radioth. Oncol., 52, 69-77, 1999.

A. Pollack, G.K. Zagars, G. Starkscall, C.H. Childress, S. Kopplin, A.L. Boyer,
and LI Rosen, Conventional vs. conformal radiotherapy for prostate cancer:
preliminary results of dosimetry and acute toxicity, Int. ]. Radiat. Oncol. Biol.
Phys., 34(4), 555-564, 1996.

Radiation Therapy Oncology Group, A Phase I/II Dose Escalation Study Using
Three-Dimensional Conformal Radiation Therapy for Adenocarcinoma of the Prostate,
Radiation Therapy Oncology Group, Philadelphia, 1996.

J. Armstrong, Three-dimensional conformal radiation therapy: evidence-based
treatment of prostate cancer, Radioth. Oncol., 64, 235-237, 2002.

M.]. Zelefsky, L. Happersett, S.A. Leibel, CM. Burman, L. Schwartz, A.P. Dicker,
G.J. Kutcher, and Z. Fuks, The effect of treatment positioning on normal tissue
dose in patients with prostate cancer treated with three-dimensional confor-
mal radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 37, 13-19, 1997.

J. Meyer, AJ. Mills, L.C.O. Haas, ].K. Burnham, and E. Parvin, Accommoda-
tion of couch constraints for coplanar intensity modulated radiation therapy,
Radioth. Oncol., 61, 23-32, 2001.

G. Leunes, J. Verstaete, W. Van de Bogaert, J. Van Dam, A. Dutreix, and E. Van
der Schueren, Human errors in data transfer during the preparation and deliv-
ery of radiation treatment affecting the final result: garbage in, garbage out,
Radiother. Oncol., 23, 217-222,1992.

ICRU Report 29, Dose specification for reporting external beam therapy with
photons and electrons, International Commission on Radiation Units and Measure-
ments, Washington, 1978.



