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ABSTRACT 

 
In this study we investigate the feasibility of applying 
Symbolic Aggregate approximation (SAX) to automatically 
classify phasic eletromyographic (EMG) activity in human 
polysomnograms (PSGs).  SAX offers potential benefits for 
time series analysis of PSGs that include: 1) dimensionality 
and storage space reduction and 2) access to robust 
symbolic based data mining algorithms, such as intelligent 
icons.  To evaluate the proposed symbolic classification 
scheme we compare, expert visual scoring of phasic EMG 
activity, a reliable quantitative metric to assist in 
discriminating neurodegenerative disorder populations and 
age-matched controls, to a k-Nearest Neighbor intelligent 
icon based SAX scheme.  Detection of non-phasic EMG 
activity exceeded 90% and detection of phasic EMG activity 
ranged between 53 to 90 %, for six subjects.               
 
Index Terms— Electromyogram, Symbolic Aggregate 
approXimation (SAX), Phasic Activity, Polysomnogram, 
Dimensionality Reduction 
 

1. INTRODUCTION 
 
Data mining, the process of sifting through large databases 
for interesting patterns and relationships, offers high 
beneficence to characterize indistinct but pertinent aspects 
of bio-signal data sets [1]. However, many bio-signal data 
sets are represented in a time series format, continuous 
valued–discrete time signals [2], making many of the robust 
discrete/symbolic based data mining algorithms non-
applicable. Most importantly, this limitation prevents use of 
various computationally efficient classification schemes. To 
address the latter Keogh and Lin developed Symbolic 
Aggregate approXimation (SAX), the first symbolic 
representation for time series that offers dimensionality 
reduction and requires less storage space compared to 
conventional time series analysis techniques such as the 
Discrete Wavelet Transform and Discrete Fourier Transform 
[3]. 

     In this work we test the feasibility of applying the SAX 
algorithm to detect phasic electromyographic (EMG) 
activity within overnight human sleep data 
sets/polysomnograms (PSGs). Characterization of phasic 
EMG activity is relevant being that Bliwise et al. cite 
evidence that phasic EMG activity is a reliable quantitative 
metric to assist in discriminating neurodegenerative disorder 
populations and age-matched controls [4]. However, visual 
scoring of phasic EMG activity is time consuming-
preventing practical use within a clinical setting. 
     Our previous work has provided evidence that traditional 
computational signal processing methods (i.e. Fast Fourier 
Transform and the Discrete Wavelet Transform) supply 
sufficient feature extraction results to detect phasic EMG 
activity, providing detection rates comparable to expert 
visual scoring (>90%) [5,6].  In this paper, we expand upon 
our previous work by taking advantage of the potential 
dimensionality and storage space reduction offered via the 
SAX algorithm.  We propose that successful implementation 
of the SAX algorithm will assist in implementation of an 
automated detection scheme to detect phasic EMG activity 
for neurodegenerative disorder tracking in clinical settings 
with limited computational resources. 
      

2. METHODOLOGY 
 
2.1. Data Collection 
Polysomnograms (PSGs) recorded for this study complied 
with Institutional Review Board (IRB) guidelines outlined 
by Emory University (Atlanta, Georgia, USA) under the 
approved protocol IRB00024934. Six male subjects, not 
meeting International Classification of Sleep Disorders-
Second Edition (ICSD-2) criteria for neurodegenerative 
disease diagnoses, participated in overnight polysomnogram 
(PSG) recordings. The Embla Model N7000 data acquisition 
unit and the proprietary software program RemLogicTM 
were utilized to record all electromyograms (EMGs). A 
sampling rate of 200Hz with impedance values<10,000 
Ohms, from bilateral electrodes located on the right and left 
tibialis anterior (right and left leg, respectively) were used to 
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meet minimal digital recording requirements for appropriate 
amplitude and temporal resolution and to overcome 
frequency aliasing [7]. Lastly, data segments containing 
artifacts were manually removed from the final data set.  
Sleep durations and subject demographics for the six 
subjects are displayed in Table 1. 
 
2.2. Visual Scoring  
We evaluated performance of the SAX algorithm to 
manual/visual expert scoring of phasic EMG activity [5]. 
The twelve overnight (6 subjects x 2 leg channels) EMG 
data sets were first visually labeled for phasic and non-
phasic EMG activity by the same trained visual scorer in 1 s 
epochs. Left and right leg EMG channels were separately 
marked in 1 s non-overlapping intervals (epochs) as either 
non-phasic (0), or phasic muscle activity (1). Epochs, 
containing signal amplitudes visually exceeding four times 
the surrounding background activity, with time durations 
between 100 to 500 ms, were scored as phasic muscle 
activity [4, 5]. Any epochs that did not meet the latter 
criteria for phasic muscle activity (e.g., activity >500 ms) 
were scored as non-phasic EMG activity. All, scoring was 
completed within the RemLogicTM software platform with a 
workstation monitor resolution of 10 sec per display 
window and a screen size of 15″. Table 1 contains a 
summary of the visual scoring binary classifications with 
respect to each subject, and distribution of Non-Rapid Eye 
Movement (Non-REM) and REM sleep stages. Artifact 
contaminated epochs excluded from the final data sets 
included gross movements, ballistocardiographic 
interference and other spurious information and are not 
included in Table 1. 
 
Table 1: Data set information for each subject including age, amount of 
phasic and non-phasic EMG epochs (1 epoch = 1 second), and distribution 
of Non-REM (NREM) and REM sleep stages (based on percentage [%] of 
sleep in minutes). 

 

Subject 

 

 

Age 

[years] 

Phasic 

Epochs 

[sec] 

Non-Phasic 

Epochs 

[sec] 

 

NREM 

[%] 

 

REM 

[%] 

001 72 1,522 14,652 64.08 35.92 

002 60 1,484 21,556 74.61 25.39 

003 64 916 21,280 64.34 35.66 

004 70 5,970 16,586 67.03 32.97 

005 56 3,713 19,981 74.96 25.04 

006 64 5,726 17,912 76.67 23.34 

 
2.3. Symbolic Aggregate approXimation  
Below we briefly describe the SAX algorithm and its 
application to time series data. A time series  1 2, ,..., NT T T T  of length N  can be represented by an m  

dimensional vector where m N . Each element of the 
new vector iv  , is given by the following equation: 

 
( 1) 1

m
i

N

i j
m

j i
N

mv TN
  

   . (1) 

     The above equation simply states that in order to 
transform a time series from N dimensions to 
mdimensions one has only to divide the data into mequal 
sized frames and calculate the mean value of the data within 
that frame. The vector (vi) of these values/means becomes 
the Piecewise Aggregate Approximation (PAA) of the time 
series (T) [8, 9].  
     In order to produce equiprobable symbols, prior to the 
PAA we conduct a Z-score normalization of the time series 
data (T) such that we obtain a zero mean and standard 
deviation of one [10]. Normalization allows the use of 
Gaussian distribution properties, providing efficient 
determination of breakpoints (x-axis cut-line coordinates) 
that produce equal sized areas under a Gaussian curve [11] 
allowing necessary mapping of continuous values to the 
discrete space of predefined symbols-symbolization. For 
example PAA coefficients that are smaller than the smallest 
breakpoint will be represented by the symbol ‘a’; all PAA 
coefficients that are greater than the smallest breakpoint and 
less than the second breakpoint will be represented by the 
symbol ‘b’. This procedure is repeated for the number of 
symbols that the user has chosen until the entire SAX string 
is produced. Fig. 1a) represents the PAA approximation for 
a 0.5 sec data segment of non-phasic EMG, while Fig. 1b) 
illustrates the SAX string 

abbcbbaaabcabcbbcccddddcdS  produced from the PAA 
approximation found in Fig 1a). 
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Figure 1: The PAA approximation of a 0.5 second data segment of non-
phasic EMG and the produced SAX string such that x-axis represents 
samples [100samples/0.5seconds] and y-axis indicates signal amplitude 
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[micro-Volts]. a) PAA approximation (red) of EMG signal (blue) with 

length 100N   and 25m , b) the SAX 

abbcbbaaabcabcbbcccddddcdS   string (red) produced from the 
approximation in panel a) using an alphabet of 4 symbols. 
     The output of SAX is not the most appropriate 
representation for classification, since its main use is for 
indexing purposes. In order to classify each string a more 
appropriate method than the SAX output is the 
representation by intelligent icons [12,13]. These icons 
represent the frequency of each word in the SAX string. For 
example for the SAX string in Fig. 2b) we find the number 
of times a word of length 1l   appears in the string leaving 
us with an intelligent icon of size 2 2 . If we wanted to find 
words of length 2l   an intelligent icon of size 4 4  would 
be produced. The aforementioned procedure for intelligent 
icon representation of the SAX string found in Fig. 2b) is 
depicted in Fig. 3. 

 
Figure 3: Intelligent icons of the SAX string 

abbcbbaaabcabcbbcccddddcdS  found in Fig. 2b. a) Intelligent 

icon for words of length 1l   and b) Intelligent icon for words of length 

2l  . 

 
3. RESULTS AND DISCUSSION 

 
We parsed each signal with a non-overlapping window  size 
of 200 samples and we employed the SAX method for each 
window using 100m  and an alphabet of 4 symbols 
producing intelligent icons of size 4 4 . Below we present 
two examples of intelligent icons for phasic EMG activity 
events Fig. 4a) and Fig. 4b) along with the intelligent icon 
for a non-phasic EMG activity event Fig. 4c). Visual 
observation of the intelligent icons 4a) and 4b) clearly 
indicate similarities between the phasic EMG activity 
events, and noticeable differences when comparing the 
phasic 4a) and 4b) vs. non-phasic 4c) EMG activity 
intelligent icons. The similarity of the phasic EMG activity 
icons also reveals the robustness of this graphical 
representation which, by observation of the original EMG 
signals (left side panels of Fig. 4a) and 4b)), includes 
properties of time invariance.  
     For the classification scheme we used a k -Nearest 
Neighbor (k-NN) classifier implemented in WEKA [14], 
trying a specified range of nearest-neighbors, k, for  
(1 7k  ) with the distance, D, between two intelligent 
icons, I and J, defined as 

      4 4
2

1 1

, , ,
n m

D I J I n m J n m
 

              (2) 

where, n and m represent the index values into the word 
matrix for the respective intelligent icons. 

     In Tables 2-7 we present the results of our classification 
scheme providing a confusion matrix for each subject, both 
legs (left and right combined), estimated using 10 fold cross 
validation [15]. Table 8 summarizes the true positive, phasic 
EMG activity detection, and true negative, non-phasic EMG 
activity detection, rates obtained from comparison of the 
classification scheme vs. visual expert scoring.  

 
 (a) 

 
(b) 

 
(c) 

Figure 4: Intelligent icons produced by the SAX algorithm such that x-axis 
represents samples [200samples/1.0second] and y-axis indicates signal 
amplitude [micro-Volts]. a-b) Two phasic EMG activity events (left side 
panel) and their respective intelligent icons (right side panel), c) A non-
phasic EMG activity event and its corresponding intelligent icon. 
 
Table 2: Confusion matrix for the k-NN classification of phasic (PEM) and 
non-phasic EMG (Non-PEM) epochs for Subject 001 
 k-NN Classification 

PEM Non-PEM 
Visual 

Scoring 
PEM 1377 145 

Non-PEM 239 14413 
 
Table 3: Confusion matrix for the k-NN classification of phasic (PEM) and 

non-phasic EMG (Non-PEM) epochs for Subject 002 
 k-NN Classification 

PEM Non-PEM 
Visual 

Scoring 
PEM 905 579 

Non-PEM 482 21074 
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Table 4: Confusion matrix for the k-NN classification of phasic (PEM) and 
non-phasic EMG (Non-PEM) epochs for Subject 003 

 k-NN Classification 
PEM Non-PEM 

Visual 
Scoring 

PEM 491 425 
Non-PEM 393 20887 

 
Table 5: Confusion matrix for the k-NN classification of phasic (PEM) and 

non-phasic EMG (Non-PEM) epochs for Subject 004 
 k-NN Classification 

PEM Non-PEM 

Visual Scoring 
PEM 4887 1083 

Non-PEM 1066 15520 
 

Table 6: Confusion matrix for the k-NN classification of phasic (PEM) and 
non-phasic EMG (Non-PEM) epochs for Subject 005 

 k-NN Classification 
PEM Non-PEM 

Visual 
Scoring 

PEM 2526 1187 
Non-PEM 952 19029 

 
Table 7: Confusion matrix for the k-NN classification of phasic (PEM) and 

non-phasic EMG (Non-PEM) epochs for Subject 006 
 k-NN Classification 

PEM Non-PEM 
Visual 

Scoring 
PEM 4989 737 

Non-PEM 756 17156 
 
Table 8: True Positive (TP) rates, phasic EMG activity detection, and True 

Negative (TN) rates, non-phasic EMG activity detection, 
for each subject using the SAX method and intelligent icon based 

classification scheme. 
 S001 S002 S003 S004 S005 S006 

[%] [%] [%] [%] [%] [%] 
TP-rate 90.5 61.0 53.6 81.8 68.0 87.1 
TN-rate 98.4 97.8 98.1 93.6 95.2 95.8 
 

4. CONCLUSION 
 

Detection of non-phasic EMG activity, TN-rates, exceeded 
90% for all six subjects. Phasic EMG activity detection, TP-
rates, exceeded 80% for three subjects (S001, S004, and 
S006).  These TN and TP-rates indicate the feasibility of 
replacing tedious expert visual scoring with a k-Nearest 
Neighbor intelligent icon based SAX classification scheme. 
However, despite these promising results, we found that TP-
rates for S002, S003 and S005 indicate that the current 
proposed SAX scheme is not robust across all subjects, and 
requires refinement.      
     To refine our SAX scheme we will investigate 
optimization techniques that intelligently select the 
following SAX parameters: number of segments, symbols 
and words. Furthermore, we will incorporate sophisticated 
classification algorithms such as Support Vector Machines 
and Random Forests which will improve characterization of 
classification boundaries for data sets with less distinct 
boundaries for phasic and non-phasic EMG activity, similar 
to that found in the S002, S003 and S005 data sets.   
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