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Abstract. Recent research on manual/visual identification of phasic muscle ac-
tivity utilizing the phasic electromyographic metric (PEM) in human polysom-
nograms (PSGs) cites evidence that PEM is a potentially reliable quantitative 
metric to assist in distinguishing between neurodegenerative disorder popula-
tions and age-matched controls. However, visual scoring of PEM activity is 
time consuming-preventing feasible implementation within a clinical setting. 
Therefore, here we propose an assistive/semi-supervised software platform  
designed and tested to automatically identify and characterize PEM events in a 
clinical setting that will be extremely useful for sleep physicians and techni-
cians. The proposed semi-automated approach consists of four levels: A) Signal 
Parsing, B) Calculation of quantitative features on candidate PEM events, C) 
Classification of PEM and non-PEM events using a linear classifier, and D) 
Post-processing/Expert feedback to correct/remove automated misclassifica-
tions of PEM and Non-PEM events. Performance evaluation of the designed 
software compared to manual labeling is provided for electromyographic  
(EMG) activity from the PSG of a control subject. Results indicate that  
the semi-automated approach provides an excellent benchmark that could be 
embedded into a clinical decision support system to detect PEM events that 
would be used in neurological disorder identification and treatment. 
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1 Introduction 

The movement disorders literature in sleep medicine contains a plethora of schemes 
(visual [1-4] and computerized [5-10]) to characterize electromyographic (EMG) 
activity during sleep, providing evidence differentiating between healthy and neuro-
degenerative patient populations. Notwithstanding the relevant clinical benefit of 
early diagnosis of neurodegenerative conditions from implementation of these 
schemes a standardized EMG processing methodology has yet to be adopted in clini-
cal practice [11].  
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Impediments to the adaptation of a standardized methodology to measure EMG ac-
tivity during sleep for clinical assessment have been outlined by Neikrug and Ancoli-
Israel [12], with concerns relevant to our study summarized below: 

a. Consistency in scoring and defining pertinent EMG activity metrics are lack-
ing, preventing valid comparisons between studies across different labs. 

b. Major drawbacks in visual scoring methods (laborious time consumption and 
mislabeling) and absence of rigorous validation of computerized approaches 
with prevalence values of patient populations equal to that encountered clinical-
ly. 

c. Delineation of amount, duration, and level of phasic EMG activity required 
for pathological classification. 

Addressing the concerns posed by Neikrug and Ancoli-Isreal are crucial in order to 
efficiently translate research findings regarding EMG activity in sleep for clinical 
benefit. Therefore we present a quantitative methodology, within a user friendly com-
puterized approach,that will establish standards required tackle the issues mentioned 
in a) and b). The proposed system builds upon our previous work [9] to define quan-
titative features which efficiently compare to validated visual scoring techniques for 
phasic EMG metric (PEM) identification, established by Bliwise et al. [4]. We utilize 
the validated quantitative features to develop an assistive/semi-supervised graphical 
user interface (GUI) that reduces scoring time in labeling phasic EMG events. The 
major aim of this work is the design and development of a user friendly GUI for  
automatic phasic EMG identification that will be used in both healthy and neurodege-
nerative patient populations, so there is not included any classification of pathological 
cases that will be future work. Therefore, the evaluation of the proposed approach is 
obtained by comparing elapsed times of expert scoring using our GUI for manual and 
semi-supervised labeling of phasic EMG leg events from a human control data set. 
Our work represents an excellent benchmark for the development of a clinical deci-
sion support system to detect PEM events for future use in neurological disorder iden-
tification and treatment within a clinical setting.  

2 Methods 

2.1 Data Collection 

All data collected in this study followed Institutional Review Board guidelines out-
lined by Emory University (Atlanta, Georgia, USA) under the approved protocol 
IRB00024934. Overnight polysomnogram (PSG) data were recorded from one 72 
year old male subject (S001), not meeting ICSD criteria for neurodegenerative disease 
diagnoses, using the Embla Model N7000 data acquisition unit and the proprietary 
software program RemLogicTM. Electromyogram (EMG) data was recorded, digitized 
at a sampling rate of 200Hz with impedance values<10,000 Ohms, from bilateral 
electrodes located on the left anterior tibialis (left leg). EMG signals were exported  
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from RemLogic using the European Data Format (.edf). The proprietary numerical 
computing software program MATLAB® (version 8.2 R2013b) and the open source 
software library for biomedical signal processing BioSig Toolbox 
(http://biosig.sourceforge.net/), MATLAB® compatible, version 2.88 (Schloegl A-
Graz University of Technology, Graz, Austria) were utilized to convert .edf files into 
a .mat format for quantitative processing and GUI scoring. Data segments containing 
artifacts were manually excluded from the final data set, which consisted of ~4.5 
hours of EMG data from Rapid Eye Movement (REM) and Non-REM sleep, approx-
imately distributed equally. 

2.2 Graphical User Interface (GUI) 

The proposed semi-automated approach consists of four levels: A) Signal parsing to 
segment the signal into 1 sec windows, B) Calculation of quantitative features on can-
didate PEM events, C) Classification of PEM and non-PEM events using a linear  
classifier, and D) Post-processing/Expert feedback to correct/remove automated mis-
classifications of PEM and Non-PEM events. Details regarding pertinent aspects of 
each level of our semi-automated PEM annotator are delineated below:  

2.3 Level A: Signal Parsing 

Unlike our previous work [9,14] in order to detect candidate PEMs we parse the  
signal using a non-overlapping sliding window. The size of the window is chosen as  
1 sec. 

2.4 Level B: Calculation of Quantitative Features on Candidate PEM Events 

Expanding upon our previous work we automated, within the GUI, the calculation of 
15 features on the candidate PEM and Non-PEM events obtained from Stage A using 
a 1 sec non-overlapping moving window. Feature descriptions and corresponding 
mathematical equations were described in detail in our previous work [9] and are 
reprinted below, for the reader’s convenience: 

1. Relative EMG Frequency Power ( Prel ): a frequency domain feature that pro-
vides a sub-band analysis of the high frequency EMG signal components (fre-
quency band [12.5 to 32 Hz]) [15] (sampled at 200 Hz) with the power spectra 
density ( ( )P f ) extracted using the Fast Fourier Transform (FFT) [16,17]  

i. 
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2. Spectral Edge Frequency 95th Percentile (SEF 95): the frequency up to which 95 
percent of the total signal power is accumulated [18]. 
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                                      where sf , is the sampling frequency. 

 
3. Skewness ( Skew ): a time domain feature that measures the asymmetry of the 

probability distribution of the EMG signal amplitude [19]. 
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with M representing the number of data samples contained in the processing window 

and x  symbolizing the sample mean 
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4. Variance ( 2s ) [19]:  
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5. Kurtosis (Kurt): a measure of the peakedness or flatness of the probability distri-
bution of the signal amplitude [20] 
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6. Entropy (Ent): an information domain feature that calculates the amount of uncer-
tainty or unpredictability of the EMG signal amplitude 
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with M symbolizing the length of the data signal, n representing the number of bins, 
with the optimal number of bins obtained using the Freedman–Diaconis rule [21], to 
estimate the histogram of the data signal with bini indicating the number of data sam-
ples from EMG signal contained in the ith histogram bin [22]. 
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7. Mobility ( Mobi ): a time domain feature that measures the relative average slope 
of the EMG signal. It is expressed as the standard deviation ( std ) of the  
slope (signal’s first derivative /dx dt ) with reference to the std  of the signal 
amplitude [22]. 

( )

( )

d x
std

dt
Mobi

std x

 
 
 = ,                                          (7) 

where, the EMG signal is symbolized by the discrete variable x  for ( )std x s=  (See 

equation 4) and a first order approximation is used to calculate the derivative such 
that, 
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8. 75th Amplitude Percentile ( 75 _ Amp ): the amplitude value below which 75% of 

the total EMG signal amplitude resides [22]. So, the value separates lowest 75% 
and highest 25% of the data. It is also called upper quartile or third quartile. 
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where M  is the number of samples ( )x i  of the EMG signal in one epoch and card 

represents the number of elements within the sample set (set’s cardinality). 
 

9. Complexity (Comp): the ratio of the mobility ( Mobi ) of the first derivate of the 
signal to the mobility of the signal amplitude. Complexity expresses the average 
EMG wave-shape in relation to a pure sine wave [22]. 
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10. Mean Absolute Amplitude ( MAA ): a time domain feature that measures the ab-
solute value of the mean EMG amplitude [23]. 

1
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11. Curve Length ( L ): the sum of the value of the first order differences of the EMG 
signal amplitude values [24]. 
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12. Mean Energy (MnE): a time domain feature that measures the squared EMG 
signal amplitude [24]. 

2

1

1
( )

M

i

MnE x i
M =

=  . (13) 

13. Zero Crossings ( ZC ): defined as the number of crossings of the EMG signal 
over the ordinate, where the axis equals zero [24]. 
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14. Average Nonlinear Energy ( NE ): a non-linear feature that is sensitive to signal 
fluctuations in the time and frequency domain, with respect to the following non-
linear operator ( NLO ): 

2[ ] ( ) ( 1) ( 1)NLO i x i x i x i= − − + , (15) 

the NLO is weighted with a Hanning window and then the NE is calculated as fol-
lows: 
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where, wNLO  is the Hanning windowed version of the nonliner operator, NLO , with 

M  being the data epoch [24]. 
 

15. Spectral Entropy (SE): defined as the amount of uncertainty or unpredictability of 
the EMG signal in the frequency domain [24], 

2( ) log ( )SE P f P f= − . (17) 

2.5 Level C: Classification of PEM and Non-PEM Events Using a Linear 
Classifier 

Supervised classification of one second epochs as PEM versus Non-PEM events were 
conducted using a linear classifier [25]. The feature vector y  obtained from Level B 
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is represented as 15y ∈ ℜ , such that the linear discriminant function, ( )k yδ , with 

respect to the class k  is defined by the following: 

 1 11
( ) log

2
T T

k k k k ky yδ μ μ μ π− −= Σ − Σ + , (18) 

where, 1, 2k =  represents the two classes describing the PEM and Non-PEM events 
respectively, kμ  is the 15 component mean vector, Σ  is the 15 15×  feature cova-

riance matrix, 1−Σ  is the inverse of the feature covariance matrix, and prior probabili-
ties are defined by πk such that: 
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and kN  is the number of samples within the k class training data set. 

The mean vector and covariance matrix for each class k are estimated during the 
training phase and are described by the following: 
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As for the evaluation of the linear algorithm we used the PEM and Non-PEM 
events annotated by a phasic EMG expert scorer from the data set of S002. Lastly, to 
obtain PEM and Non-PEM labeling, the function is maximized using the classifica-
tion rule *k where, 

 *

1,2
arg max ( )k

k
k yδ

=
= . (22) 

2.6 Level D: Post-processing/Expert Feedback to Correct/Remove Automated 
Misclassifications of PEM and Non-PEM Events 

Level D includes the semi-automated portion of our GUI. This stage permits the us-
er/scorer to provide feedback within the classification scheme by correcting any au-
tomated misclassifications, from Level C, of PEM and Non-PEM events. Figure 1 
summarizes all the aforementioned levels included within the proposed semi-
automated phasic EMG annotator using a flowchart. A screen shot of the visual inter-
face produced by the developed GUI is shown in Figure 2. Lastly Figure 3 displays 
the output of the GUI following Level C. 
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Fig. 1. Flowchart of Semi-Automated PEM Annotator Methodology 

 

Fig. 2. Screenshot of the left leg EMG data from S001, displayed within our semi-automated 
phasic EMG activity GUI annotator 
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Fig. 3. Four PEM events two are correctly classified and annotated and two are classified as 
non- PEM events (PEM events demarcated by vertical read lines and #38 and #39) 

3 Results 

3.1 Classification and Speedup 

In this study one expert PEM scorer using the proposed semi-automated phasic EMG 
activity GUI annotated the left leg EMG PSG data from a single patient, S001. Tables 
1 through 3 comprise the classification performance results and time elapsed from the 
latter. Classification results for all PEM and Non-PEM events using the linear discri-
minant algorithm are provided in a confusion matrix in Table 1. Results from  
the linear algorithm “predicted” were compared to the “actual” labels of PEM and 
Non-PEM events obtained from the expert EMG activity scorer. 

Table 1. Confusion matrix of our classification scheme 

 PEM 
(predicted) 

Non-PEM 
(predicted) 

PEM 
(actual) 

622 50 

Non – PEM 
(actual) 

126 7289 

 
Detection rates for PEM and Non-PEM events are displayed in Table 2. The detec-

tion rates for PEM and Non-PEM were calculated as follows: 
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s
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Table 2. Detection rates for PEM and Non-PEM events for patient S001 

PEM  
(%) 

Non-PEM 
(%) 

92.56 98.3 
 
Lastly, the time elapsed while the expert labels PEM and Non-PEM events with/without 

use of our semi-automated phasic EMG activity scheme are shown in Table 3. 
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Table 3. Time spent by an expert annotating data from a single subject, S001 with or without 
use of our semi-automated phasic EMG activity annotator 

 Time in secs 
Annotation time without  
semi-automated labeling 

4hr 26min 2sec 

Annotation time with  
semi-automated labeling 

58min 30sec 

4 Conclusions 

Here we developed and describe a software tool for semi-automated classification of 
phasic EMG events recorded from surface electrodes in an overnight human PSG. 
The semi- automated software tool provides to the user the opportunity to add PEM 
events that are not detected or to remove PEM events that the software incorrectly 
detected, easily and quickly using a simple point and click operation. Accurate and 
timely computerized PEM annotation will aid in addressing all the concerns posed by 
Neikrug and Ancoli-Israel [12] and assist in establishing standardized EMG 
processing methodologies for future use in neurological disorder identification and 
treatment.  

Future work will incorporate more sophisticated classifiers which provide confi-
dence intervals on the detected events. Also, since PEM events are less prevalent than 
Non-PEM events we will concentrate on avoiding false dismissals/false negatives 
(type II errors). The latter will reduce the need for the user to review excessive incor-
rectly automated-annotations of PEM segments (False Negatives). This will minimize 
the time spent by the user/scorer for annotation. Moreover, to determine user-
friendliness and clinical relevance of the GUI, we will investigate GUI robustness 
with respect to training levels of scorers (e.g. beginner, intermediate, and expert) and 
different data sets/patient populations (e.g. neurodegenerative disorder patients and 
age matched-controls). Lastly, investigation of the proposed future work will aid in 
meeting the long-term goal to develop a supportive technology for the efficient anno-
tation of EMG events within a clinical decision support system platform. 
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