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In this research work a new hybrid approach to spatio-temporal seismic clustering is proposed. The
method builds upon a novel density based clustering scheme that explicitly takes into account earth-
quake’s magnitude during the density estimation. The new density based clustering algorithm considers
both time and spatial information during cluster formation. Therefore clusters lie in a spatio-temporal
space. A hierarchical agglomerative clustering algorithm acts upon the identified clusters after dropping
the time information in order to come up only with the spatial description of seismic events. The
approach is demonstrated using data from the vicinity of the Hellenic seismic arc in order to enable its
comparison with some of the state-of-the-art distinct seismic region identification methodologies. The
presented results indicate that the combination of the two clustering stages could be potentially used
for an automatic definition of major seismic sources.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling the behavior of the earthquake phenomenon remains
an open front and top challenge in geosciences. More importantly,
understanding the underlying physics of the earthquake
phenomenon should be the first priority before trying to build
any mathematical model. What makes this task even more difficult
is that the only data readily presented to mankind is the output of
the phenomenon, in other words only the seismic events.

A quick examination of geographical maps with the epicenters
of earthquakes marked on them reveals a strong tendency of these
points to form compact clusters of irregular shapes and various
sizes often traversing with other clusters. Seismic cluster forma-
tion is believed to be due to underlying geological natural hazards,
which: (a) act as the energy storage elements of the phenomenon
and (b) tend to form a complex network of numerous interacting
faults (Vallianatos & Tzanis, 1998). ‘‘Earthquakes are correlated in
space and time over large distances’’ (Saleur, Sammis, & Sornette,
1996). This implies that seismic sequences are not formatted ran-
domly but they follow a spatial pattern with consequent triggering
of events. In other words geological natural hazards rarely appear
on their own, instead they tend to form a complex network of
numerous interacting faults. Even though the physical/geological
mechanisms that account for the formation of this spatio-temporal
ll rights reserved.

mputational Intelligence and
hnological Educational Insti-
+30 28210 23033.

A. Konstantaras).
phenomenon is literally unobservable, its structure can be indi-
rectly monitored based on the seismic activity of ‘‘neighboring’’
areas or using geological and geophysical characteristics of the
region (Zamani & Hashemi, 2004).

One of the first steps of seismic hazard analysis is to identify
seismogenic zones which can be further divided into smaller subz-
ones (seismic sources) based on various seismological criteria
(Morrato et al., 2007). Seismic zoning is usually performed based
on expert knowledge (Papaioannou & Papazachos, 2000). However
expert knowledge can sometimes be subjective (Zamani &
Hashemi, 2004) and as that lately quantitative methods and more
specifically, clustering applications (Jain, 2010) have emerged as an
alternative for seismotectonic zone delineation with the hope to
provide a more objective approach.

Even though clustering in seismology usually refers to temporal
association of seismic events creating a temporal sequence (Con-
sole, Murru, & Catalli, 2006; Pondard, Armijo, King, Meyer, & Flerit
2007; Zobin 1996) attempting to explore/explain the triggering
mechanism and the causality effect of seismic events within the
context of seismic zoning we are also concerned with the spatial
clustering of events and their spatial origin. Various clustering
methods have been employed with different inputs but with the
same more or less goal: to identify ‘‘uniform’’ seismic areas that
can be used for further hazard analysis.

Algorithms have been developed for delineation of seismic
source zones using a modified K-means algorithm that takes into
account the spatial orientation of earthquake hypocentres (Burton,
Weatherill, Karnawati, & Pramumijoyo, 2008; Weatherill & Burton,
2009, 2010) with applications to the Aegean region and in Java
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Fig. 1. Epicenters of earthquakes with M > 4 for the period 2000–2010.
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island. A series of papers report the use of a geographical grid
superimposed on Iran and based on geophysical, geological and
other information that merge sites of the grid which share similar
characteristics. More specifically in Zamani and Hashemi (2004) a
hierarchical clustering algorithm, the Ward’s method (Theodoridis
& Koutroumbas, 2008), was employed for the identification of sim-
ilar sites of the grid using 12 geological and 13 geophysical param-
eters. In Zamani, Nedaei, and Boostani (2009) a self-organized map
was trained using an augmented set of 49 attributes (14 geological,
6 seismicity related and 29 attributes of geophysical nature) with
the same grid set-up as in Zamani and Hashemi (2004) while the
same approach was tested in Zamani, Khalili, and Gerami (2011)
using statistical evaluation methods for the selection of the opti-
mum number of clusters. In Ansari, Noorzad, and Zafarani (2009)
a fuzzy clustering algorithm capable of identifying elliptical clus-
ters along with the epicenter locations of seismic events was used
to cluster a seismic catalog of Iran. (Konstantaras, Vallianatos, Var-
ley, & Makris, 2008; Konstantaras, Varley, et al., 2007) applied an
agglomerative algorithm that exploits both the spatial and tempo-
ral dimension of seismic events to cluster seismic data in the Hel-
lenic arc. In Mukhopadhyay, Fnais, Mukhopadhyay, and Dasgupta
(2010) a density based clustering method is employed to seismic
data coming from the Burmese–Andaman Arc System (BAAS) and
the West Sunda Arc (WSA) whereas the same approach is em-
ployed in Mukhopadhyay, Mukhopadhyay, and Dasgupta (2011)
for the case of Arabian Sea Triple Junction. In Hernandez and Sallis
(2011) a mixture modeling cluster approach is applied to seismic
data coming from Chile resulting in soft clustering of the seismic
catalog. A similar approach was followed by Kayabol (Kayabol,
2012) where a constrained Finite Mixture Model used the epicen-
ters of seismic events from the Kashmir area in Pakistan as inputs
to the clustering paradigm.

The identification of valid seismic clusters can aid the develop-
ment of seismic zone formation that can be subsequently used in
probabilistic seismic hazard analysis. Temporal as well as spatial
information can be fused looking for consistent patterns emerging
from interconnected underlying faults triggering consecutive main
seismic events in a chain effect fashion. Along this path algorithms
must be developed based on historical data trying to: (a) identify
clusters that are forming elongated and sometimes irregularly
shaped patterns, and (b) identify seismic events that belong to
the same seismic chain, grouping together pre- and post-seismic
events to individual main earthquakes.

In this research work we propose a two stage clustering method
that is based on a modified density based clustering algorithm and
a hierarchical agglomerative scheme. The proposed method is ap-
plied to data coming from the region of the Hellenic seismic arc
with results indicating that the framework could potentially be
used along with probabilistic paradigms for the development of a
spatio-temporal model that could cover the specific area.

The rest of the paper is structured as follows: Section 2 de-
scribes the proposed algorithm. Section 3 presents the results of
our method and Section 5 concludes the paper also providing
directions for future research.
2. The hybrid clustering scheme

In a simple marking on an atlas of the earthquake epicenters, it
can be seen even by the naked eye that there is a spatial structure
with sometimes irregular, elongated shapes. In Fig. 1 this is shown
for the case of the Hellenic seismic arc, where only events with
MS > 4 are depicted. As it can be seen there are a number of points
aligned along well known geological faults (even though there are
some that are ‘‘off the mark’’). This means that clustering
algorithms such as the well-known k-means that tend to form
‘‘well-shaped’’ clusters may not suffice for the problem at hand
and other families of unsupervised pattern recognition methods
might be a better choice (Jain, 2010). Therefore algorithms that
are not affected by the shape of the clusters and the number of in-
stances belonging to each cluster, such as density based algorithms
could be used.

Clustering is a method to uncover inherent grouping in a set of
observations. Based on different underlying principals and
assumptions, a number of clustering algorithms have been pro-
posed over the years with some of them aiming to improve exist-
ing algorithms and some of them rising from the need to meet the
requirements of new data sources, like those coming from social
networks etc. (Jain, 2010). In the case of seismic data, even the
way that we often depict them (using markers that are propor-
tional to the magnitude of the event) makes it obvious that the size
of an event matters and should be taken into account during
clustering.

In this work we propose a modified version of the well know
DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) algorithm (Ester, Kriegel, Sander, & Xu, 1996) which we call
it Seismic Mass DBSCAN (SM-DBSCAN) that takes into account the
peculiarity of seismic data that was mentioned in the previous par-
agraph: each seismic event (earthquake) is characterized apart
from its spatial and time dimensions, also by its magnitude. In other
words the ‘‘importance’’ of two events taking place at the same
location depends on their respective magnitude. Therefore treating
each event ‘‘equally’’ might not be the best way when performing
clustering. Along this line of thought, (Weatherill & Burton, 2009,
2010) suggest that ‘‘the enhanced influence of strong earthquakes’’
in the cluster analysis should improve the stability of the algo-
rithm’’ but in their work the proposed weighing scheme does not
depend on the seismic size but on the underlying fault length.

The SM-DBSCAN operates both in space and time thus creating
clusters that may overlap. In order to merge these closely related
clusters which are usually separated in time we apply an agglom-
erative hierarchical scheme after dropping the space dimension
and focusing solely on the space dimension since in this work we
are mainly interested in the development of a model for spatial
source identification. Both stages of the method are described in
the following subsections.
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2.1. The SM-DBSCAN algorithm

The traditional/conventional DBSCAN algorithm clusters data-
sets’ events based on the ‘‘density’’ of data occurrence (Ester et al.,
1996). More specifically it estimates the density of data using a Par-
zen window like approach, i.e. uses a predefined neighborhood ra-
dius to estimate the density, in order to discover regions which
contain a ‘‘significant’’ number of data. The neighborhood parameter
(Eps) as well the minimum number of data samples (MinPts) must
be provided by the user and are application specific. As it can be eas-
ily seen each data point is treated equally within the DBSCAN frame-
work. In the modified version of the DBSCAN we propose to weight
each seismic event by its magnitude. We propose in other words a
notion of ‘‘seismic mass’’. Therefore a region is ‘‘dense’’ provided that
the accumulated ‘‘seismic masses’’ exceed a predefined threshold M,
which replaces the MinPts parameter in the traditional/conventional
DBSCAN. The concept of the inclusion of the size of the seismic event
in the calculation of the density is depicted for a hypothetical one
dimensional case; Fig. 2a, depicts the estimated density by simply
counting the occurrence of data points along the x-axis whilst
Fig. 2b depicts the estimated density also considering the fact that
the central points correspond to events with much higher ‘‘mass’’.

Within this context a core point is one that has within its neigh-
bor a number of points that have a cumulative seismic mass
exceeding M. If a point is not a core point then it is either a boarder
point or a noise point. The discrimination between core points and
noise points is based on the notion of density reachability (Ester
et al. 1996). The proposed SM-DBSCAN algorithm operates in a
similar manner to the DBSCAN algorithm as shown below, using
the notation proposed by Theodoridis and Koutroumbas (2008):

Let X be the set of seismic events to be clustered and Xun be the
set of points belonging to X that have not yet been considered and
m denote the number of clusters.

SM-DBSCAN Algorithm

dSet Xun = X
dSet m = 0
dWhile Xun – £ do

sArbitrarily select a x e Xun

sIf x is a noncore point (i.e. the cumulative masses of the
points within Eps) then

jMark x as a noise point
jXun = Xun � {x}

sIf x is a core point then
jm = m + 1
jDetermine all density-reachable point in X from x
jAssign x and the previous points to the cluster Cm. The

boarder points that may have been marked as noise as also
assigned to Cm.

jXun = Xun � Cm

sEnd {if}
dEnd {while}

We must note that the main difference between the SM-

DBSCAN and the DBSCAN lies in the calculation of the density.
Therefore SM-DBSCAN inherits both the advantages and the disad-
vantages of the conventional DBSCAN. As a result one of the poten-
tial advantages of SM-DBSCAN is that as in the case of DBSCAN the
number of clusters has not to be set beforehand and moreover the
algorithm does not impose any restriction to the shape of resulting
clusters. The latter can be quite useful as it will be shown in Sec-
tion 2.2. On the other hand there are two parameters that have
to be set by the user that heavily influence the result of the cluster-
ing procedure. The effect of them as well as the effect of scaling of
the original data is presented in Section 3.
2.2. Second stage agglomerative hierarchical clustering

SB-DBSCAN uses as input both the spatial information of the
epicenters (latitude and longitude) as well as a third dimension,
the chronological occurrence of the event. With the inclusion of
time we have the formation of clusters in a three dimensional
space and on one hand we can have clusters of events grouped to-
gether representing seismic sequences corresponding to the same
main earthquake while on the other hand we can have clusters that
if projected on the space plane will overlap.

Therefore the inclusion of time as an extra dimension can re-
solve the issue of closely located faults by enabling clusters to
overlap spatially. They are in other words clusters that come from
the same fault but at different time instances. This is illustrated in
Fig. 3 using artificial data where the three presented clusters over-
lap spatially.

In order to come up with a seismic zoning procedure these
timely-separated clusters (with usually irregular shapes) could
be combined to define the common seismic zone. Since this is by
itself a hierarchical bottom-up approach, a hierarchical single link-
age agglomerative procedure (Jain, 2010, Minskin 2011, Theodori-
dis & Koutroumbas, 2008) was imported following the application
of the SM-DBSCAN hereby dropping the time information related
to the identified clusters and utilizing only the spatial related
dimensions. Due to the fact that we need to group together over-
lapping clusters, single linkage is most likely to make clusters to
merge. This is due to the way the proximity between clusters is
calculated in the single linkage case and more specifically in the
case that proximity is a dissimilarity measure (Theodoridis &
Koutroumbas, 2008):

If Di, Dj are two sets of vectors, then the min (single linkage)
proximity function is given:

Pss
minðDi;DjÞ ¼ min

x2Di ;y2Dj

pðx; yÞ

where p(x, y) is the proximity measure between two data points.
In other words this is defined as the proximity between the

closest two points that are in different clusters. The reason that
single linkage approach ‘‘guarantees’’ that overlapping clusters will
merge before we start merging spatially separated clusters comes
also as a by-product of the way that SM-DBSCAN creates clusters
at the first place: SM-DBSCAN identifies ‘‘dense’’ clusters and it is
therefore highly likely that within these dense regions the calcu-
lated proximity measure (distance in our case) will be very small
(close to 0).

The whole approach is summarized as follows:

Step 1: Apply the SM-DBSCAN algorithm to the seismic catalog.
Step 2: Drop the time information.
Step 3: Calculate the proximity between the clusters identified
in step 1 based on their spatial coordinates.
Step 4: Merge the closest clusters.
Step 5: Update the proximities.
Step 6: Go to step 4 unless a predefined number of cluster
remains.

3. Results

The region of the Hellenic seismic arc is the most seismological
active part of Europe as it can be seen in Fig. 4 where all seismic
events with a magnitude greater than 1 and for the time period
2000–2010 are marked. This figure makes apparent that the inclu-
sion of for- and after-shocks can obscure the underlying structure.
Failing to identify the earthquakes that are actually the main ones
within small chains of for- and after-shocks and resorting to use
the entire volume of archived data can erroneously lead to the



Fig. 2. Density estimation, with and without consideration of the respective ‘‘mass’’.

Fig. 3. Illustration of the effect of using the time dimension (a) and the result of dropping the time dimension (b). The three distinctive clusters that are well formed due to the
different time occurrences heavily overlap when we move to spatial coordinates.

Fig. 4. Epicenters of earthquakes with M > 1 for the period 2000–2010.
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identifications of patterns of short-spaced seismic events
attributed to smaller earthquakes accompanying individual main
seismic events, instead of identifying possible patterns of the
aforementioned broader relation. Therefore in most clustering
algorithm those events are eliminated using for example the
approach proposed by Reasenberg (Reasenberg, 1985). In our
approach this matter is treated implicitly by the parameter M that
forbids small magnitude events to blow up the volume of the clus-
ter unless they are really close to the main event.

The cumulative seismic mass parameter M can control the vol-
ume of clusters. Apart from M the user has also to select the radius
for the SM-DBSCAN and the number of clusters at the agglomera-
tive hierarchical level as well as the appropriate scaling of the time
dimension (no scaling was performed in the spatial coordinates
since they are of the same order of magnitude). As it is shown in
the following figures the results heavily depend on the selection
of the aforementioned parameters. A number of configurations
were tested and some of the results are depicted in the following
figures. Apart from these three parameters a number of temporal
units (scaling) were also employed ranging from 5 min to 30 min
temporal units to evaluate its effect on the formation of the
clusters.

Despite that the cluster formation is controlled by a complex
interplay of the aforementioned parameters, there are some gen-
eral patterns that can guide the selection of parameter values that
yield ‘‘reasonable’’ results. More specifically selecting too small a



Fig. 5. The results of the application of the SM-DBSCAN for (a) M = 10, Eps = 0.05 and time unit T = 5 min and (b) M = 50, Eps = 0.05 and time unit T = 5. Two small a number for
M fails to filter out the for- and the after-shocks, whereas too large a values leaves large areas (with known underlying fault sources) empty.

Fig. 6. The results of the application of the SM-DBSCAN for (a) M = 30, Eps = 0.12 and time unit T = 5 min and (b) M = 50, Eps = 0.05 and time unit T = 5. Two large a radius
creates clusters that span more than one seismic sources, whereas too small a radius can lead to very narrow clusters.

Fig. 7. The results of the application of the first stage (a) SM-DBSCAN with M = 50, Eps = 0.05 and time unit T = 5 min and (b) the second stage agglomerative clustering with
39 clusters. The selection of a lower number of clusters in the second stage produces a merging region of the Ionian and Corinthian bay faults.
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value for the aggregated seismic parameter M a very large number
of clusters will be formed (Fig. 5a) whereas too big a value results
in very few clusters leaving ‘‘empty’’ areas where known faults
exist (Fig. 5b). A large radius creates large clusters that artificially
span areas that are known to belong to different faults (Fig. 6a)
while on the other hand a small radius can create many small



4188 G. Georgoulas et al. / Expert Systems with Applications 40 (2013) 4183–4189
clusters that actually come from the same fault (Fig. 6b). Similar
behavior we have for the selection of the time unit (scaling of
the time dimension). Too large a unit creates very large clusters
whereas too small a value leads to the formation of many small
clusters.

In the case where there are many clusters the application of the
second stage of the proposed approach, the use of agglomerative
clustering, can lead to meaningful segregation; whereas in the case
where the output of the first stage has produced artificially very
large clusters it is not possible to compensate for them. Therefore
careful tuning is needed and as a rule of thumb a larger number of
clusters at the first stage is preferred over a smaller one.

Our observations suggest that more than one parameter setting
can lead to similar results consistently identifying specific seismic
formations. A quite high value for M and small values for Eps and T
create quite concrete clusters at the first stage which are combined
using the agglomerative scheme at the second stage to create a fi-
nal set of 35–40 clusters Fig. 7. This is a bit higher than the number
of clusters proposed by Weatherill and Burton (2009) and a bit less
than the number of seismic zones proposed in Papazachos, Makr-
opoulos, Latoussakis, & Theodulidis (1989).
4. Conclusions

In this work a novel approach to seismic event clustering is pro-
posed. The approach is based on a modified implementation of the
well-known DBSCAN algorithm that introduces the concept of
accumulated seismic mass for the isolation of clusters of seismic
events in time and space, called SM-DBSCAN, and then it employs
single linkage agglomerative hierarchical clustering for a second
level spatial clustering. The presented results show that the meth-
od is capable of finding irregularly shaped clusters which is a use-
ful feature since fault seismic zones are rarely well-shaped.
Moreover the algorithm was able to recognize among others, the
south Cretan and the Ionian region as individual seismic regions
in accordance with empirical results on distinctive seismic zones
(Drakatos & Latoussakis, 2001; Papaioannou & Papazachos, 2000).
In addition, although these are still preliminary results, it is worth
noting that the algorithm perceives a small area south-east of Pelo-
ponnesus as a further individual seismic region separating the
above two. Underground faults cartography (Seismotectonic map
of Greece with seismo-geologic elements, 1989) of that region indi-
cates the presence of two sets of parallel and in close proximity
with one another underground faults extending throughout the re-
gion’s vicinity, which do not appear to interact together with any of
the neighboring underground faults (Konstantaras, in press; Kon-
stantaras, Makris, Vallianatos, & Varley, 2007). Moreover since
the usefulness of clustering applications should be considered
within the specific domain context (Guyon, Von Luxburg, & Wil-
liamson 2009), the aforementioned results suggest that the novel
proposed scheme could be a valuable tool for the automatic anno-
tation of seismic catalogs after the appropriate parameter tuning.

Research to follow shall investigate the spatial distribution of
seismic events produced by our proposed framework in order to
test the causality effect implied by what is known as the Domino
theory (Bürgmann, 2009; Olson & Allen, 2005). We will examine
whether this physical bondage results in a pattern on the spatial
distribution of the seismic sequence and at what geographical
scale. Potential confirmation of the causality between adjacent
seismic regions might provide significant information about the
geographical scale upon which the theory of domino extents, at
particular seismological areas. Moreover we shall use temporal
pattern recognition techniques within the spatial framework of
the individual cluster to model the sequence of events based on
intelligent and soft computing systems. Furthermore, we shall also
attempt to develop a method capable of automatically assigning
earthquakes to seismic sources and subsequently ‘‘optimize’’ the
involved parameters by correlating the resulted clusters with
known faults as well as along with the development of predictive
models and their capability to model local seismic (major) events
and global models under the prism of the domino theory.
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