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Rolling element bearings are a very critical component in various engineering assets. Therefore
it is of paramount importance the detection of possible faults, especially at an early stage, that
may lead to unexpected interruptions of the production or worse, to severe accidents. This
research work introduces a novel, in the field of bearing fault detection, method for the
extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate
approXimation (SAX) framework and the related intelligent icons representation. SAX
essentially transforms the original real valued time-series into a discrete one, which is then
represented by a simple histogram form summarizing the occurrence of the chosen symbols/
words. Vibration signals from healthy bearings and bearings with three different fault
locations and with three different severity levels, as well as loading conditions, are analyzed.
Considering the diagnostic problem as a classification one, the analyzed vibration signals and
the resulting feature vectors feed simple classifiers achieving remarkably high classification
accuracies. Moreover a sliding window scheme combined with a simple majority voting filter
further increases the reliability and robustness of the diagnostic method. The results
encourage the potential use of the proposed methodology for the diagnosis of bearing faults.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Rolling element bearings are a very critical component in various machines, and account for 45–55% of asynchronous motor
failures according to a report from the Electric Power Research Institute (ERPI) [1]. The last two decades, the interest for efficient and
robust diagnostics of roller element bearings via condition monitoring approaches as well as advanced signal processing has seen an
extremely high increase. Of paramount importance in the diagnostic task are two items: 1) the feature extraction of damage sensitive
features from the recorded condition monitoring signals and 2) the pattern recognition approach that leads to fault identification.
Regarding the 1st item, wavelet analysis [2–4], empirical mode decomposition (EMD) [5,6] envelope analysis [7], cepstrum analysis
[8], Kurtogram [9], nonlinear feature extraction [10], and other tools are utilized [11]. Regarding the 2nd item, artificial neural
networks (ANNs), support vector machines (SVMs) [4], hiddenMarkovmodels (HMMs) [3], and particle filters [7] are used for pattern
recognition and fault identification but their success highly depends upon the diagnostic potential of the extracted features.

More specifically, in [2] the condition of an electric motor with two rolling bearings with one normal state and three
faulty states each was studied. De-noising via the continuous wavelet transform (CWT) was conducted and support vector
ulas).
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machines (SVMs) were used for the fault classification task with 100% accuracy. Ocak et al. [3], developed a new scheme
based on wavelet packet (WP) decomposition and HMMs for the condition monitoring of bearing faults. In this scheme,
vibration signals were decomposed into WPs and the node energies of the 3-level decomposition tree were used as features.
An HMM was trained to model the normal bearing operating condition and its probabilities were then used to track the
condition of the bearing. The normalized WPs quantifiers as a new feature set was introduced in [4] for the detection and
diagnosis of localized bearing defect and contamination fault. Unlike the conventional feature extraction methods, which
use the amplitude of wavelet coefficients, these new features were derived from probability distributions and are more
robust for diagnostic applications.

In [5] EMD was utilized for the extraction of only four features both from the time and the frequency domain of two
specific intrinsic mode functions (IMFs) which were then fed to an ensemble anomaly detector consisted of very simple
individual detectors capable of detecting four different types of seeded faults in a benchmark data set [12]. Envelope analysis
using Hilbert transform was used in [7] and the energy ratio of specific components extracted from the frequency spectra of
the envelop signal were combined with static (KNN) and dynamic (particle filters) anomaly detectors with very promising
results for bearings suffering with different fault severities and under different operating conditions. The minimum variance
cepstrum (MVC) method for the detection of the signature periodic fault signals was investigated in [8] and automotive ball
bearings and the results compared favorably to other well established techniques such as the wavelet transform and the
complex envelop analysis. Wang and his co-workers proposed an enhanced Kurtogramwhose kurtosis values are calculated
based on the power spectrum of the envelope of the signals extracted from WP nodes at different depths [9]. The nodes
corresponding to the highest kurtosis can then be considered for further analysis. The proposed method combined with
autoregressive (AR) filtering performed well both in simulated signals corrupted by noise as well as real experiments
involving bearings with outer race, inner race and rolling element faults. Nonlinear feature extraction based on recurrence
quantification analysis (RQA) for feature extraction was proposed in [10]. Two of the extracted features manifested a
monotonic behavior in relation to fault severity in bearing faults making them a viable candidate for severity assessment. In
[11] Wiener entropy along with the WPT nodal energies were used as inputs to a support vector regression machine for the
prediction of the remaining useful life (RUL) of bearings in an accelerated test framework with the results being in good
agreement to the actual RUL curve for all the tested cases.

It is apparent that a plethora of feature extraction methods have been employed in the field of condition monitoring.
Numerous possibilities exist and the number of features that one can extract from a diagnostic signal can be very large. At
the same time, a lot of work has been carried out in the direction of transforming continuous valued time series data to a
discrete representation, through a process known as discretization or symbolization. The reason for that trend is that
discrete representations offer a much higher numerical computation efficiency (through dimensionality reduction) leading
to faster execution, which is crucial for online implementations as well as for computations involving huge amounts of data
[13,14]. Additionally, symbolization provides the the opportunity to apply methods from the mature fields of bioinformatics
and text mining, etc. [13]. Especially in the field of condition monitoring and anomaly detection of electrical, mechanical and
electromechanical systems a similar approach has been pursued by professor Ray and his coworkers using primarily D-
Markov machines [15–17].

Symbolic time series representation is another concept from the data mining field not often encountered for bearing
fault monitoring. In two characteristic works, Boutros and Liang [18] submit the vibration signals to bandpass filtering and a
monitoring index vector is calculated which is then assigned a symbol using a codebook generated using k-means
clustering. The discrete observation sequence is then used by an HMM for fault localization and severity assessment with
very high reported accuracy rates. Sanjith et al. [19] utilize a symbolic representation of vibration data and the created
dictionaries are used to form two indices that can be used to discriminate between healthy bearings and bearings with
various seeded faults.

In this work, a novel approach is utilized for the analysis of vibration signals, transforming them into a discrete valued
sequence and an “intelligent icons”—like approach for feature extraction [20,21]. The creation of the discrete value sequence
is based on the Symbolic Aggregate approXimation (SAX), which was introduced in [13] as a method for indexing. However
since its introduction SAX was further exploited for anomaly detection and classification using time series bitmaps [22] or
intelligent icons [20,21]. These representations can be used as features in a standard classification framework, rather than
mere visualization tools. Along this path, SAX and the intelligent icons schemes are used for non-conventional feature
extraction from vibration recordings. The results of this work suggest that this new representation is very efficient for the
condition monitoring and fault identification of bearings providing thus an extra tool for the practitioners in the field.

The rest of the paper is structured as follows: Section 2 presents in brief the SAX approach and the intelligent icons
algorithm, putting more emphasis on a modification of Piecewise Aggregate Approximation (PAA), which is part of the SAX
framework. In Section 3 the involved data set and the conducted experiments are presented along with the achieved results.
The paper is concluded with Section 4 with some discussion and some future directions.

2. Methodology

The proposed method for bearing fault detection/diagnosis consists of a series of steps that are depicted in Fig. 1. First,
the signal acquired by an accelerometer is segmented to contain, as it will be explained later on, approximately 10
revolutions of data. Then each extracted segment undergoes SAX analysis i.e. z-score normalization to have zero mean and



Fig. 1. A schematic of the proposed fault diagnosis method.
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standard deviation equal to one, application of PAA and then discretization under the normality assumption, which creates a
symbolic representation of the original signal. The symbolic representation is transformed into a feature vector through the
application of the intelligent icons rationale and finally the feature vector is fed to a simple classifier that performs
diagnosis. In the rest of this section each step will be presented in brief.
2.1. Feature extraction using the Symbolic Aggregate ApproXimation (SAX)

The main goal of the SAX algorithm is to convert a time series of arbitrary length N to a string of arbitrary length w,
where woN. The alphabet size is also an arbitrary integer A42. The SAX algorithm can be decomposed into two main
steps. First, the signal is divided into equal sized sections. After that, the mean value of each section is calculated. By
substituting each section with its mean, a reduced dimensionality is achieved. This process is known as Piecewise Aggregate
Approximation (PAA) [23,24]. After the time-series has been transformed to its PAA representation, a discretization takes
place in such a manner as to produce a word with approximately equiprobable symbols. As noted in the previous paragraph,
prior to the computation of the PAA, the time-series is normalized in order to have zero mean and standard deviation of one.
2.1.1. Piecewise Aggregate Approximation (PAA)
PAA was independently introduced by Keogh et al. [23], and by Yi and Faloutsos [24] as a means to produce a low(er)

dimensionality representation of a time series. PAA has already been used as a dimensionality reduction stage in a vibration
based condition monitoring scheme [25].
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According to the PAA framework, a time series x¼ x 1½ �; x 2½ �;…; x N½ �� �1 of length N, can be represented in a
w- dimensional space by a vector xPAA ¼ x½1�; x½2�;…; x½w�½ � where i-th element is given by the following equation:

x i½ � ¼w
N

XðN=wÞi

j ¼ N=wði�1Þþ1

x½j�; f or i¼ 1;2;…;w ð1Þ

The preceding equation states that in order to reduce the time series, or the discrete time signal, from an N dimension to
a dimension w, one has to divide the series into equal sized windows taking the mean value of the data falling within a
frame. This way a vector comprising of these values becomes the data-reduced representation. An example of PAA
representation of a time series (vibration recording) is shown in Fig. 2.

The aforementioned representation applies for sequences whose length N can be divided exactly by w. In the following
section a modification of the original PAA that can handle situations where N is not divided exactly by w is presented.

2.1.1.1. Modified Piecewise Aggregate Approximation. PAA was developed for discrete time signals. The process however is
equivalent (or at least yields the same result) to calculating the height of a rectangle that occupies the same area with the
area that is contained under the piecewise continues (time) signal xZOHðtÞ that is created by applying a “zero-order hold”
procedure to the original discrete time signal.

xZOHðtÞ ¼

x½1�; tA ½1;2Þ
x½2�; tA ½2;3Þ
⋮ ⋮

x½N� tA ½N;Nþ1Þ

8>>>><
>>>>:

ð2Þ

The whole procedure is better explained through a simple example. At Fig. 3 on the left, the PAA procedure is depicted
involving a discrete time signal with N¼ 12 and w¼ 3:

The discrete signal is x¼ ½1; 2; 4 ;5; 2; 1; 1 ;3; 4; 5; 4; 5� and the PAA representation xPAA can be easily shown to be
xPAA ¼ ½3; 1:75; 4:5� (xPAA 1½ � ¼ ð3=12Þ 1þ2þ4þ5ð Þ ¼ 3, etc) which is equal to:R ð1þ4Þ

1 xZOHðtÞdt
ð4þ1Þ�1

¼ 1� 1þ1� 2þ1� 4þ1� 5
4

¼ xPAA 1½ �;

where the integral is over the limits of section A in the right part of Fig. 3 This procedure can be used also in the case of
irregularly sampled signals (not constant sampling frequency) using this integral representation.

In general using the integral calculation Eq. (1) becomes

x̂PAA i½ � ¼w
N

Z ðN=wÞiþ1ð Þ
ðN=wÞ i�1ð Þþ1

xZOHðtÞdt for i¼ 1;2;…;w ð3Þ

where there is no need for (N) to be divided exactly by w.
Assuming sequences with a normalized sampling period (x¼ x nT½ �� �

;n¼ 1;2;…;N and T ¼ 1), equation can be written in
a summation form as

x̂PAA i½ � ¼w
N

1� N
w

i�1ð Þþ1
� �

� N
w

i�1ð Þþ1
� �� �� �

Ux
N
w

i�1ð Þþ1
� �� 	� �

þw
N

XðN=wÞiþ1b c�1

j ¼ ðN=wÞ i�1ð Þþ1b cþ1

x½j�þ N
w
iþ1

� �
� N

w
iþ1

� �� �
Ux

N
w

ið Þþ1
� �� 	� �0

@
1
A for i¼ 1;2;…;w ð4Þ

This procedure is also visually explained at Fig. 4, where the first and third term corresponds to the left side (A) and right
side (B) is trimmed rectangles respectively. The procedure for regularly sampled sequences is equivalent to the one
originally proposed by Dr Wei and Dr Keogh as part of the generalized SAX [26]

2.1.2. Discretization
After the PAA computation of the time series, a discretized representation is produced by defining a partitioning of the

original continuous space. There are many approaches for selecting the partitioning [14]. The goal of the discretization
procedure under the SAX framework is to produce symbols with equiprobability [13], which is related to the Maximum
Entropy based Partitioning (MEP) [27]. However, having normalized the time series, the produced new time series will
approximately follow a Gaussian distribution and so it is simply to determine the “breakpoints” that will produce equal-
sized areas under a Gaussian curve [13].

In order to produce the symbols from the PAA coefficients, we employ the following procedure:
1 The notation is slightly different from the one encountered in the time series literature, following more the signal processing rational.
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Fig. 3. An example of the “equivalence” between the discrete PAA calculation and the modified PAA through a geometric interpretation.

N
w

Fig. 4. Schematic explanation of the estimation of the i-th PAA value for an arbitrary segment. The following points are marked on the x axis:
x¼ ðN=wÞ i�1ð Þþ1


 �
; j¼ ðN=wÞ i�1ð Þþ1

� 
, y¼ ðN=wÞ iþ1


 �
and k¼ ðN=wÞ iþ1

� 
.
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�
 all PAA coefficients that are below the smallest breakpoint are mapped to the symbol “a”,

�
 all coefficients greater than or equal to the smallest breakpoint and less than the second smallest breakpoint are mapped

to the symbol “b”, and the procedure continues up to the highest PAA coefficients value that is mapped to the last symbol
of the chosen alphabet.

This procedure is visually displayed in Fig. 5.
2.1.3. Intelligent icons approach for feature extraction
SAX representation is primarily suitable for indexing and it was not originally meant for classification even though in

[28], SAX representation is used directly for human action recognition. However the most common approach for the use of
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Fig. 5. The discretization of the time series depicted in Fig. 4 using an alphabet of size 4, A¼ 4.

a:3 b:6

c:15 d:1

aa:0 ab:0 ba:1 bb:0

ac:1 ad:1 bc:5 bd:0

ca:2 cb:4 da:0 db:1

cc:8 cd:0 dc:0 dd:0

Fig. 6. The icons of the string S¼ cccbcaccccadbcbcccbcbccba (a) the frequencies and the subwords for L¼ 1 and (b) the same for L¼ 2.
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SAX for classification involves the creation of bitmaps or intelligent icons, which are used to display time series in a more
compact form or more importantly to be used as feature vectors for classification/detection purposes [20,29].

Generally, in the digitalized world an icon stand for a file. It is a small image usually of size 32� 32 and in the case that
the file is an image then the icon is a sub-sample of the initial image. Thus, the user simply and quickly gets an idea of what
image the file contains. An intelligent icon is a smart way of representing a long SAX string. Having acquired the SAX string
one can construct a ðA=2Þ � ðA=2Þ (where modðA;2Þ ¼ 0) array simply by counting the frequencies of each symbol. We can
also build an A� A array by simply counting the frequencies of subwords of the SAX string of size 2 (e.g. aa, ab, ac, etc.). In
order to generalize this procedure we count the frequencies of specific subwords of length L. Firstly, we assign to each letter
of the alphabet a unique value:

a¼ 0; b¼ 1; c¼ 2; d¼ 3;… ð5Þ
Each word has an index for the location of each symbol in the table of the icon. For clarity, we may show them explicitly

as subscripts. Then, in order to map a subword to the icon, we use the following equations to calculate its row and column
values:

row¼
XL�1

n ¼ 0

ðkndiv2Þ2L�n�1 ð6Þ

col¼
XL�1

n ¼ 0

ðkn2L�n�1Þmod 2L�n: ð7Þ

As an example, the icon of the string S¼ cccbcaccccadbcbcccbcbccba is displayed in Fig. 6.
In this work the intelligent icon representation (i.e. the frequency counts of subwords), is employed for the extraction of

features rather than for the optical representation of the signal. The reason is that we are interested in an automated
procedure rather than an alternative visual representation, which would require the familiarization of the end user with this
specific representation. However as it can be seen in Fig. 7, there are distinct visual differences between the different classes.

But, for some combinations of word length and alphabet size there is no convenient way to create an intelligent icon
representation. However, one can still count the frequency of occurrences of the different words and use them as feature
vectors. This is exactly the proposed approach here: for each signal after the application of all the aforementioned steps the



 

Normal-0 hp load Ball fault-0 hp load Inner race fault-0 hp load Outer race fault-0 hp load 

Normal-1 hp load Ball fault-1 hp load Inner race fault-1 hp load Outer race fault-1 hp load 

Normal-2 hp load Ball fault-2 hp load Inner race fault-2 hp load Outer race fault-2 hp load 

Normal-3 hp load Ball fault-3 hp load Inner race fault-3 hp load Outer race fault-3 hp load 

Fig. 7. The icons for different loading conditions and for different fault locations for seeded faults of size equal to 0.007 in. Notice the similarity between
the icons belonging to the same column as compared to the icons belonging to other columns (conditions).
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frequency of occurrences of each possible word are stored in a one dimensional vector, which consists the representation of
the original signal into the feature space.

At this point, it is worth noting the similarity with the D-Markov modeling approach employed in the work of professor
Ray and his co-workers [15–17]. In their approach the transition matrix Π which is created by counting transitions between
states (where each state is just a word of length D) is also experimentally estimated by counting the occurrences of
transitions and is then used as a feature vector for the diagnosis task. Even though different normalization takes place
compared to the one adopted in the intelligent icons approach, the two approaches are very similar.
2.2. Classification and diagnosis

For the classification and diagnosis task two simple—though quite different—classifiers were employed: a) the nearest
neighbor (NN) classifier, which is a nonlinear classifier and b) the minimumMahalanobis distance classifier, which is a linear
discriminant classifier (LDC). We choose to use two relatively simple classifiers, because in this work we basically focus on
the use of the SAX based features for the diagnosis of bearing faults and also because as it has been reported in [30],
sometimes in real life applications the performance of simple classification schemes is comparable to more complex and
state of the art classification paradigms. Moreover these two classifiers have the very appealing property that they are
parameter-free, leaving the tuning process entirely to the selection of the parameters involved during the application
of SAX.

The nearest neighbor classifier as its name implies, given a labeled training set, assigns a new unseen example to the
class of its nearest neighbor, where the “closeness” is assessed through an appropriately selected distance.

In the case of the minimum Mahalanobis distance classifier, each feature vector x is assigned to class i (normal, ball fault
etc.) such that the value of the corresponding discriminant function is maximized:

in ¼ arg max
i

2 ln P ωið Þ� x�μi

 �TC�1 x�μi


 �n o
; ð8Þ

where μiis the mean of class i, P ωið Þ is the prior probability of class i, and C is the estimated covariance matrix, which is
assumed constant across all classes (despite this assumption may not hold in many practical applications, this classification
approach performs surprisingly well).



Fig. 8. The experimental test bench (courtesy of Professor K. Loparo).
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3. Results

3.1. Vibration recordings dataset

The data used in this research work come from a bearing installed in a motor driven mechanical system [12] at the drive
end of the motor. The test bearings were deep groove ball bearings (SKF 6205 JEM) with single point faults. Three types of
faults (outer race, inner race and ball faults) were introduced using electro-discharge machining (EDM) with three fault
diameters: 0.007, 0.014 and 0.021 in. For the case of the outer race faults, experiments were conducted with faults located at
3 o’clock (directly in the load zone), at 6 o’clock (orthogonal to the load zone), and at 12 o’clock. However for this study the
three sub-categories for the outer race faults were merged forming a broader class of outer race faults. Each bearing was
tested under four different loads of 0, 1, 2, and 3 hp. For each test, vibration data were collected using accelerometers placed
at the 12 o’clock position at the drive end at a sampling frequency of 12,000 samples/s. A more detailed description of the
experimental set-up and the apparatus involved can be found in Case Western Reserve University's website [12], while Fig. 8
depicts the experimental test bench.
3.2. Experimental evaluation—diagnostic performance

In order to implement and evaluate the proposed SAX-based approach, a number of experiments conducted following
mainly the scheme proposed in [31] with some minor modifications. More specifically, we addressed four different
classification problems in batch mode (putting together all the extracted cases without considering their time dependencies
—discarding in other words the time component). For the batch classification/diagnosis problems, during the segmentation
phase, we extracted non overlapping time windows containing 10 revolutions. Table 1 summarizes the four classification
problems with the respective dataset samples involved. Moreover we also conducted a pseudo-online version of the fourth
classification problem (the cases were presented in time of occurrence keeping their chronological order) to show the way a
postprocessing step that can cope with the spurious misclassifications that were observed during the first (batch) phase of
the experiments.

In the first classification problem A (following the convention used in [31]) only incipient faults (faults with the smaller
induced defect) were considered under all four load conditions. Therefore all data corresponding to normal conditions and
the data corresponding to a fault defect size of 0.007 in. irrespective of the location were employed. A four class
classification problem was formed (normal, ball fault, inner race fault and outer race fault). Unlike the approach in [31],
where a hold-out procedure was used, in our case a 10-fold (stratified) cross validation procedure was repeated 10 times
(10�10 CV) [32] in order to assess the performance of our approach. This resampling technique minimizes the chances of
getting good (bad) results due to a lucky (unlucky) splitting of the available data [32], and also provides a means to assess
the stability of the model. Moreover, for the tuning of the algorithm, i.e. for selecting the “optimal” SAX parameters (number
of windows and alphabet size as well as the word length) a nested procedure involving a grid search was performed using
only the training data at each fold. This way, the estimation of the performance was decoupled from the tuning process. The
nested procedure is schematically described in Fig. 9.

In the second (B) classification problem, all faulty data corresponding to a fault defect size of 0.007 in. irrespective of the
location and the applied load were used for training and all the faulty data corresponding to a fault defect size of 0.021 in.
irrespective of the location and the applied load were used for testing. The normal data were used only for training purpose,
during which again a nested procedure was followed for the selection of the parameters involved.

In the third classification problem C, the same procedure as in B was followed with the exception that the “severe” fault
data along with the normal cases were employed for training and the “incipient” fault data for testing.



Table 1
Description of the four (batch) classification problems.

Classification setting Number of samples training/testing Defect size training/testing (inches) Condition Labeling convention

A 413/413 0/0 Normal 1A
116/116 0.007/0.007 Ball 2A
117/117 0.007/0.007 Inner race fault 3A
348/348 0.007/0.007 Outer race fault 4A

B 413/� 0/� Normal 1B
116/116 0.007/0.021 Ball 2B
117/116 0.007/0.021 Inner race fault 3B
348/349 0.007/0.021 Outer race fault 4B

C 413/� 0/� Normal 1C
116/116 0.021/0.007 Ball 2C
116/117 0.021/0.007 Inner race fault 3C
349/348 0.021/0.007 Outer race fault 4C

D 413/413 0/0 Normal 1D
116/116 0.007/0.007 Ball 2D
116/116 0.014/0.014 Ball 3D
116/116 0.021/0.021 Ball 4D
117/117 0.007/0.007 Inner race fault 5D
116/116 0.014/0.014 Inner race fault 6D
116/116 0.021/0.021 Inner race fault 7D
348/348 0.007/0.007 Outer race fault 8D
116/116 0.014/0.014 Outer race fault 9D
349/349 0.021/0.021 Outer race fault 10D
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The fourth classification problem (D) employs 10 classes: normal, ball fault with defect size equal to 0.007 in., ball fault
with defect size equal to 0.014 in. etc. The same procedure as in case A was employed for the estimation of the performance.

For comparison reasons, to have a baseline reference performance, we also performed the same set of experiments, using
the aforementioned two classifiers, having as inputs a set comprised of the following five features that are commonly
encountered in bearing health assessment:
�
 the standard deviation of the signal,

�
 the kurtosis of the signal,

�
 the crest factor of the signal,

�
 the zero crossing rate (ZCR) of the signal, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

s

�
 and a parameter free measure of the signal's complexity [33]: com¼

i ¼ 1
x i½ ��x iþ1½ �ð Þ2.
The results of the proposed scheme are summarized in the Tables 2–6 in the form of confusion matrices for both
classifiers. For problems A and D (Tables 2, 5 and 6) the aggregated matrices over the different repetitions are reported.

In Table 7 we summarize the overall classification accuracy of the proposed approach for the different diagnostic
problems and the two different classifiers along with the results presented in [31] as well as the results of the “baseline”
feature set. It must be noted that no strict (quantitative) comparison is applicable for the results of the present study and the
results reported in [31] since the procedures followed are a bit different. Nevertheless it can be seen that the proposed
approach is comparable to the results obtained in [31] where a much broader range of features were involved along with a
more powerful inductive algorithm.

The diagnostic scheme that is based on SAX extracted features performs equally well as the diagnostic scheme that uses
the “baseline” feature set for the classification tasks A when the NN classifier is employed. For the tasks B, C and D the SAX
based scheme performs better proving that the novel proposed scheme can be a viable candidate of a condition monitoring
system provided that representative data are available.

The success of the proposed approach can be intuitively assessed by looking into a lower embedding of the original
feature space into three dimensions through multidimensional scaling (MDS), Fig. 10. As one can observe even in this low
dimension embedding the feature vectors of most of the different classes create compact clusters. Especially the normal
class seems well separated from the rest of the classes. Therefore with the proposed feature extraction method, the
detection of an anomalous situation is almost certain to be detected. For the rest of the classes there is some overlapping
between some of the classes due to some spurious data points near the borders of the classes. Also the scattering of the data
provides an insight for the superiority of the NN over the LDC for this particular setting. The compact clusters with the
irregular shapes fit better the NN classifier which only exploits local properties rather than the LDC who assumes Gaussian
distributions.



Fig. 9. Schematic representation of the nested procedure for the selection of parameters and the performance estimation.
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To further validate the proposed approach a pseudo-online experiment was conducted. For the pseudo-online case no
resampling procedure was employed. Instead the 2/3 of each signal was used for training and the rest 1/3 of all signals were
concatenated. Since the NN algorithm seems to outperform the LDC method, for this experiment only a NN classifier was
tested with the SAX generated features. As it can be seen in Fig. 11(b), very few samples are misclassified. This can be
treated, in most cases using a hierarchical approach that can exploit the temporal aspect of the phenomenon. Such a scheme
is shown in Fig. 12 where the decision of five consecutive windows is aggregated via a majority voting procedure. The result
of such a procedure is depicted in Fig. 11(c). As it can be seen the spurious misclassifications are removed. The longer the
“filter” (the more individual detectors), the less probable is to have misclassifications. On the other hand with more
Table 3
Confusion matrix for the classification problem B for the two classifiers.

LDC/NN Estimated class

1B 2B 3B 4B

True class 1B – – – –

2B 2/0 99/95 4/2 11/19
3B 0/0 0/0 65/102 51/14
4B 0/0 42/0 17/6 290/343

Table 4
Confusion matrix for the classification problem C for the two classifiers.

LDC/NN Estimated class

1C 2C 3C 4C

True class 1C – – – –

2C 0/0 77/116 39/0 0/0
3C 0/0 7/33 110/83 0/1
4C 0/0 0/125 83/20 265/203

Table 5
Aggregated confusion matrix for the classification problem D for the nearest neighbor classifier (the gray blocks correspond to faults occurring at the same
location but for different severities).

NN Estimated class

1D 2D 3D 4D 5D 6D 7D 8D 9D 10D

True class 1D 4130 0 0 0 0 0 0 0 0 0
2D 0 1149 0 11 0 0 0 0 0 0
3D 0 0 1113 20 7 20 0 0 0 0
4D 0 31 0 1114 0 0 0 15 0 0
5D 0 0 0 0 1170 0 0 0 0 0
6D 0 0 0 0 0 1160 0 0 0 0
7D 0 0 0 0 0 0 1160 0 0 0
8D 0 0 0 6 0 0 0 3474 0 0
9D 0 0 0 0 0 0 0 0 1160 0
10D 0 0 0 0 0 0 0 0 0 3490

Table 2
Aggregated confusion matrix for the classification problem A for the two classifiers.

LDC/NN Estimated class

1A 2A 3A 4A

True class 1A 4130/4130 0/0 0/0 0/0
2A 0/0 1160/1160 0/0 0/0
3A 0/0 0/0 1170/1170 0/0
4A 0/0 0/0 0/0 3480/3480



Table 7
Overall accuracy of the different classification problems for the two classifiers along with the results reported in [31]. For cases A and D also the standard
error is reported in parenthesis.

NNþSAX based features LDCþSAX based features ANFISþ6 feature sets from [30] NNþ“baseline” features LDCþ“baseline” features

A 100 (0) 100 (0) 100 100 (0) 99.84 (0.01)
B 92.94 78.14 92.5 64.54 32.36
C 69.19 77.80 90.83 29.78 39.76
D 99.43 (0.12) 98.94 (0.21) 91.53 98.58 (0.03) 87.99 (0.06)

Table 6
Aggregated confusion matrix for the classification problem D for the LDC (the gray blocks correspond to faults occurring at the same location but for
different severities).

LDC Estimated class

1D 2D 3D 4D 5D 6D 7D 8D 9D 10D

True class 1D 4130 0 0 0 0 0 0 0 0 0
2D 0 1146 0 14 0 0 0 0 0 0
3D 0 0 1074 20 0 56 0 0 0 10
4D 0 24 0 1056 0 7 4 69 0 0
5D 0 0 0 0 1170 0 0 0 0 0
6D 0 0 0 0 0 1160 0 0 0 0
7D 0 0 0 0 0 0 1160 0 0 0
8D 0 0 0 0 0 0 0 3480 0 0
9D 0 0 0 0 0 0 0 0 1160 0
10D 0 0 0 0 0 0 0 0 0 3490
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Fig. 10. Four different views of the result of MDS on the 10 class data after their projection into a three dimensional space.
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Fig. 11. The results of the application of the pseudoonline experiment: a) actual labels, b) the output of an individual NN detector and c) the results of the
diagnosis scheme after the hierarchical majority voting approach.

Fig. 12. The hierarchical diagnosis scheme.
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detectors, the response to a change may take longer to appear. However since such changes do not appear very fast a delay
in the response of the detector is not of such importance.
4. Discussion and conclusions

This research work proposes the use of a symbolic representation of vibration signals for the diagnosis of bearing faults.
More specifically SAX is employed for the transformation of a real valued vibration signal into a sequence of symbols. The
sequence of symbols is condensed into a much lower representation based on the frequency of appearances of all potential
words given a pre-specified word-length. This representation comprises the feature vector that is used for representing the
original signal and subsequently for classification using standard pattern recognition approaches. In fact the representation
is so effective that even simple classifiers can achieve remarkable classification accuracies. The proposed scheme seems
competitive regarding both more involved classification schemes [31] as well as diagnostic schemes that employ well
established features for bearing condition assessment for this specific seeded fault setting. Further validation is needed
using also naturally degraded equipment and different operational settings for establishing the connection between
different faults and their “icon-like” representation in order for this approach to become a standard tool for bearing
condition monitoring.

To deal with spurious misclassifications, a hierarchical approach exploiting the temporal association of the different
conditions was proposed which further enhances the performance accuracy of the diagnosis scheme. Furthermore, as part of
the developed technique, a modified/extended PAA representation was presented, which can be used as a general
dimensionality reduction tool.

On the other hand the proposed method has the intrinsic barrier as all data driven techniques; it requires the existence of
representative data in order to build the diagnosis scheme. Nevertheless our study revealed that in case of sufficient data the
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proposed representation can provide a competitive alternative to feature extraction, especially for online applications. In
future work we will further exploit the use of symbolic representations for faults other than seeded ones as well as for the
case of multiple faults which have not been investigated in this study.
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