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This article presents a novel computational method for the diagnosis of broken rotor bars in three phase
asynchronous machines. The proposed method is based on Principal Component Analysis (PCA) and is
applied to the stator’s three phase start-up current. The fault detection is easier in the start-up transient
because of the increased current in the rotor circuit, which amplifies the effects of the fault in the stator’s
current independently of the motor’s load. In the proposed fault detection methodology, PCA is initially
utilized to extract a characteristic component, which reflects the rotor asymmetry caused by the broken
bars. This component can be subsequently processed using Hidden Markov Models (HMMs). Two
schemes, a multiclass and a one-class approach are proposed. The efficiency of the novel proposed
schemes is evaluated by multiple experimental test cases. The results obtained indicate that the sug-
gested approaches based on the combination of PCA and HMMs, can be successfully utilized not only
for identifying the presence of a broken bar but also for estimating the severity (number of broken bars)
of the fault.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Asynchronous machines (AMs) are complex electromechanical
devices that are being utilized in most industrial applications for
the conversion of power from electrical to mechanical form Vas
(1992) and Silva, Povinelli, and Demerdash (2008). These devices
provide durability and robustness, which makes them excellent
candidates for operating in harsh environments. On the other hand
their operation in such demanding environments increases the
need for preventing unscheduled downtimes. Different motor
faults occurrences might result in different types of motor break
downs and rather usual, small initial faults can propagate and grow
bigger, even leading to a total breakdown of an industrial process
(Acosta, Verucchi, & Gelso, 2004).

Among the most common faults in asynchronous motors are:
(a) stator faults resulting from the opening or shorting of one or
more of the stator phase winding (Acosta et al., 2004; Mustafa,
Nikolakopoulos, & Guastafsson, 2012), (b) broken rotor bar or
cracked rotor end-rings due to thermal, magnetic, residual,
dynamic, and mechanical stresses (Santos & Lubiny, 2010), (c)
bearing faults (Anel, Azenol, & Benbouzid, 2007), and (d) dynamic
or static air gap irregularities (Nandi, Toliyat, & Xiaodong, 2005).
For all these types of faults, it is of paramount importance to: (a)
have an early fault detection scheme, and (b) categorize the fault
in order to select the appropriate corrective action. For some fault
types the corrective measures must be taken, within very short
time after the fault occurrence.

Various input signals have been utilized quite successfully for
monitoring of AC motors, such as induced voltage (Elkasabgy, Eas-
tham, & Dawson, 1992), vibration signals (Khezzar, Oumaamar,
Hadjami, Boucherma, & Razik, 2009), currents and vibration signals
(Trana, Yanga, Oha, & Tanb, 2009; Widodo, Yang, & Han, 2007)
instantaneous angular speed or power (Arif, Imdadullah, & Asghar,
2011; Kia, Mabwe, Henao, & Capolino, 2006). However, methods
that rely only on the use of currents (Motor Current Signature
Analysis (MCSA) methods (Benbouzid, 2000)) are usually preferred
(Aydin, Karakose, & Akin, 2010; Garcfa-Escuderoa, Duque-Perezb,
Morinigo-Sotelob, & Perez-Alonsob, 2011; Matica, Kulica, Snchezb,
& Kamenkoa, 2012; Nandi et al., 2005), mainly due to their non-
invasive nature.
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Among the various methods applied for the analysis of motor
currents, one could mention the use of the Fast Fourier Transform
(FFT) (Kliman, Koegl, Endicott, & Madden, 1988), Wavelets (Tsou-
mas, Georgoulas, Mitronikas, & Safacas, 2008) and Complex Park
Vectors (Cruz & Cardoso, 2000) with a literature that has been
growing rapidly over the last decade with a number of survey pa-
pers summarizing the latest findings and trends in the field (Awa-
dallah & Morcos, 2003; Bellini, Filippetti, Tassoni, & Capolino,
2008; Benbouzid, 1999; Han & Song, 2003; Nandi et al., 2005;
Zhang, Du, Habetler, & Lu, 2011; Mehrjou, Mariun, Marhaban, &
Misron, 2011).

The analysis of the stator current for rotor fault detection during
steady state operation has a subtle drawback as frequencies similar
to those caused by a rotor fault can be generated by other sources
too (Daviu, Guasp, Folch, & Palomares, 2006) and thus might lead
to false alarms and reduce the overall reliability of systems based
on steady state monitoring. Additionally, in the case of low load,
the slip decreases and low current flows in the rotor circuit; this
makes difficult the detection of the fault (Daviu et al., 2006). For
this reason, recently, a second group of methods based on the
examination of the stator current during start-up has become quite
popular as a complementary/alternative means to steady state
analysis (Elder, Watson, & Thomson, 1989; Sanchez et al., 2010).
During the start-up process, asynchronous machines operate under
more critical conditions (currents and thermal stresses), something
which can help to amplify the ‘‘signatures’’ of incipient faults (Da-
viu et al., 2006). The main drawback of using the whole range of
slip values during transient analysis (in contrast to steady state
analysis) is that it complicates the automation of the detection pro-
cess by explicitly inducing time dependencies. Multiple ap-
proaches in this field have appeared, like the Continuous Wavelet
Transform (Zhang, Ren, & Huang, 2003), the Multi-Resolution Anal-
ysis (MRA) (Daviu et al., 2006), the Empirical Mode Decomposition
(EMD) (Antonino-Daviu, Riera-Guasp, Pineda-Sanchez, & Perez,
2009), the Fractional Fourier Transform (Sanchez et al., 2010), the
Gabor analysis (Pineda-Sanchez, Perez-Cruz, Puche-Panadero, Ro-
ger-Folch, & Antonino-Daviu, 2012), or a wavelet-SVM approach
for multiple faults (Widodo & Yang, 2008) among others.

Currently, an increasing number of research works are concen-
trating on the use of data driven and computational intelligence
techniques. The main reason of the popularity of these techniques
is that they require ‘‘minimum configuration intelligence’’ since
neither a detailed analysis of the fault mechanism, nor modeling
of the system is necessary (Bacha, Henaob, Gossa, & Capolino,
2008). Moreover, they facilitate the implementation of the fault
detection techniques in automatic diagnostic systems, as well as
avoid the necessity of user intervention and interpretation of the
results. Among the various methods in the field of fault diagnosis,
Principle Component Analysis (PCA) and its variants, has received a
significant attention in the last past years (Chiang, Russell, & Bra-
atz, 2001; Cuia, Lic, & Wanga, 2008; Polat & Gnnes, 2008; Tharrault,
Mourot, Ragot, & Maquin, 2008). PCA is a statistical technique that
linearly transforms an original set of variables into a usually sub-
stantially smaller set of uncorrelated variables that represents
most of the information in the original set of variables (Jolliffe,
1986). However, in this work PCA is utilized as a means to isolate
the faulty component that arises in the phase currents during the
start-up and not for its dimensionality reduction capabilities.

The output of PCA yields a time series with a distinctive pattern
that can capture both the presence as well as the severity of broken
bar faults. In order to automatically exploit the information con-
tained in that component, Hidden Markov Models (HMMs) were
employed since they are well suited for the analysis of temporal
phenomena (Fink, 2008). HMMs are involved both in a multiclass
classification scheme covering the case that data exists for both
the normal and the faulty operation as well as in a one-class or
an anomaly detection scheme in the case that data of only the nor-
mal operation are available. The obtained experimental results
suggest that the multiclass approach can perfectly assess the
severity of the fault by identifying the presence of one or two bro-
ken bars whereas the one-class approach is able to detect all devi-
ations from normality without any false alarms.

The novelty of this article is quadruple. First, the PCA method-
ology is being utilized as a novel approach for isolating character-
istic rotor fault components that appear during the start-up
transient phase and not as in its conventional context for dimen-
sionality reduction. Second, the detection procedure is based on
the use of HMMs in the time domain and not in the time–fre-
quency domain as most of the methods involved in the analysis
of the start-up current do. Third, as far as we are concerned, it is
the first time that an anomaly detection technique is applied in
the field of broken rotor bar and last, but not least, it is the first
time that these methods are experimentally evaluated with very
promising results.

The rest of this article is structured as follows: In Section 2, the
fundamental theory behind PCA and HMMs is summarized, and
the proposed framework for the broken rotor bar fault detection
is presented. In Section 3, multiple experimental results are pre-
sented, proving the efficiency of the proposed scheme and, finally,
in Section 4, the conclusions are drawn and directions for future
work are given.
2. PCA and HMMs fundamentals

2.1. Principal Component Analysis

PCA, also known as the Karhunen Loeve transform, is one of the
most popular techniques for dimensionality reduction, lossy data
compression, feature extraction and data visualization (Jolliffe
(1986)). PCA falls under the general title of factor analysis (Dia-
mantaras & Kung, 1996) and even though it is quite old, having
its origins back in the beginning of the 20th century (Pearson,
1901), it still attracts the interest of the researchers, while forming
the basis for a number of more advanced techniques (Theodoridis
& Koutroumbas, 2009). The basic characteristic of PCA is the ability
to perform a basis transformation of the original space in such a
way that under the new representation the data are mutually
uncorrelated.

It is interesting that the same algorithm for PCA can be derived
following different paths, e.g. the maximum variance formulation
or the minimum error formulation, while the interested reader
can refer to any standard textbooks of machine learning and pat-
tern recognition (Theodoridis & Koutroumbas, 2009; Bishop,
2006) or specialized texts on PCA (Jolliffe, 1986; Diamantaras &
Kung, 1996) for a detailed description of the PCA methods. In this
article, and without losing generality, only the outline of the pro-
cess for generating the Principal Components (PCs) will be pre-
sented. In the general case, PCs are extracted from a set of
multivariate data {xi} where xi 2 Rd,i = 1, . . . ,N, with N 2 Z+ (xij is
therefore the value of the jth dimension of the ith example). The
underlying procedure is described in Table 1.

In the standard utilization of the PCA technique after calculating
the eigenvalue and the corresponding eigenvectors, only the eigen-
vectors corresponding to the l largest eigenvalues are retained,
while the input vectors are being projected on them to get a re-
duced representation (Widodo et al., 2007). However, PCA can also
be considered as a source separation method even though it does
not retrieve independent sources (as in the case of Independent
Component Analysis (ICA)) (Hyvarinen & Oja, 2000; Theodoridis
& Koutroumbas, 2009), but only uncorrelates the input data. This
specific utilization of the PCA methodology is exploited in this arti-



Table 1
Principal components extraction algorithm.

STEP 1 – Compute the mean value for each original variable:

�xj ¼
1
N

XN

i¼1

xij

STEP 2 – Subtract this mean from the original variable:

�xij ¼ xij � �xj; i ¼ 1; . . . ;N and j ¼ 1; . . . ; d

STEP 3 – Calculate the covariance matrix S of the zero-mean data matrix,
whose elements are given by:

snm ¼
1

N � 1

XN

i¼1

x0inx0im; n;m ¼ 1; . . . ;d

STEP 4 – Calculate the eigenvalues and its corresponding eigenvectors of the
covariance matrix S
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cle, while the obtained evaluations under experimental results
prove that the adopted technique is very effective for the examined
fault occurrence case.

2.2. Hidden Markov models

HMMS are a powerful tool for modeling ordered sequence of
data (Fink, 2008; Rabiner, 1989; Rabiner & Juang, 1986). Originally
HMMs were almost exclusively utilized in the context of automatic
speech recognition (Rabiner & Juang, 1986) but lately have found
application in a variety of problems (Fink, 2008), such as biomed-
ical signal classification (Georgoulas, Nokas, Stylios, & Groumpos,
2004), heat exchanger fault detection (Wong & Lee, 2010), lip read-
ing (Puviarasan & Palanivel, 2011), bearing fault monitoring (Bou-
tros & Liang, 2011; Marwala, Mahola, & Nelwamondo, 2006; Ocak,
Loparo, & Discenzo, 2007; Peng & Dong, 2011) and fault detection
in AC (Lebaroud & Clerc, 2008; Nakamura et al., 2010) and DC mo-
tors (Zaidi, Aviyente, Salman, Shin, & Strangas, 2011).

HMMs are dynamic models that describe a two stage stochastic
process (Fink, 2008; Rabiner, 1989; Rabiner & Juang, 1986). The
first stage consists of a discrete stochastic process that probabilis-
tically describes the state transitions within a finite state space.
The behavior of the process at any given time instance t solely de-
pends on the immediate predecessor state. In the second stage, at
every point in time t, an emission (the observable output) is gener-
ated, which can be either discrete or continuous. The sequence of
the states of the first stage is never observed or measured directly,
it is therefore ‘‘hidden’’, and the behavior of the model is only re-
flected through the sequence of emissions, most commonly re-
ferred as the observation sequences.

An HMM, which is usually denoted as k, is fully characterized
by: (a) a finite set of states, {sj1 6 s 6M}, (b) the state specific
observation probability densities for the case of continuous output
space {bj(x)bj(x) = p(xjSt = j)} with j = 1,2,. . .M, describing the distri-
bution of the observations x emitted for state j, (c) the state transi-
tion probability matrix AM�M denoted as: A = {aijjaij = P(St = jj
St�1 = i)}, and (d) the vector p with the initial state probabilities
p = {pijpi = P(S1=i)}.

HMMs with continuous outputs (continuous HMMs) have an
increased expressive power, when compared to their discrete
counterparts, however, this comes with a corresponding cost of
increasing complexity and with the need to represent continuous
distributions in a suitable way. The most common, and computa-
tionally tractable way, to represent arbitrary continuous distribu-
tions, within the HMM framework, relies on the use of a finite
mixture of Gaussians (Fink, 2008). In this context the output prob-
ability density function is given by

bjðxÞ ¼
XMj

k¼1

cjkNðxjljk;CjkÞ ð1Þ

where, Mj is the number of the mixtures components for state j,cjk is
the mixing coefficient of the kth mixture in state j, N is a multivar-
iate Gaussian density function with mean ljk and covariance matrix
Cjk for the kth mixture in state j.

In practice HMMs are utilized to solve the following three prob-
lems: (a) the evaluation problem, (b) the decoding problem, and (c)
the learning problem, which is the most difficult among the three
(Fink, 2008). For application of HMMs to condition monitoring,
problems (a) and (c) need to be tackled (Cartella, Liu, Meganck,
Lemeire, & Sahli, 2012). More specifically one or more models must
be trained with data of a certain class (i.e. estimation of the afore-
mentioned parameters – the learning problem) and then once a
new observation sequence is produced it is assigned to the class
whose model best fits the observation sequence.

While for this stage (evaluation problem) efficient solutions ex-
ist (the forward or the backward algorithms Fink, 2008), for the
learning problem (the estimation of the model parameters) until
now, no method has been proposed that is able for a given sample
set to create a model, which is optimal in some respect (Fink,
2008). The most widely utilized optimization method of HMMs is
provided by the Baum–Welch algorithm (also known as the for-
ward–backward algorithm) (Bishop, 2006; Fink, 2008), which is
an instance of a generalized expectation-maximization algorithm
and can nearly always provide a good solution. The interested
reader is referred to relevant literature for a detailed derivation
of the updating formulas (Fink, 2008; Rabiner & Juang, 1986) as
well as for other optimization alternatives (Aupetit, Monmarche,
& Slimane, 2007; Levinson, Rabiner, & Sondhi, 1983).

2.3. Broken bar fault detection framework

As pointed out in the introductory part, the methods that employ
the analysis of the start-up currents for the detection of broken rotor
bars usually require advanced signal processing techniques, such as
the Continuous Wavelet Transform (Zhang et al., 2003), the MRA
(Daviu et al., 2006), the EMD (Antonino-Daviu et al., 2009), and
the Gabor analysis (Pineda-Sanchez et al., 2012) in order to extract
specific components that appear after the event of one or more bro-
ken bar fault occurrences. The evolution of this characteristic fault
component (the left sideband harmonic (LSH)) has been analyzed
by Riera-Gasp, Antonino-Daviu, Roger-Folch, and Palomares (2008)
and it is depicted in Fig. 1. Ideally, the frequency of the LSH fre-
quency varies from the stator supply frequency to zero and back
again to near the supply frequency (Fig. 2) as it is described by:

fLSH ¼ j1� 2sj � fs ð2Þ

where fs is the power supply frequency and s is the slip. In all the
aforementioned approaches (Daviu et al., 2006; Zhang et al.,
2003) the extracted component was analyzed in the time–fre-
quency domain, mainly in an attempt to discover the characteristic
V pattern (or part of it Zhang et al., 2003) of the instantaneous fre-
quency of the faulty component (LSH).

In this research effort the focus will be only on the analysis in
time domain of the ‘‘faulty’’ component, without resorting to fre-
quency or time–frequency analysis. For the extraction or the isola-
tion of the faulty component the PCA technique is adopted for this
specific problem.



Fig. 1. Evolution of left side band harmonics during the start-up.
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Fig. 2. Theoretical evolution of the LSH as a function of the rotor slip.

Fig. 3. Scatter plot of the three phase currents for the case of a healthy machine
during start-up along with the estimated eigenvectors of the covariance matrix. As
it can be seen most of the variance is contained on the subspace spanned by the first
two PCs.
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Since, in this article the transient phenomena during start-up
are being considered, the proposed analysis scheme involves a pre-
processing (segmentation) step where a steady state detector
should be utilized for detecting the end of the transient phase.
After that the PCA technique is involved and the projection of the
three space currents on the least principal component, i.e. the
eigenvector which corresponds to the minimum eigenvalue of
the covariance matrix, is retrieved. A number of conducted exper-
iments suggest that the retrieved component can be used both for
setting an alarm once an anomaly occurs – in an anomaly detection
scheme – as well as to assess the severity of the fault in a multi-
class classification scheme, with both schemes utilizing HMMs.
In the rest of this section the proposed procedure and the involved
methods are presented.

2.4. Segmentation

For the isolation of the startup current, instead of using a ‘‘tran-
sient detector’’ we are seeking for the point when a steady state
has been reached. In case that no measuring of the speed of the
asynchronous machine is available, the start-up currents can be
analyzed over a predefined sliding window (Kim, Yoon, Domanski,
& Payneb, 2008). Over that window, the mean of the sum of the
energies of the three current signals are sampled as:

MEðiÞ ¼ 1
N

Xj¼iþN�1

j¼1

i2
aðjÞ þ i2

bðjÞ þ i2
c ðjÞ

� �
ð3Þ

while the standard deviation of this ME is utilized for detecting the
steady state operation. Once its value falls below a user selected
threshold, the rest of the recording is discharged from subsequent
processing.

2.5. Application of PCA

In the examined case of an asynchronous motor we have a three
dimensional input space and we are only interested in the projec-
tion to the eigenvector that corresponds to the minimum eigen-
value. This can be more easily explained by visualizing the result
of this process as Fig. 3 depicts the healthy/normal case of the three
dimensional input space along with the three eigenvectors of the
covariance matrix. Moreover, Fig. 4 depicts the original phase cur-
rents for a healthy machine, while in Fig. 5 the projection of the
original signals onto the first, the second and the third -which is
of interest in our case- PC are being presented. The same results
can be depicted in Figs. 6 and 7, this time for the case of a faulty
machine with one broken bar.

As it can be observed, from the obtained experimental results,
the first 2 PCs (that correspond to the two major eigenvalues) cap-
ture the fundamental sinusoidal component, whereas the third one
seems to capture noise. However, in case that some of the noise is
being filtered through the utilization of a Butterworth filter (with a
cut-off frequency of 40 Hz), the results that are presented in Fig. 8
are obtained, where the faulty case of two broken bars has also
been included. As it can be seen the filtered signal has a striking
resemblance with the faulty component depicted in Fig. 1. It
should be noted that the cut-off frequency was selected based on
our previous experience in the analysis of the transient in the fre-
quency domain where the edge effects were obscuring both the
starting and the ending (Georgoulas, Tsoumas, Mitronikas, Stylios,
& Safacas, 2012). As a result the frequency content of the compo-
nent was always restricted to �35 Hz.

For the extraction of the PCs in the case of start-up currents
there are two possibilities. The first one is to put together all the
data coming from the same category and utilize them to estimate
the covariance matrix and then estimate the eigenvalues and the
eigenvectors.

The second option is to use the data from each recording ‘‘as its
own control’’ meaning that for each start-up only its phase current
time series is used to estimate the covariance matrix that is needed
for the calculation of PCs and not any data from other start-ups of
the same category/class. It turned out that the two approaches
yield almost identical results as it can be seen in Fig. 9. Therefore
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the selection is not crucial for the subsequent analysis. In the pre-
sented test case it has been selected to estimate the covariance ma-
trix based on individual recordings, for speeding up the estimation
process and minimizing the required storage, even though for the
specific application these parameters are not crucial. It must be
noted that in order to make our approach invariant to the particu-
lar characteristics of the machine, the current vectors are normal-
ized to have maximum magnitude equal to unity before any
further processing takes place.
3. Experimental results

For evaluating the performance of the proposed fault detection
scheme, several experimental studies have been performed with
an 1.1 kW squirrel cage induction motor having the following char-
acteristics: Star connection, rated voltage (Un): 400 V, rated power
(Pn): 1.1 kW, 2 pair of poles, primary rated current ðI1n Þ: 2.7 A, rated
speed (nn): 1410 rpm and rated slip (sn): 0.06, and 28 rotor bars,
while the overall experimental setup is presented in Fig. 10.

The motor has been directly coupled to a DC machine acting as a
load. Different load levels could be achieved by changing the exci-
tation current of the DC machine. Stator currents were sampled
with a frequency of 5 kHz. Ten recordings for each one of the three
classes (healthy, one broken bar, two broken bars) with different
duration of the transient phenomenon were acquired.

During this initial design phase, it was noticed that similar high
values (both negative and positive) were present at the beginning
of the recordings, both for the faulty and the normal cases (the
edge effect phenomenon was stronger than the imposed faulty
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component). Therefore, we decided to exclude the initial 20% sam-
ples of the recordings. In the following experimental results, both
the multiclass classification approach and also the one class classi-
fication (or anomaly detection) approach have been applied and
evaluated.

3.1. Multiclass classification approach

In the case that data from all the classes under investigation are
available, a multiclass classification approach can be employed.
Especially, for the severity assessment, each severity level consti-
tutes a separate category/class and the overall goal is to assign
each recording to the corresponding severity level/class.
In the multiclass approach, based on the component that corre-
sponds to the minimum eigenvalue, the goal is to train three ‘‘left
to right’’ HMMs (Fink, 2008), one for each of the three categories
(healthy/normal, 1 broken bar, 2 broken bars) and utilize them in
the sequel to assign each observation sequence to the model that
was more probable to have generated it. The selection of the ‘‘left
to right’’ architecture was based on the natural temporal progres-
sion of the phenomenon as well as on our previous successful
application of the same architecture for the case of discriminating
simulated rotor asymmetries using discrete HMMs (Georgoulas
et al., 2012). In order to evaluate the proposed approach with a
minimum bias (Salzberg, 1997), an ‘‘inner’’ and an ‘‘outer’’ loop val-
idation scheme has been applied. The outer loop was included to



Fig. 10. Experimental setup.
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Fig. 8. The third (least) principal component after low pass filtering for the case of a
healthy machine (top), a machine with one broken bar (middle) and a machine with
two broken bars (bottom).
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assess the performance of the proposed approach, while the inner
scheme was applied to tune the HMM parameters (number of hid-
den states, number of mixtures).

More specifically, in the ‘‘outer’’ loop, the ‘‘leave one out’’ meth-
od has been applied (Japkowicz & Shah, 2011): each time we
excluded one out of the 30 available time series from the training
process and we used it only for testing the performance of the con-
structed HMM based classifier. The ‘‘inner’’ loop consisted of a ran-
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Fig. 9. The ‘‘faulty’’ component for a machine with two broken bars. The differences bet
with two broken bars and the one estimated using a single recording are practically ind
dom resampling stage (Japkowicz & Shah, 2011); each time three
time series were randomly selected and excluded from the training
process and only employed for testing. During this procedure
which was repeated five times, six different configurations of the
HMMs were tested (one and three Gaussian mixtures and two,
three and four hidden states) – the selection of the range of the
parameters was based on our previous experience with a similar
configuration and by observing the segregation of the time series
values. Therefore, through this simple grid search the ‘‘optimal’’
set of parameters was selected (in terms of average classification
performance) for each one of the thirty folds of the ‘‘leave one
out’’ method. After the selection of the parameters (the same for
all three HMMs, even though HMMs with different parameters
could have been selected) the 29 cases (divided into three sets,
each one for each class) were used to train three HMMs and the
one case left out was assigned to the class that corresponded to
the model that yielded the maximum log-likelihood. Since the
training of the HMMs is a stochastic process the whole procedure
was repeated five times and the results were averaged.

Our results indicate that the method is quite promising, yield-
ing 100% classification accuracy as it can be seen in Table 2. In
terms of the parameters setting, more than one configurations
were proved ‘‘optimal’’ as it can be observed in Fig. 11. In all 150
(5 � 30) repetitions, an HMM with 2 hidden states and 3 mixtures
was selected. The number of mixtures seems to play the most
important role since models with three mixtures were consistently
selected, whereas the number of hidden states could also be in-
1 1.2 1.4 1.6 1.8
conds)

"alone"
"stacked"

ween the components extracted using all recordings corresponding to the machine
istinguishable.



Table 2
Average confusion matrix.

Predicted

Healthy (%) 1 BB (%) 2 BB (%)

Actual Healthy 100 0 0
1 BB 0 100 0
2 BB 0 0 100
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Fig. 11. The two-dimensional histogram for the selection of each model configu-
ration over the 150 repetitions. The number of Gaussian mixtures plays the most
important role.

Table 3
Average confusion matrix.

Predicted

Healthy (%) Faulty (%)

Actual Healthy 100 0
Faulty 0 100
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Fig. 12. The calculated log-likelihood using an HMM trained with nine normal
recordings.
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creased to 3 or 4. However, since in data driven modeling the major
trend is to select simpler models, in the case that the number of
data is restricted (Cherkassky & Mulier, 2007) the use of HMMs
with three mixtures and two hidden states seems to be an efficient
choice.
3.2. One class classification approach

Sometimes it is difficult to have access to data regarding all the
possible classes or the damage modes that a complex engineering
system is likely to encounter. In such cases it is more practical to
require a detector instead of a classifier. These kinds of detectors
are usually trained using data coming from only one known class
(usually the healthy one) and actually detect any object that devi-
ates from what it has been learnt before. In the machine learning
literature these detectors are called novelty detectors (Markou &
Singh, 2003) or anomaly detectors (Chandola, Banerjee, & Kumar,
2009). Since information from a single/one class is exploited, this
kind of novelty detectors is closely related with the one-class clas-
sification approach (Tax, 2001).

Therefore in the one class classification approach (Tax, 2001)
the objective is to develop a methodology, which will be able to
characterize anomalous situations using information coming solely
from the healthy class. A number of detectors for fault detection
have been developed and new applications appear every day espe-
cially for complex engineering systems (Chandola et al., 2009). In
our case, due to the temporal nature of the phenomenon and also
for consistency reasons regarding the multiclass-severity diagnosis
approach, an HMM was selected as the basic element for modeling
the normal/healthy class.

In other words, an HMM was trained using only data coming
from the normal/healthy case and the detection of an anomaly
was based on the value of the log-likelihood resulting from that
model (the evaluation problem that was mentioned in Section 2.2).
A similar approach with only one HMM was applied for tracking
bearing degradation with the HMM being trained with data com-
ing from a healthy bearing and thereafter evaluating the condition
of the bearing based on log-likelihood estimated using that model
(Ocak et al., 2007).

Since the investigation in Section 3.1 during the multiclass ap-
proach revealed that a ‘‘compact’’ HHM with two hidden states and
three Gaussian mixtures was sufficient for the discrimination be-
tween three classes, the same configuration was also adopted for
the one class classification scheme. In order to experimentally
evaluate the proposed approach, again the ‘‘leave-one-out’’ meth-
od was applied by utilizing each time nine of the healthy record-
ings for training and the one left out for testing along with the
20 faulty cases (10 with one broken bar and 10 with 2 broken bars).
As in the previous case, the overall procedure was repeated five
times and the results were averaged. For the examined case, it
should be noted that since the length of the time series can affect
the value of the log-likelihood, a stage for fixing the length to 200
samples was involved (using linear interpolation). For setting the
detection threshold, a simple approach based on the three-sigma
rule (Ruan, Chen, Kerre, & Wets, 2005) was used. In other words,
if the log-likelihood was three standard deviations away from the
mean log-likelihood of the training data, the unknown recording
was declared as an anomaly/fault. As the experimental results indi-
cate, the anomaly detector has 100% detection rate and without
any false alarms as it is summarized in Table 3.

Moreover, as it can be observed graphically in Fig. 12, where the
calculated log-likelihoods for one of the folds of the aforemen-
tioned procedure is depicted, the anomaly detector could be also
utilized as a method for severity evaluation even, though it was
not explicitly designed to do so; the more severe the fault is the
less the log-likelihood value becomes. This is inline with the fault
degradation perspective described in Ocak et al. (2007).

4. Conclusions

In this article, two automatic methods, one for the detection of
broken rotor bars and the second for the exact estimation of the
number of broken bars, were presented. The core of the proposed
approach is based on the use of PCA applied on the stator’s three
phase start-up current. PCA was utilized to extract a characteristic
component, which reflects the rotor asymmetry caused by the bro-
ken bars. This component was subsequently processed using Hid-
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den Markov Modeling following two paths: a multiclass and a one-
class approach.

During the multiclass approach each severity level was treated
as a separate class and the goal was to assign each recording to one
of the severity levels/classes. Three HMMs (normal, 1 broken bar, 2
broken bars) were built. Each one corresponds to one severity class
level and the new recordings were classified to the class whose
model best described them. Using experimental data and a quite
compact HMM configuration, perfect classification performance
was achieved indicating that the method was able to ‘‘assess’’ the
severity of the fault.

In the one-class – anomaly detection – approach the condition
of the machine was assessed based on the log-likelihood calculated
using only one HMM which was built using data coming only from
the normal class. Using the calculated log-likelihood and a simple
threshold derived by the three-sigma rule the proposed method
was able to detect all anomalous/faulty situations without any
false alarm. Moreover this scheme although it was not explicitly
developed for severity assessment, it could potentially be applied
as such (without however being able to explicitly estimate the
number of broken bars – this would require the use of labeled data
which were assumed absent).

One of the drawbacks of the method is the high computational
time for building and testing the HMMs. However since this meth-
od is not meant for continuous monitoring this time demanding
process does not pose any serious implementation issues. It should
be mentioned that the key, as in most machine learning applica-
tions, is the PCA stage, i.e. the feature engineering phase (Domigos,
2012). The distinctive extracted pattern is what makes the whole
diagnosis process successful.

In future research we will test our method using data coming
from other machines in order to further validate its applicability
in an industrial setting. Moreover we will try to test scenarios
involving several faults in a fault isolation scheme.
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