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Predicting the Risk of Metabolic Acidosis for
Newborns Based on Fetal Heart Rate Signal
Classification Using Support Vector Machines
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Abstract—Cardiotocography is the main method used for fetal
assessment in every day clinical practice for the last 30 years.
Many attempts have been made to increase the effectiveness of
the evaluation of cardiotocographic recordings and minimize the
variations of their interpretation utilizing technological advances.
This research work proposes and focuses on an advanced method
able to identify fetuses compromised and suspicious of developing
metabolic acidosis. The core of the proposed method is the intro-
duction of a support vector machine to “foresee” undesirable and
risky situations for the fetus, based on features extracted from the
fetal heart rate signal at the time and frequency domains along
with some morphological features. This method has been tested
successfully on a data set of intrapartum recordings, achieving
better and balanced overall performance compared to other
classification methods, constituting, therefore, a promising new
automatic methodology for the prediction of metabolic acidosis.

Index Terms—Feature extraction, fetal heart rate (FHR), intra-
partum monitoring, metabolic acidosis, support vector machines
(SVMs).

I. INTRODUCTION

CARDIOTOCOGRAPHY was introduced into obstetrics
practice in the seventies and since then it has been widely

used for antepartum and intrapartum fetal surveillance. Car-
diotocogram (CTG) consists of two distinct signals, i.e., the
continuous recording of instantaneous fetal heart rate (FHR)
and uterine activity (UA). These two biosignals are depicted
in Fig. 1 with FHR at the upper part and UA at the lower part.
FHR variability is believed to reflect the interactions between
the sympathetic nervous system (SNS) and the parasympathetic
nervous system (PSNS) of the fetus [1]. Stimulation of the
PSNS results in a decrease in heart rate of the normal fetus
while stimulation of the SNS results in an increase in heart
rate. During stressful situations for the fetus, such as the uterine
contractions at the time of delivery, the sympathetic nerves
may act as a compensatory mechanism to improve the fetal
heart pumping activity [1], which is reflected in the FHR signal
variations.
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Fig. 1. A typical (digitized) CTG (FHR at the upper part and UA at the lower
part).

During the critical period of labor, FHR—the subtlest compo-
nent of a CTG—is utilized as an indication of the fetal condition
and, primarily, as a warning of possible fetal and neonatal com-
promise, namely metabolic acidosis [2]. Severe hypoxic injury
of the fetus can lead to neuro-developmental disability and cere-
bral palsy or even death. However, neuro-developmental dis-
ability and cerebral palsy are often diagnosed several years after
birth. Therefore, the objective of monitoring and interpreting
FHR patterns is to detect these fetuses that during delivery are
at significant risk of developing metabolic acidosis and subse-
quently to alert the obstetricians to intervene before there is an
irreversible damage to the fetus.

Nevertheless, there is controversy regarding the effectiveness
of the use of cardiotocography and its consistency [3], especially
when it is interpreted by eye inspection. Studies of FHR relia-
bility have shown significant intra- and inter-observer variation
in tracing interpretation [4], [5], indicating that even though spe-
cific guidelines have been published for its interpretation [6],
[7], the different levels of expertise and experience have cat-
alytic influence on the final judgment. These findings pointed
out the need for developing automated techniques to reliably in-
terpret the FHR signal and provide early estimations and warn-
ings about the fetal condition.

On the other hand, it is strongly believed that FHR tracings
truly convey much more information than what is actually inter-
preted by obstetricians [8]. During the last two decades, in the
area of cardiotocography there have been proposed methods and
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systems that range from simple feature extraction utilizing con-
ventional programming techniques [8]–[16] and artificial neural
networks [17], [18], to systems capable of performing various
diagnostic tasks [19]–[32].

Professor Bernardes and his colleagues [19]–[21] developed
a computerized system based on algorithmic manipulation of
the guidelines given by the International Federation of Obstet-
rics and Gynaecology (FIGO) [6]. Magenes et al. [22], [23]
used artificial neural networks to discriminate between normal
and pathological fetal conditions. Kol and Thaler [24] also
employed artificial neural networks to interpret nonstress tests.
Chung et al. [25] developed an algorithm to analyze and predict
acidosis. Salamalekis et al. [26] employed scale-dependent
features extracted from the FHR along with information derived
from pulse oximetry recordings and self-organizing maps to
diagnose fetal hypoxia. Struzik and Wijngaarden [27] proposed
a method based on the cumulative effective Hölder exponent
for online monitoring of fetal condition during labor. Professor
Ifeachor and his group developed a crisp expert system [28],
which they subsequently transformed into a fuzzy system [29]
in order to deal with the intrinsic uncertainty in FHR interpreta-
tion. Professor Alonso-Betanzos and her group developed and
evolved an expert system called NST-EXPERT [30], [31] to
create Computer Aided Foetal Evaluator [32], which integrates
algorithms with artificial intelligence paradigms, merging
FHR analysis and contextual analysis of all pathological and
physiological aspects involved in fetal monitoring.

In general, most of the aforementioned approaches employ
methods from the field of signal processing and incorporate the
doctor’s expertise, in order to reach a satisfactory level of relia-
bility so as to act as decision support systems in obstetrics. Up
to now, none of them has been adopted worldwide for everyday
clinical practice and almost all methods still require an exten-
sive validation, especially for the intrapartum period. Thus, this
research effort aims to exploit the capabilities of electronic fetal
monitoring by eliminating the difficulties in reading and inter-
preting the FHR tracings, and to develop an automated comput-
erized system for alerting on possible metabolic acidosis.

In this research work the selection of an appropriate set of
FHR features is investigated, which can be fed to a nonlinear
classifier in order to “foresee” risky situations (potential com-
promise of the fetus) during the final stage of labor. The se-
lected features are extracted automatically from the FHR signal
in time and frequency domain—some of them have been suc-
cessfully used for the antepartum case [22], [23]—along with
some morphological features (such as baseline value, number of
accelerations, etc, e.g., see [6]). Every FHR recording is labeled
based on the pH value of the fetal umbilical artery blood samples
(acquired right after delivery): the normal group, consisting of
babies with and the “at risk” group, consisting of ba-
bies with . Using this segregation, it is assumed that
two well-defined classes of FHR signals with minimum overlap-
ping were created. It must be mentioned that, as in most medical
applications, the training set was imbalanced in the sense that
the class containing the fetuses with the low umbilical artery
pH value (“at risk” group) was underrepresented compared to
the other class. Different combinations of features were exam-
ined exhaustively so as to define the set of features that gives
the best results. The proposed methodology introduces the use

of a new powerful tool from the field of pattern recognition, the
support vector machines (SVMs) [33]–[38], which can classify
the FHR recordings achieving balanced performance in discrim-
inating the two classes.

SVMs have been recently introduced in the framework of sta-
tistical learning theory [35] and have been used successfully
for a number of applications in the field of pattern recognition
[33]–[38]. Their experimental success and their ability to gen-
eralize well, even when the sample size is small [39], prompted
us to select the SVMs as the classification tool in this research
work.

This paper is structured as follows; Section II gives a brief
introduction to SVMs. Section III describes the stages of the
proposed methodology; it discusses the selection of different
feature sets and how they are extracted from FHR signal.
Section IV presents the data, the different scenarios used to
test the proposed methodology, the metric used to evaluate the
performance, and the experimental results. Finally, Section V
concludes the paper discussing the results and giving hints for
further future research.

II. SUPPORT VECTOR MACHINES

SVMs are learning systems that are trained using an algo-
rithm based on optimization theory [33]–[36]. For real life prob-
lems, given observations , the SVM solu-
tion finds the hyperplane in feature space that keeps both the
empirical error small and maximizes the margin between the
hyperplane and the instances closest to it. This can be done by
minimizing

(1)

where are slack variables, which are introduced to allow the
margin constraints to be violated, and is the nonlinear map-
ping from the input space to the feature space. Parameter
controls the tradeoff between maximizing the margin and mini-
mizing the error and it is usually determined through a cross-val-
idation scheme [36], [40].

The class prediction for an instance is given by

(2)

where the coefficients are calculated by maximizing the
Lagrangian

(3)
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The points for which , are called support vectors and
are the points lying closest to the hyperplane. If the nonlinear
mapping function is chosen properly, the inner product in the
feature space can be written in the following form:

(4)

where is called the inner-product kernel [33]–[36].
The above formulation is inappropriate for the case of imbal-

anced distributions and another approach is required. The sim-
plest one is to use different error weights and in order to
penalize more heavily the undesired type of error, and/or the er-
rors related to the class with the smallest population [41], [42].
Therefore, the optimization problem is modified as follows:

(5)

By using higher penalty value for the class with the smallest
population, which in most medical applications is the class that
needs to be correctly identified, we induce a boundary that is
more distant from that class.

III. NOVEL METHODOLOGY FOR FHR PROCESSING

AND CLASSIFICATION

The proposed overall procedure is depicted in Fig. 2; it con-
sists of six stages. The sixth stage of the proposed methodology
determines the configuration of the SVM classifier that yields
the best results.

A. The Fetal Heart Rate Signal

FHR can be either obtained by Doppler ultrasound (the most
common method employed during the antepartum period) or
directly from the fetal electrocardiogram via scalp electrodes
(during the intrapartum period and after the rupture of the mem-
branes) [43]. The cardiac events are easily recognized and the
time intervals between them (in seconds) are transformed into an
instantaneous rate for each interval between cardiac events. This
instantaneous rate is sent to the output of the cardiotocograph.
Most devices sample the output of the cardiotocograph at fixed
sampling intervals (depending on the manufacturer). A new
value for FHR is not assigned to the output until the next sam-
pling instance. Therefore, the FHR in most cardiotocographs
is measured in beats/min (bpm) as shown in Fig. 1 and it is a
discrete signal, which is not perfectly aligned with the cardiac
events.

The experienced clinician can distinguish various patterns on
these tracings. The clinician assesses fetal condition by eye in-
spection of the “morphological” characteristics of FHR, as those
are described in the guidelines given by FIGO or the National In-
stitute of Child Health and Human Development Research Plan-
ning Workshop [6], [7]. As already pointed out, this approach
is highly subjective and of limited reproducibility [3]. Targeting
a more objective and reproducible approach, computerized sys-
tems, such as those mentioned in the introductory section, have

Fig. 2. The overall proposed methodology for FHR classification.

been employed lately to describe and interpret FHR tracings.
Different signal processing and pattern recognition techniques
have been used to analyze FHR not only in the time domain but
also in the frequency domain with very promising results [8],
[22], [23], [44].

B. Preprocessing-Artifact Removal Stage

The FHR is a noisy signal, usually containing “spiky” arti-
facts, which occur mainly due to fetal movements or displace-
ment of the transducer. This becomes more apparent during the
final stage of labor, which is a very stressful period, both for
the mother and the fetus, and it is reported that missing data in
fetal heartbeat records can amount to about 20%–40% of total
data [27]. In order to extract a representative set of features from
FHR, it is necessary to remove those artifacts by using a prepro-
cessing stage. The employed preprocessing method was intro-
duced in [19]. Whenever a difference between adjacent samples
higher than 25 bpm is found, a linear interpolation is applied
between the first of these two samples and the first sample of
a new stable FHR segment, where a stable FHR segment is de-
fined as a group of five adjacent samples with the difference (in
bpm) between them less than 10 bpm.

In addition to the spiky segments, FHR includes segments of
missing values. In this case we also applied linear interpolation.
Especially, just before the delivery the artifacts were so many
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that the artifact removal stage resulted in a completely unnatural
flat FHR trace. Those final 1-2 min of the recordings were man-
ually removed. It must be mentioned that no special action was
taken when the artifacts or the missing segments were part of
a fetal pattern (acceleration or deceleration). After applying the
aforementioned preprocessing procedures to the whole data set,
all but one of the initial signals, had signal quality above 80%
[mean value: 91.3; standard deviation (SD): 6.5] where signal
quality is defined as the percentage of FHR values that were not
interpolated using the aforementioned procedure [21].

C. Feature Extraction Stage

After the preprocessing stage, the stage of feature extraction
follows (Fig. 2). The possible extracted features can be divided
into three categories:

features extracted in time domain;
features extracted in frequency domain;
“morphological” features.

The selection of the first two sets of features comes naturally
since we are dealing with a time series signal and, as a result,
time series analysis tools and other methods from time and fre-
quency domain can act supplementary and, as a matter of fact,
have been used in many biomedical applications [45]. The third
set of features is motivated from the everyday interpretation of
the FHR signal by obstetricians over the past 30 years [6], [7].

1) Time Domain Features: There are a number of methods
that can evaluate variations in heart rate [44]. The features/in-
dexes in time domain that we employed have already been used
with reasonable success in the antepartum case [22], [23] and,
therefore, we decided to test them in the intrapartum case too.
The features employed were the following.

• Mean value of FHR signal
where is the total number of samples of the recording.

• Standard deviation of FHR signal:

• The Delta value is shown in the equation at bottom of page,
where is the time duration of the recording in minutes.

• Short-term variablility:

where is the value of the signal
taken every 2.5 s (i.e., once every ten samples

• Interval index:

• Long term irregularity (LTI), defined as the interquar-
tile range [1/4,3/4] of the distribution with

, which is a means to
evaluate long term variability [9].

• Total value of the Delta:

Therefore, the feature set selected in the time domain was

2) Frequency Domain Features: Various spectral methods
have been used for the analysis of adults’ heart rate [44]. How-
ever, in the case of FHR, there is no standardized use of fre-
quency bands. In this paper, we experimented with two different
sets of features, extracted using slightly different partitioning
of the frequency bands. We divided the frequency range into
three bands [46] and we calculated the energy of the signal con-
tained in each one of them. The three bands were: a) the very
low-frequency (VLF) 0–0.05 Hz; b) the low-frequency (LF)
0.05–0.15 Hz (referred to as Mayers’ waves [46]); c) the high-
frequency (HF) 0.15–0.5 Hz, which “corresponds to fetal move-
ments” [46].

As a fourth feature we used the ratio of energies in the bands
LF, HF.

LF/HF is a standard measure in adults and it is thought to
express the balanced behavior of the two branches of the auto-
nomic nervous system [44].

Therefore the first frequency feature set is

The other alternative frequency feature selection was chosen
following suggestions of [8]. In this case, we partitioned the
frequency range into four bands: a) VLF 0–0.03 Hz “related
to long period and nonlinear contributions” [8]; b) the LF
0.03–0.15 Hz “mainly correlated with neural sympathetic
activity” [8]; c) the movement frequency (MF) 0.15–0.5 Hz,
which “depends on fetal movements and maternal breathing”
[8]; d) the HF 0.5–1 Hz, which “marks the presence of fetal
breathing” [8].

As a fifth feature for this feature, set we used the ratio

Authorized licensed use limited to: University College London. Downloaded on July 26, 2009 at 14:21 from IEEE Xplore.  Restrictions apply. 



GEORGOULAS et al.: PREDICTING THE RISK OF METABOLIC ACIDOSIS FOR NEWBORNS BASED ON FHR SIGNAL CLASSIFICATION USING SVMS 879

Fig. 3. Energy contribution of the different frequency bands for a normal FHR
trace (a) using the 3-band division [46] and (b) using the 4-band division [8].

, which “quantifies the autonomic balance be-
tween neural control mechanism from different origin (in accor-
dance with the LF/HF ratio normally calculated in adults)” [8].

Therefore the second feature set is defined as

Fig. 3 shows the relative contribution of the frequency bands
for the FHR using the two distinct partitions. The above parti-
tioning of the frequency band is not the only one found in the
literature [25]. However, we restricted ourselves only to those
two partitions for the needs of this paper.

3) “Morphological” Features: Conventional interpretation
of FHR is based upon certain morphological characteristics, ac-
cording to the guidelines given in [6] and [7]. In this paper, we
examined two sets of morphological parameters. The first set
consisted of only four parameters.

• Baseline—(“the mean level of fetal heart rate when this is
stable; accelerations and decelerations being absent” [6]).

• Number of accelerations—(“acceleration is defined as the
transient increase in heart rate above the baseline by 15
bpm or more, lasting 15 s or more” [6]).

• Number of decelerations—(“deceleration is defined as the
transient episode of slowing fetal heart rate below the base-
line level by more than 15 bpm and lasting 10 s or more”
[6]).

• The percentage of the time occupied by decelerations.
Therefore the first morphological feature set is

.
We additionally examined a second morphological feature

set, which also uses the above parameters, but additionally dis-
tinguishes the decelerations into three types.

• Mild decelerations, if they do not exceed 120 s [21].
• Prolonged decelerations, if they last 120–300 s [21].
• Severe decelerations, if they exceed 300 s [21].
Therefore, the second morphological feature set

is

For the calculation of the baseline we employed the algo-
rithm proposed in [13], which is based on an iterative process

easy to implement. It consists of the following steps: removal
of components of the FHR signal associated with accelerations
and decelerations; linear interpolation across the gaps, and low
pass filtering (this procedure is repeated three times [13]). In
this paper, we did not take into account any information con-
tained in the UA signal; thus, we did not further characterize
the detected decelerations as early or late [6], [7]. Moreover,
some of the time domain features such as the standard deviation
of the FHR and STV are actually used by obstetricians in ev-
eryday practice. Therefore, these could also be included in the
morphological feature set. However, following Magenes et al.
[22], [23], we adopted the segregation and definitions they have
proposed.

Having extracted these features/indexes, we then proceeded
to the next stage. We could proceed directly to the classification
of the recordings, but instead we introduced a dimensionality
reduction stage seeking for improvement in the generalization
performance of our classifier.

D. Dimensionality Reduction Stage

In pattern recognition tasks, by using fewer features than
those available, usually potential improvement—better gener-
alization—can be achieved. Actually, when we build a classifier
we tend to extract several features, which may convey redun-
dant information about the problem at hand. Therefore, it is
worth trying to select the most suitable subset of the extracted
features.

Principal component analysis (PCA), or Karhunen-Loeve
transformation, is a way to perform dimensionality reduction
by linear combination of the original features in such a way that
preserves as much of the relevant information as possible [47].
This method computes eigenvalues of the correlation matrix of
the input data vector and then projects the data orthogonally
onto the subspace spanned by the eigenvectors (principal com-
ponents) corresponding to the dominant eigenvalues. Even if
the whole set of the eigenvectors is retained, this may also lead
to an improvement of the classification performance, because
the new set has features that are uncorrelated and this, in gen-
eral, improves the classification capabilities of a classifier [47].

E. Classification Stage Using SVMs

After the dimensionality reduction stage we labeled each one
of the feature vectors with { 1} if it belonged to newborn with
ph 7.1 (20 cases)—“at risk” group—and { 1} if it belonged
to a newborn with ph 7.2 (60 cases)—normal group.

Different SVMs with different nonlinear decision surfaces
can be constructed, depending on the choice of the kernel
function. Among others, the most popular are the polynomial
learning machines, the radial basis function (RBF) networks
and the two-layer perceptrons [47]. In our experimental proce-
dure we employed two types of kernels:

1) RBF kernels:

(6)

where the width is specified a priori by the user and is
common for all the kernels
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2) Polynomial kernels of degree :

(7)

As it will be explained in Section IV, when SVMs with the
same penalty parameter for both classes were examined, this re-
sulted in almost perfect specificity. However, the sensitivity was
very poor because the classifiers tended to classify every trace
in the normal class. Thus, a different approach was required and
so, the scheme with the two penalty parameters and was
employed. As it was reported [48]–[50] and proved through ex-
haustive experimentation, the ratio should be set to the
inverse of the corresponding cardinalities of the classes.

In this research work, we experimented with various config-
urations of the learning machines varying the width for the
RBF kernels (6) and the degree for the polynomial kernels
(7) (the cross validation approach to model selection [36]). For
each configuration of the kernel we tested different values for
the values and keeping their ratio equal to three (the
inverse ratio of the corresponding cardinalities 1/20/60). Fol-
lowing the medical terminology we refer to the group with the
hypoxic babies as the positive cases (the cases that are at risk )
and the normal group as the negative (the cases that are not at
risk).

IV. DATA SET AND EXPERIMENTAL RESULTS

A. Data Set Description

We tested the proposed method (Fig. 2) for FHR feature
extraction and classification using 80 recordings. The record-
ings were collected in the context of the Research Project
POSI/CPS/40 153/2001, funded by Fundação para a Ciência e
Tecnologia, Portugal. The data recordings had various lengths,
ranging from 20 min to more than 1 h. Regarding the record-
ings, 57 of them were acquired using an HP 1350 fetal monitor
at a sampling frequency of 4 Hz, and 23 were acquired using
a Toitu MT810B. In both cases, scalp electrodes were used
for the acquisition, giving accurate recordings [51]. The latter
recordings were irregularly sampled and had to be transformed
into “pseudo-regularly” sampled signals. This was performed
by copying the way HP 1350 operates. To be more specific, HP
1350 operates in the following way: if a new beat is detected
during the sampling interval ,
the cardiotocograph assigns the computed FHR value to the
next output value; otherwise, it assigns it to the previous output
value. Thus, from the irregularly sampled FHR signal we
reconstructed the sequence of the detected beats (R-peaks)
and then we created a regularly sampled FHR sequence using
a zero-order-hold procedure, exactly the same way HP 1350
would have done.

For simplicity and practical reasons we adopted the approach
of imitating the operation of HP 1350 fetal monitor. However,
more sophisticated methods exist, such as the one proposed by
Berger et al. [52] to deal with the irregular signal produced by
Toitu MT810B and the algorithm proposed by Bracale et al. [53]
for the signal produced by the HP 1350. Because the recordings
from the HP 1350 monitor had a lot of missing samples (as it

is usually the case [27]) an attempt to derive the original irregu-
larly sampled sequence would be a very difficult, if not virtually
impossible, task. As a result, we considered the outcome of the
HP 1350 as our standard and we used linear interpolation to deal
with the missing samples.

As aforementioned, the duration of the recordings ranged
from 20 min to more than 1 h; thus, for homogeneity reasons
we used segments of equal duration for each recording and
performed the subsequent analysis on these segments only. We
tried two different segmentations. We cropped, starting from
the end of the recording (or as close to the end as possible),
segments lasting 10 and 20 min (after the removal of any
unnaturally flat segments as described in Section III-B).

The experimental data consisted of tracings belonging to
newborns with umbilical artery pH either less than 7.10 or
greater than 7.20. Newborns with umbilical artery pH value
in the range (7.10, 7.20) were not included in the data set.
Intuitively, by this division we were expecting to have two
distinguished classes that could be separated. With these cut-off
values, 20 newborns (ten from the HP 1350 set and ten from
the Toitu MT810B set) were labeled as positive (“at risk”) and
60 newborns were labeled as negative (normal). Because of
the restricted number of cases, we used the stratified tenfold
cross-validation scheme [54], an extension of regular multifold
cross validation [47] in order to evaluate the performance of
the proposed methodology. Therefore, we divided the 80 cases
into ten nonoverlapping groups containing eight cases each
(six normal and two at risk). For each one of the ten subsets we
created one training set comprising of the rest nine sets. Within
the training set we used ninefold stratified cross validation to
tune the parameters of the SVM. Once the parameters were
fine-tuned the SVM was retrained for this set of parameters
using the whole training set and its performance was evaluated
using the corresponding subset that was originally left out. The
aforementioned procedure was adopted in order not to use the
same set both for tuning and estimating the performance of the
proposed classifier [55].

B. Different Scenarios Examining the Proposed Methodology

We exhaustively tested the classification performance for the
two segment durations (10 and 20 min) using various combina-
tions of the features so as to identify the best feature set and the
most appropriate duration for FHR classification.

Only the four morphological features, .
Only the six morphological features, .
Only the seven time domain features, .
Only the four frequency domain features, .
Both the time and frequency domain features,

(11 features).
The 15 extracted features from all three domains,

.
The 17 extracted features from all three domains,

.
Only the five frequency domain features, .
Both the time and frequency domain features,

(12 features).
The 16 extracted features from all three domains,

.
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The 18 extracted features from all three domains,
.

For each combination, we also experimented retaining dif-
ferent number of principal components at the dimensionality
reduction stage (ranging from 1 to the maximum number of fea-
tures). For each scenario, SVM classifiers with different asym-
metric penalty parameters were tested. For comparison reasons,
experiments were also conducted using three conventional clas-
sifiers: the k-nearest neighbor, the linear and the quadratic clas-
sifiers [56].

C. Metrics to Evaluate Experimental Results

Due to the imbalanced nature of the data set, the selection
of accuracy (overall classification rate) as a metric is not the
best choice. For example a classifier that classifies everything
as negative (all cases classified as normal) will be 75% accurate
but it will be completely useless. A more appropriate metric is
the geometric mean [57], where is the accu-
racy, which is observed separately on positive examples (also
known with the term sensitivity) and is the accuracy ob-
served separately on negative examples (also known with the
term specificity).

Another approach to compare classifiers is by using their cor-
responding receiver operating characteristic (ROC) curves. The
area under the ROC curve (AUC) is also another single scalar
value that can be used for classifier comparison [58], [59]. The
AUC of a classifier is the probability with which the classi-
fier will rank a randomly chosen positive instance higher than
a randomly chosen negative instance. On the other hand, max-
imization of the geometric mean corresponds to fitting rectan-
gles under the ROC curve and choosing the rectangle of greatest
area.

For this work we used the geometric mean as the performance
metric, which our classifier intended to maximize. In addition
to this, we also calculated the AUC for each one of the optimal
classifiers as a second performance measure.

D. Experimental Results

The overall procedure (Fig. 2) was repeated for all the 11
scenarios of feature set selection and for the two different SVM
classifiers with polynomial and RBF kernels. The RBF kernel
machines outperformed the polynomial machines and both
of them outperformed the conventional methods of k-nearest
neighbor linear and quadratic discriminant classifiers. Thus,
we elaborate on the results of SVMs with RBF kernels, which
performed better. The difficult task of predicting the risk of
acidemia based on the intrapartum FHR trace, which was re-
garded with skepticism in the early 1990s [60], was made even
more difficult because of the imbalanced nature of the data set.
This can be easily verified by examining the performance of
conventional classifiers such as the k-nearest neighbor, linear
and quadratic classifiers. For this particular data set, all three
conventional classifiers were biased heavily towards the normal
cases. If we had used only the accuracy as a means to compare
the four classifiers we would have mistakenly drawn the con-
clusion that they are all somehow of equal performance. Using
the g-metric it can be seen that the SVM classifier outperforms
the other three classifiers achieving balanced accuracy for both

TABLE I
CLASSIFICATION RESULTS FOR 20–min SEGMENTS

UTILIZING PCA FOR FEATURE REDUCTION

classes (Table I). The superiority of the SVM over the other
classifiers is made even more apparent in terms of AUC. In fact,
the conventional classifiers almost totally fail to rank correctly
the unseen data, proving the complexity and difficulty of this
particular problem.

For the 10-min segments the performance deteriorates for all
the tested feature sets. The best results were achieved using the
set and retaining only two principal
components: , , ,

, ( ,
), .

Regarding the morphological features the results indicate that
when they are used alone, they perform worse compared to
the other sets of features. This shows that further investiga-
tion is needed since the obstetricians believe that the decelera-
tions are of paramount importance for the outcome of the de-
livery. In that direction the morphological module would be
redesigned using a refinement of the concepts of FHR base-
line, variability, accelerations and decelerations proposed by the
FIGO [6] and the National Institute of Child Health and Human
Development Research Planning Workshop [7], as in [21] and
[61], or using a neural network approach [17], [18] and would
be further evaluated.

For all the test sets, the proposed method using the SVM
classifier gave values for g and AUC higher than those achieved
by conventional classifiers (with the exception of the g value
for the morphological features alone). By adjusting the two
penalty parameters and we were able to achieve high
accuracies separately for each one of the two classes. However,
the limiting value for these particular test sets in terms of
the g metric was the one using features both from the time
and the frequency domain ,

, , , ( ,
), , re-

taining only three principal components. Regarding the AUC
the best performance was recorded when in the aforementioned
features set we added the morphological features (with only one
type of decelerations) ,

, , , ( ,
), , re-

taining only two principal components.
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Fig. 4. Classification performance of the different 11 feature sets selection
using RBF kernels for 20-min segments comparing them using (a) g-metric,
(b) AUC.

Fig. 4 shows the best results for each one of the 11 sets for
20-min segments for RBF kernels and asymmetric penalty pa-
rameters. Table I presents the best performance achieved by the
conventional classifiers for 20-min time segments. Fig. 4 and
Table I shows that when g-mean is chosen as a measure of per-
formance, the best choice of features will include features from
the time and the frequency domain. Especially, the segregation
for frequency domain proposed by Signorini et al. [8] seems to
be a better choice over the one proposed in [46].

When the AUC is chosen as a measure of performance, all
selections of feature sets, with the exception of the morpholog-
ical features when used alone, exhibit similar performance with
the feature set achieving the best score among them being the

.
In terms of accuracy, the quadratic discriminant classifier is

the best one but we can hardly recommend its use since it lacks
completely the ability to take into account the imbalanced na-
ture of this particular problem. By adjusting the penalty param-
eters of the SVM it is possible to achieve high classification
rates increasing dramatically the specificity at the expense of
decreasing the sensitivity.

V. CONCLUSION

This research work proposes a novel integrated methodology
to identify FHR signals of fetuses that are suspicious of devel-
oping metabolic acidosis. This is achieved by applying an anal-
ysis and processing stage for the FHR signal, which produces a
set of features that are descriptive with respect to this specific
problem. Then, SVMs are proposed and used to integrate the
difficult task of classification and identification.

The design of the experimental process and the use of two
distinct thresholds to separate the two classes does not allow us
to make direct comparisons with other similar works concerning
the prediction of metabolic acidosis during the second stage of
labor [25], [26], [62]. If, however, we try to indirectly compare
the proposed methodology with those developed by other re-
searchers we can outline the following:

1) Comparing with the results reported by Chung et al. [25],
their algorithm achieves better sensitivity 88% and worse
specificity 75%. However, their algorithm has limitations
[62] and, due to the small sample size used, further evalu-
ation is needed.

2) Comparing with the results reported by Salamalekis et al.
[26], their algorithm seems to perform better than the
results reported here. However, the use of fetal pulse
oximetry may account for the high values in the perfor-
mance of their proposed methodology.

The results of our research are comparable but worse to
our previews work, where we used features extracted from
frequency and time domain along with Hidden Markov Models
for the classification of FHR traces [63], and accuracy equal
to 83% with balanced performance was achieved. However,
in that work we had used equally balanced data from the two
classes.

Another issue that we would also point out is that the pH
value should be probably chosen lower for the “at risk” cases.
A more justified threshold would be to choose threshold value
of pH at 7, but this would compromise more the classification
performance, since only two cases of our data would belong
to the positive ones. It is obvious that with this partitioning,
even the modified SVM classifier would have problems to cope
with such distribution of cases. It is worth mentioning that only
very low pH values (6.8) are related to neonatal death or major
neurological damage [1].

Concluding, even though the achieved results are quite
promising, we must be very careful before we definitely
suggest the proposed methodology as the best choice for the
identification of metabolic acidosis based solely on FHR traces.
Therefore, the whole procedure has to be tested using more
cases in order to allow “extrapolation” for any unseen case.
However, this work is a positive step toward a more objective
analysis of the FHR signal for the prediction of metabolic
acidosis using SVMs. In future work, we will also consider
the use of the Apgar score as another index component for the
formation of the classes, something which was not used in this
study [61].

To sum up, the far from optimum performance of the SVMs
(and the other conventional classifiers) in terms of AUC, indi-
cates that even though FHR trace conveys valuable information,
when this is used independently, it is not enough to achieve very
high performance. Therefore, for maximizing the performance
it is proposed to incorporate the presented method of the anal-
ysis and interpretation of the FHR in a larger framework for fetal
surveillance during labor, which will integrate clinical, biophys-
ical and biochemical data both of the mother and the fetus.
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