
www.elsevier.com/locate/bspc

Biomedical Signal Processing and Control 2 (2007) 69–79
Novel approach for fetal heart rate classification

introducing grammatical evolution

George Georgoulas a, Dimitris Gavrilis b, Ioannis G. Tsoulos c,
Chrysostomos Stylios d,*, João Bernardes e, Peter P. Groumpos f

a School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
b Electrical & Computer Engineering Department, University of Patras, Rion 26500, Greece

c Department of Computer Science , University of Ioannina, P.O. Box 1186, Ioannina 45110, Greece
d Technological Educational Institution of Epirus, Informatics and Telecommunicatios Technology, Kostakioi, 47100 Artas, Greece

e Departamento de Ginecologia e Obstetrı́cia, Faculdade de Medicina da Universidade do Porto, Portugal
f Laboratory for Automation and Robotics, Department of Electrical and Computer Engineering, University of Patras, Rion 26500, Greece

Received 9 November 2006; received in revised form 10 May 2007; accepted 10 May 2007
Abstract
Fetal heart rate (FHR) variations reflect the level of oxygenation and blood pressure of the fetus. Electronic Fetal Monitoring (EFM), the

continuous monitoring of the FHR, was introduced into clinical practice in the late 1960s and since then it has been considered as an indispensable

tool for fetal surveillance. However, EFM evaluation and its merit is still an open field of controversy, mainly because it is not consistently

reproducible and effective. In this work, we present a novel method based on grammatical evolution to discriminate acidemic from normal fetuses,

utilizing features extracted from the FHR signal during the minutes immediately preceding delivery. The proposed method identifies linear and

nonlinear correlations among the originally extracted features and creates/constructs a set of new ones, which, in turn, feed a nonlinear classifier.

The classifier, which also uses a hybrid method for training, along with the constructed features was tested using a set of real data achieving an

overall performance of 90% (specificity = sensitivity = 90%).

# 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Antepartum and intrapartum fetal surveillance is widely

based on monitoring, analysis and evaluation of fetal heart rate

(FHR). FHR is acquired by cardiotocographs along with the

uterine activity (UA) and both signals are printed on a single strip

of paper termed cardiotocogram (CTG). FHR is measured in

beats/minute and it is acquired either by scalp electrodes, after

the rupture of the membranes, or by an external sensor attached

on the mother’s abdomen [1]. Fig. 1 shows a typical CTG. FHR

signal alterations are used to evaluate the fetal health condition,

so as to early diagnose fetal stress and distress. In the latter case,
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the obstetrician has to intervene to prevent potential compromise

and irreversible damage, such as cerebral palsy or death.

Especially during the crucial period of labor, FHR monitoring is

used as the main screening test of the fetal acid base balance [2].

FHR monitoring has been used during the last four decades

as the main electronic fetal surveillance test. However,

extensive studies have shown significant inter-observer and

intra-observer variation in FHR analysis and interpretation

[3–5]. These inconsistencies in interpretation and the increase

of false positive diagnosis have created skepticism. On the other

hand, the advances in pattern recognition methods, along with

new signal processing techniques, have paved the way towards

automated approaches. Therefore, many researchers proposed

computer-based systems, in an attempt to monitor and evaluate

the condition of the fetus in a reliable, reproducible and

effective way [6–31].

The paths followed by researchers in the field are quite

diverse. Mantel et al. [8,9], as well as Taylor et al. [11], used an
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Fig. 1. A typical cardiotocogram.

Table 1

The BNF grammar involved for feature construction

Rule Rule number

S ::= <expr> 0

<expr> ::= <expr> <op> <expr> 0

j<func> (<expr>) 1

j<terminal> 2

<xlist> ::= jx1jx2j. . .jxn 0j1j2j. . .jn � 1

<digitlist> ::= <digit> j <digit><digitlist> 0j1
<terminal> ::= <xlist> j <digitlist>.<digitlist> 0j1
<op> ::= +j�j*j/ 0j1j2j3
<func> ::= sin j cos j exp j log j sqrt j abs 0j1j2j3j4j5
<digit> ::= 0j1j2j. . .j9 0j. . .j9
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iterative procedure to extract the main morphological features of

FHR. Bernardes et al. [17–19] developed an automatic method

for the analysis and recognition of CTG and subsequent

extraction of morphological features. Magenes et al. [20,21] and

Kol et al. [22] employed artificial neural networks for the

interpretation of FHR recordings. Chung et al. [23] developed an

algorithm to analyze and predict fetal acidosis. Salamalekis et al.

[24], Struzik and Wijngaarden [25] and Georgoulas et al. [26]

employed wavelets for the analysis of the FHR signal. Ifeachor

et al. developed an expert system [27], which they subsequently

upgraded into a fuzzy system [28], for the interpretation of CTG

records. Alonso-Betanzos et al. merged FHR and contextual

analysis of all pathological and physiological aspects involved in

fetal monitoring. They developed at first an expert system called

NST-EXPERT [29,30], which later evolved to create computer

aided fetal evaluator (CAFE) [31].

Based on the belief that the FHR may convey much more

information than what is usually interpreted by obstetricians

[6], we investigate and propose an advanced methodology to

analyze and interpret FHR. This method is used to early

diagnose fetal acidemia. This innovative method utilizes a

novel approach for feature construction based on the extracted

features from the FHR signal. The constructed features are fed

to a multilayer perceptron (MLP) nonlinear classifier [32,33],

with very promising results.

The original FHR features are derived from three domains:

the time domain, the frequency domain and the morphological

domain. The last one utilizes medical definitions of ‘‘morpho-

logical’’ features, which have already been used with quite a

success both in the antepartum [20,21] and intrapartum case

[34,35].

The recently proposed approach of grammatical evolution is

applied to construct new artificial features from the actual ones.

Grammatical evolution [36] is an evolutionary methodology

that, as in the case of genetic programming [37], can evolve

complete programs. In our case, the evolved programs are

mathematical expressions/functions of the originally extracted

features. These constructed artificial features are then used to

classify the FHR signal.
This paper is structured as follows: Section 2 gives a brief

introduction to the grammatical evolution method. Section 3

presents the overall proposed procedure and the stages

preceding the construction phase. Section 4 describes the

implementation of the grammatical evolution for feature

construction while Section 5 presents a brief analysis of the

new features in terms of their ‘‘quality’’. Section 6 compares

the experimental results for different implementations of the

proposed scheme and, finally, Section VII concludes the paper

and ideas and directions for future work are discussed.

2. Grammatical evolution

Grammatical evolution [36] uses an evolutionary algorithm

and a Backus–Naur form (BNF) description [38] to create

programs in an arbitrary language. In grammatical evolution,

chromosomes are defined as a series of production rules of the

appropriate BNF grammar. Each gene of the chromosome

denotes a production rule from the BNF grammar. The

chromosomes in grammatical evolution have variable size. The

algorithm begins from the start symbol of the grammar and

gradually creates the program string by replacing non-terminal

symbols with the right hand of the selected production rule

[36,39]. The selection of the appropriate rule is performed

according to the following equation:

Rule ¼ B mod RN (1)

where B is the specific gene and RN is the number of rules for

the specific non-terminal symbol. This selection process is

repeated and it stops when the end of the chromosome is

reached. If the end of the chromosome is reached and no valid

expression has been produced, the process continues again from

the beginning of the chromosome (wrapping effect). The BNF

grammar used in this work can be seen below in Table 1.

In our case, the BNF grammar uses mathematical functions

and operators as non-terminal symbols and the original features

(x1, x2, . . ., xn) and the digits (0–9) as the terminal symbols. As a

result, the expressions that can be produced from this grammar

are mathematical expressions involving the operators x1, x2, . . .,
xn (which represent the original features and in our case are 19).

The complete process of decoding a chromosome is

summarized in Table 2.

The classical grammatical evolution algorithm differs from

the one presented here. In this work, the size of chromosome is



Table 2

Sequential creation of a feature decoding the original chromosome. Table 2

presents an example of the proposed method for feature construction. The

original chromosome is: [9,8,6,4,16,10,17,23,8,14]. In the first iteration, start-

ing from the start symbol S, the <expr> non-terminal is obtained. Because

<expr> has three rules, 9 mod3 = 0 so<expr> is substituted by<expr><op>

<expr> which is rule number 0 (of the <expr> non-terminal). The next non-

terminal (<expr>) is selected and the process is repeated until all non-terminals

have been substituted with terminal symbols. The resulting expression is

f(.) = x4 + cos(x14)

String Chromosome Operation

<expr> 9,8,6,4,16,10,17,23,8,14 9 mod 3 = 0

(<expr><op><expr>) 8,6,4,16,10,17,23,8,14 8 mod 3 = 2

(<terminal><op><expr>) 6,4,16,10,17,23,8,14 6 mod 2 = 0

(<xlist><op><expr>) 4,16,10,17,23,8,14 4 mod 19 = 4

(x4<op><expr>) 16,10,17,23,8,14 16 mod 4 = 0

(x4 + <expr>) 10,17,23,8,14 10 mod 3 = 1

(x4 + <func>(<expr>)) 17,23,8,14 17 mod 4 = 1

(x4 + cos(<expr>)) 23,8,14 23 mod 3 = 2

(x4 + cos(<terminal>)) 8,14 8 mod 2 = 0

(x4 + cos(<xlist>)) 14 14 mod 19 = 14

(x4 + cos(x14))

Fig. 2. The overall procedure.
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fixed. The wrapping process is performed only once and if after

the wrapping process still no valid expression has been

extracted, the chromosome is rejected. These two modifications

on the algorithm are made in order to increase speed and to

avoid the creation of very large solutions (features). When the

newly constructed features have been created, a new train and

test set is attained from the original, according to the new

features. A fitness value is assigned to each of the newly

constructed features, which in our case is the accuracy of a

supervised classifier. According to that fitness value, the newly

constructed feature will be accepted or rejected in the

successive generations.

We must point out that the selection of the fitness function is

not unique. Many other measures reflecting the separability in the

feature space could be involved (i.e. using scatter matrices [40])

or even functionals of measures of individual features. However,

in this work we employ the ‘‘wrapper’’ approach where the

construction of the features forms as a wrapper around the

classification algorithm. Even though the term ‘‘wrapper’’ is

usually involved in feature selection algorithms [41] we also use

it here since the underlying philosophy is the same and has

nothing to do with the ‘‘wrapping process’’ described in the

previous paragraph. This proposed approach, even though it does

not maximize separability or individual feature quality, it

manages to achievevery high values of sensitivity and specificity,

proving in a sense that ‘‘relevance’’ does not necessarily leads to

high classification accuracy. By constructing a small number of

new artificial features a reduction of the feature dimension is

achieved, the curse of dimensionality is alleviated and the

generalization performance is usually increased. More details

about the proposed method can be found in [39].

3. Overall procedure

The overall proposed procedure constitutes an integrated

approach, which takes as input the FHR signal and identifies the
health status of the fetus based on a prediction about its blood

pH. Fig. 2 depicts the overall scheme, consisting of five stages

and a final validation process.

3.1. Preprocessing stage

The preprocessing stage is divided into three sub-stages.

3.1.1. Artifact removal

The FHR signals undergo a removing of artifacts which are

present in almost all recordings [24]. The artifact removal

module, introduced in [17], firstly detects a stable FHR

segment. Stable segment is defined as the segment where the

difference between five adjacent samples is less than 10 beats/

min. Whenever a difference between adjacent beats higher than

25 beats/min is found, a linear interpolation is applied between

the first of those two segments and the first sample of a new

stable FHR segment (Fig. 3).

3.1.2. Pseudo-sampling

Twenty-three recordings were acquired using a Toitu

MT810B fetal monitor, which produces an irregularly sampled



Fig. 3. FHR denoising. The top graph depicts the original FHR signal and the

bottom graph the signal after removing spikes and filling the missing gaps.
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time series. Those signals had to be transformed into regularly

sampled ones through a pseudo-sampling procedure [34] before

incorporating them into the larger available FHR data set. The

second data set consisted of 137 recordings acquired by an HP

1350 fetal monitor operating at a sampling frequency of 4 Hz.

3.1.3. Segmentation

The FHR recordings had various lengths, ranging from

20 min to more than 1 h. In this work, we selected a time

duration of 20 min as the time length of the segments to be

analyzed. The 20 min segments were selected as close as

possible to the end of the recordings (i.e. as close as possible to

delivery) in order to avoid time bias.

3.2. Feature extraction stage

The selection of suitable features is probably the most

important phase during the development of a classification

system. As already pointed out, feature selection is more of an

art than a science [42]. Therefore, sometimes it is worth testing

a number of features before selecting an appropriate set. In this

work, we go one step further and after the extraction of a

number of features we construct new ones using the

grammatical evolution phase. During this phase the features

conveying the most valuable information will most probably be

part of the expression for a newly constructed feature.

In an attempt to gather information from different domains,

we selected a set of FHR features derived from (a) the time

domain, (b) the frequency domain and (c) a set of

morphological features. The last ones are closely related to

the physician’s approach for FHR interpretation which is

directly associated with the ‘‘morphology’’ of the FHR signal.

Subsequently, we will present the extracted features belonging

to each one of the aforementioned three domains.
(1) T
ime domain features:

x1. mean FHR;
x2. standard deviation of FHR;

x3. delta value;

x4. STV value;

x5. II value;

x6. LTI value;

x7. delta total value.
A detailed description of each one of the above

parameters can be found in [20,21,35].
(2) F
requency domain features

In this research work, we adopted the partitioning of the

frequency band proposed by Signorini et al. [6] because it is

proven to give a more adequate characterization of the fetal

condition [35]. Therefore, we partitioned the frequency

range into the following four bands and we calculated the

corresponding energies:

x8. very low frequency (VLF) 0–0.03 Hz;

x9. low frequency (LF) 0.03–0.15;

x10. movement frequency (MF) 0.15–0.5 Hz;

x11. high frequency (HF) 0.5–1 Hz;

x12. as a fifth feature for this feature set, we used the ratio

of energies: LF/(HF + MF).
(3) ‘
‘Morphological’’ features

Conventional interpretation of FHR is based upon

certain morphological characteristics, according to the

guidelines given in [43,44]. In this work, we examined the

following set of morphological parameters:

x13. baseline;

x14. number of accelerations;

x15. number of small accelerations;

x16. number of mild decelerations;

x17. number of prolonged decelerations;

x18. number of severe decelerations;

x19. the percentage of the time occupied by decelerations.
A detailed description of each one of the above parameters

can be found in [19,35].

Therefore, we had a total of 19 initial features, which we

used to construct the new artificial features through the process

of grammatical evolution. However, before proceeding to this

stage we had to take some action in order to alleviate the

problem arising from the imbalanced nature of the available

data.

3.3. Synthetic minority oversampling TEchnique (SMOTE)

stage

In this research work, the data set consists of 160 FHR

recordings. The recordings were collected in the context of the

Research Project POSI/CPS/40153/2001, funded by Fundação

para a Ciência e Tecnologia, Portugal. As already mentioned in

Section 3, 137 recordings were acquired using an HP 1350 fetal

monitor at a sampling frequency of 4 Hz, and 23 were acquired

using a Toitu MT810B. In both cases, scalp electrodes were

used for the acquisition, giving accurate recordings (greater

accuracy compared to recordings acquired using ultrasound

technology) [1,45]. One hundred and thirty FHR recordings



Fig. 4. Illustrative example of applying SMOTE. The minority class is marked

with circles and the majority class with squares. The black circles indicate the

original minority data while the grey circles indicate the produced ones.
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belonged to normal fetuses, with umbilical artery pH > 7.20,

and 30 recordings to fetuses with pH < 7.10, belonging to the

‘‘at risk’’ group.

As it is obvious, this segregation of data has an intrinsic

imbalance and if no precaution is taken, the construction of the

classifier may favor the class with the greatest number of

instances, which in this case is the class with the normal

subjects. The class imbalance is a fundamental problem, arising

when pattern recognition methods are dealing with real life

problems, and many approaches have been proposed to

overcome this situation [46]. In this work, in order to alleviate

this problem we adopted the procedure termed Synthetic

Minority Oversampling TEchnique (SMOTE) which creates

‘‘synthetic’’ instances for the undersampled class. SMOTE is

based on real data belonging to the minority class and it

operates in the ‘‘feature space’’ rather than the ‘‘data space’’

[47].

The algorithm for each instance (in ‘‘feature space’’) of the

minority class introduces a synthetic example along any/all of

the lines joining that particular instance with its k nearest

neighbors that belong to the minority class. A representative

example for the implementation of SMOTE on some artificial

data is depicted in Fig. 4. In this example, it is assumed that we

want to have 200% oversampling and that the neighborhood of

each minority consists of five samples.

For this particular work, we used eight nearest neighbors and

we tested different amounts of oversampling percentages: 300,

400 and 500%.

4. Feature construction

After the SMOTE stage, we have more balanced feature sets

which can be introduced to the grammatical evolution stage.

The grammatical evolution procedure itself is divided into two

phases: the construction and the evaluation phase.

4.1. Construction phase

A new artificial set of features is derived from the original

feature set using a combination of grammatical evolution and
an MLP neural network. The artificial features are constructed

from the original ones using a nonlinear mapping. Using the

newly constructed features, new training and testing sets are

constructed based on the original sets.

The new features are then evaluated using the new train and

test sets and an MLP [32,33] with one hidden layer and one

neuron in the output layer. The MLP network is trained using

Powell’s Broyden–Fletcher–Golfard–Shanno (BFGS) variant

algorithm [48]. During the feature construction process, the

fitness function of each genome (i.e. the fitness of the

corresponding constructed feature) is the classification accu-

racy of the neural network. In order to accelerate this process,

only a small number of the BFGS procedure steps are

performed. The genetic algorithm in the grammatical evolution

procedure is evolved for 300 generations and each generation

has 400 genomes. These parameters are empirically selected

based on experiments utilizing 100–1000 generations and

different population sizes. The chromosome length for each

genome is fixed and it is set equal to 100.

However, as mentioned before, the original grammatical

evolution algorithm uses variable length chromosomes. This

approach was not adopted because variable length chromo-

somes produce very large expressions and it is much slower

compared to the fixed length implementation. The mutation rate

is set to 5% and the crossover rate to 95% (one point crossover).

In each generation, the selection is performed using the

tournament scheme with a tournament size of 10.

4.2. Evaluation phase

The derived features are then evaluated using a second

neural network. The second neural network is also an MLP with

one hidden layer. The network is trained for 1–10 hidden nodes

in order to select the most efficient topology.

A hybrid two-step procedure is used to train the neural

network, which is a combination of a genetic algorithm and a

local optimizer. In the first step, a genetic algorithm is used to

estimate the network’s initial weights. The algorithm is used to

find a good set of initial values and it is evolved for 50

generations with a population of 100 genomes. The crossover

(one point crossover again), mutation and tournament size are

95%, 5% and 10, respectively. In the second step, the same

BFGS variant is used during the construction phase and it is

employed to refine the initial weights obtained by the genetic

algorithm. The BFGS variant runs for a maximum of 2000

iterations. It is experimentally found that BFGS increases the

overall efficiency. This hybrid approach incorporates the

intrinsic characteristic of genetic algorithms to find the global

minimum with the speed gained by the local optimizer [49]. In

Fig. 5, the evolution of the fitness value for the best individual

during the construction of one feature for the case of 300%

oversampling is illustrated.

4.3. Validation

In order to validate the proposed method, we employed the

10-fold stratified cross validation method [50]. To be more



Fig. 5. Evolution of the fitness function (classification accuracy) during the

BFGS cycle.
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specific, we divided the 160 samples into 10 non-overlapping

sets, each one containing 13 samples from the majority class

and three samples from the minority class. Each time one set

was excluded from the training phase and was used only for the

estimation of the classification performance. The remaining

nine sets (consisting of 107 examples from the normal group

and 27 of the at risk group) were used for training. Before

analyzing those 134 samples, we applied SMOTE to the 27

samples creating a number of synthetic examples depending on

the amount of oversampling (i.e. 300% oversampling implies

the creation of 27 � 3 = 81 ‘‘new’’ examples). Those examples

plus the 27 original data comprised the set of the ‘‘at risk’’ cases

that would be used for training. Due to the stochastic nature of

the grammatical evolution method, we repeated this procedure

10 times and we took the mean value over these 10 iterations. It

must be mentioned that we paid much attention so as to avoid

using the same data set both for tuning and estimating the

performance of the proposed classifier [51]. Thus, we employed

the cross validation procedure within the training set so as to

find the best architecture (features + MLP structure) that we

employed afterwards using the whole training set.
Fig. 6. Normalized histograms for two of the more ‘‘relevant’’ features of the orig
5. Results of the feature construction phase

As explained in Section 4, the feature construction is

indispensably related to the training of the MLP and as a result

the overall success of this approach is based on the synergy of

these two components. This can further be highlighted when

investigating the ‘‘usefulness’’ of individually constructed

features. One common measure to evaluate the ‘‘usefulness’’ of

an individual feature is based on the Fisher Discriminant Ratio

(FDR) [40]:

FDR ¼ ðm1 � m2Þ2

s2
1 þ s2

2

(2)

where the subscripts 1 and 2 refer to the mean and variance

corresponding to the feature under investigation for the two

classes v1, v2, respectively.

The larger the value of the FDR, the greater the separabiblity

capabilities of the individual feature. In terms of this measure,

the ‘‘best’’ feature of the original nineteen features is the II

value (x5).

Another measure that can be used to assess the individual

performance of a single feature is the area under the curve of the

receiver operating characteristic curve (AUC) [40]. In terms of

this measure the best original feature is the std (x2) which also

has a relative high FDR value. The normalized histograms (an

approximation of the class conditional probabilities) of the

aforementioned features (x2, x5) are shown in Fig. 6

During the construction process, some artificial features had

greater values both in terms of FDR and AUC, whereas some

others had very low. For the case of the FDR, in one case the

value was almost two times the value corresponding to the II

feature (which also happens to have the maximum AUC). For

that feature the normalized histogram as well as the ROC curve

are depicted in Fig. 7.

We must point out that no consistent pattern can be found in

the way those measures vary with increasing number of features

and increasing synthetic examples. This, we speculate, happens

for two main reasons. First of all the algorithm was not designed

to maximize those quantities and, secondly, the use of the MLP
inal feature set (the overlaid curves are only used for visualization purposes).



Fig. 7. Normalized histograms for constructed feature with the maximum FDR and AUC.
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with a hidden layer acts as a second level of feature extraction

making the analysis more complicated. In other words, the

MLP itself performs a second level mapping through its hidden

layers, which cannot be depicted in the feature distribution of

the original feature space.

It must be mentioned that the feature construction algorithm

showed preference to some initial features, which in terms of the

FDR and the AUC, did not seem to be very promising. To be more

specific, the ratio of energies (x12) (‘‘which quantifies the

autonomic balance between neural control of different origin’’

[6]) as well as the number of small accelerations (x15) were

selected in most cases. Another feature, which was involved in

most of the constructed features (when SMOTE was used) was

the LTI (x6) which is a means to evaluate long term variability

[7]. This feature alone has also relative high ‘‘usefulness’’

measured both in terms of FDR and AUC. Surprisingly the

features quantifying the presence of decelerations were not

selected so often (at least as often as we expected during the setup

of the experiment) with the exception of mild decelerations

which were encountered quite a few time when no synthetic

samples where involved and also at 300% oversampling, and

with the total duration of decelerations occurring several times

for 400% oversampling. A final remark considers the appearance

of the std (x2) featurewhich, although was quite promising at first

sight, it only appeared a few times in the imbalanced case and

when 500% SMOTE took place. However, the sum of
Table 3

Features created for the case of 500% overasampling and of six features

No. F1 F2 F3 F4

1 x15 (�(x6)) x4*x2/(4.90) sin(x2)

2 x9 exp(x15) exp(x2�9.3 + (�sin(x3))) x13

3 x12 7.71 �(((sin(x13))�sin(�x2))) x2

4 x12 (�(x6)) cos(exp(x14/6.8)) 5.5

5 x19 x12 + x15 sin(�(exp(x3)))/(x9) x6 + cos(�(�(x9

6 x12 x2 cos(x4) sin(sin(8.31*x8)

7 exp(x15) exp((x2�9.8))/x5 �(�(�(�(x13))))*sin(x6) ((�x14)/cos(x6)

8 x9 exp(x15) (exp((x2–9.28))) (�(�(�(439.3))

9 x12 x6 (�((exp((x18))))) x15 + 0.579

10 x2 x12 sin((x1) + 53.2) + x5 4.88
occurrences of this feature and the feature x6 is relatively

constant and this can be a sign of correlation of those features (as

a matter of fact they both quantify heart rate variability).

Investigating the created features as a set and not

individually using the following criterion based on scatter

matrices [40]:

J ¼ tracefS�1
w ðSw þ SbÞg (3)

where Sw ¼
P2

i¼1PiSi is the within-class scatter matrix,

with Si = E[(x � mi)(x � mi)
T] the covariance matrix of class

vi and Pi its corresponding apriori probability and

Sb ¼
P2

i¼1Piðmi � m0Þðmi � m0ÞT is the between-class scatter

matrix, where m0 ¼
P2

i¼1Pimiis the global mean vector [40],

for most of the cases there is an increase of the J value.

This change is more evident when we implement the

SMOTE stage, with 75% of the newly constructed feature sets

having an increased J value compared to the original feature set.

Again, as in the case of the individual feature measurements,

since the algorithm was not designed to maximize this criterion

and since the MLP adds another stage of feature mapping

through its hidden layer, not every newly constructed feature set

had better separability in terms of this measure.

Finally we must also note that the grammatical evolution

approach did not create too complicated expressions. This is

mainly due to the fact that we used fixed sized chromosomes and
F5 F6

cos(�((�(x12)))) (�x4)*(�(cos(�(x5)))) + (�((exp(�(x4)))))

714.6 (�((�((�(((�(x1)))/cos(cos(x7))))))))

4.875488 log(exp(x15–19.3))/x4

�(x15�cos(x15) + (x19)) exp((sin(((5.65*x4)))))

))) �exp(�((sin(x2)))) �exp(cos(x12)) + (�(�cos(exp(cos(x7)))))

) x15 sin(x12)/cos(((x16) + (�((�(39.1800))))))

) log(exp(x3�(�log(x2)))) �(�(exp(x14)))

)) (�(�(exp(x15)))) ��18/(cos(x7)/x1)

cos(�(x9))/sin(x8) (�cos(x12))*exp(sin(x4/(�(cos(x12)))))

sin(sin(379.0*x12)) (�(7.7845))�log(x4)*(�(7.7845))



Table 4

Best results achieved with the proposed method, using four to six constructed features and three different values of oversampling

#Features Overall accuracy (%) Accuracy � (%) Accuracy + (%) Geometric mean (%) SMOTE (%)

4 88.13 (0.71) 97.69 (0.50) 46.67 (2.22) 63.60 (2.40) 0

5 88.13 (0.44) 98.46 (0.31) 43.33 (2.15) 60.98 (2.33)

6 89.38 (0.49) 98.46 (0.30) 50.00 (2.70) 65.11 (2.58)

4 76.88 (1.13) 80.00 (0.99) 63.33 (3.16) 66.78 (2.65)

5 85.00 (0.85) 90.00 (0.85) 63.33 (2.78) 71.12 (2.53) 300

6 81.25 (0.69) 81.54 (0.79) 80.00 (2.22) 79.68 (1.18)

4 83.13 (0.69) 83.85 (0.73) 80.00 (1.64) 81.44 (0.93)

5 80.00 (0.92) 80.77 (0.99) 76.66 (3.01) 74.11 (2.58) 400

6 78.13 (1.06) 79.23 (1.25) 73.33 (2.01) 75.14 (1.23)

4 89.38 (0.69) 90.00 (0.78) 86.67 (1.64) 87.81 (0.93)

5 90.00 (0.64) 90.00 (0.60) 90.00 (1.54) 89.68 (0.93) 500

6 88.13 (1.03) 86.92 (1.15) 93.33 (1.34) 89.73 (1.01)
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as mentioned before because the use of the MLP adds another

non-linearity ‘‘element’’ through the neurons’ activation func-

tion. In Table 3, we summarize the features that were created for

the case of 500% oversampling for the case of six features.

6. Experimental results

In order to test the efficiency of our method, we compared

the results of the proposed approach with the results derived
Fig. 8. The four different calculated metrics are depicted along with the 95% confide

features and the solid line to six features. The influence of the SMOTE stage is more

the positive effect that has in sensitivity the use of more constructed features.
from three well-known conventional methods; the k-nearest

neighbor, the linear and the quadratic classifier [52] applied to

the same data set. To have better results for the conventional

methods and a more fair comparison, we combined these

conventional methods with a dimensionality reduction stage

based on principal component analysis (PCA). PCA is a very

common method for the reduction of the dimensionality of the

feature vector. PCA projects the original vectors onto a lower

dimensional space whose axes are defined by the eigenvectors
nce intervals. The dotted line corresponds to four features, the dashed line to five

evident when looking at the g mean graph while the accuracy + graph illustrates



Table 5

Best results achieved using the three conventional classifiers (with a PCA reduction stage) and the proposed method

Overall accuracy (%) Accuracy � (%) Accuracy + (%) Geometric mean (%)

Ldc (9PC) 68.75 (1.51) 66.92 (1.39) 76.67 (2.15) 71.52 (1.73)

Qdc (4PC) 72.50 (1.17) 73.85 (1.30) 66.67 (2.12) 68.98 (1.38)

1-nn (17PC) (%) 80.63 (1.14) 83.85 (1.01) 66.67 (3.35) 70.10 (2.76)

Proposed method 88.13 (1.03) 86.92 (1.15) 93.33 (1.34) 89.73 (1.01)
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that correspond to the largest eigenvalues of the covariance

matrix of the data [32,33].

Due to the imbalanced nature of the data set, accuracy

(overall classification rate) is not the best metric choice. For

example, a classifier that classifies everything negative (all

cases classified as normal) will be 81.25% accurate but it will

be completely useless. A more appropriate metric is the

geometric mean g ¼
ffiffiffiffiffiffiffiffiffiffiffi
aþa�
p

[53] (g mean), where a+ is the

accuracy, which is observed separately on positive examples

(also known with the term sensitivity) and a� is the accuracy,

observed separately on negative examples (also known with the

term specificity).

We experimented with four to six constructed features and

three different values of oversampling and the results are

summarized in Table 4 (mean values along the calculated

standard error in the parentheses [54]). For comparison reasons,

we also included the results of the aforementioned procedure

when the original data, without the application of the SMOTE

stage, were employed.

As it can be seen from Table 4, for all oversampling setups

but one, the mean value of the performance metric (g mean)

increases when more constructed features are added. Moreover,

as we increase the percentage of the synthetically created

features, the sensitivity increases reaching its maximum value

for 6 constructed features and 500% oversampling. On the other

hand, specificity fluctuates around 90% with its best value

achieved in the case of no oversampling, which results in a

heavily biased classifier. Fig. 8 depicts the results for the four

different metrics (accuracy sensitivity, specificity and g mean)
Fig. 9. The performance of the conventional classifiers compared to the

proposed method.
along with the 95% confidence intervals [54]. The positive

effect of the integration of the SMOTE technique in the

classification process can clearly be seen.

The best results of the proposed method are achieved for the

case of six selected features (even though the results with the

five features could be used since there is not statistical

significant difference between the two cases at a level of

significance p = 0.05). All these results along with the

corresponding results for the three conventional classifiers

(for the optimal number of principal components) are

summarized in Table 5. The conventional classifiers achieved

worst results compared to the proposed method especially in

terms of sensitivity and g mean. Fig. 9 depicts the results for the

four methods in terms of accuracy, sensitivity, specificity and g

mean. As it can be seen, the proposed method clearly

outperforms the conventional methods used with the PCA

preprocessing stage.

7. Conclusions and future work

In this work, we introduced a novel hybrid method to

construct new artificial features for the FHR classification

problem. The new artificial features were constructed using

grammatical evolution and were tested using a neural network,

which was trained based on a hybrid method. The grammatical

evolution based method constructs features that give ‘‘optimal’’

results for the problem at hand, without trying to maximize the

variance or the information of the features like other methods

(which does not necessarily lead to better classification results).

To overcome the inherent problem concerning the imbalanced

distribution of the data set we adopted the SMOTE procedure

which turned out to be a very effective technique. Actually, the

results achieved by the conventional classifiers outperform the

results achieved in other works [35] where a SMOTE stage was

not involved.

The proposed method overwhelms the approach with the

conventional classifiers and the PCA stage. For the ‘‘at risk’’

group the observed accuracy (a+) was 90% for five constructed

features and 93% for six constructed features with a small

degradation in specificity. Especially for the case of five

constructed features and 500% oversampling, the proposed

procedure resulted in a totally balanced and quite high

performance.

Clinical comparison of our results with those from other

authors should be performed with caution, as the design of our

experimental work, using two distinct pH thresholds to separate

the two typical classes of normal and acidemic fetuses, was not

used in other similar works concerning the prediction of
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metabolic acidosis during the second stage of labor [23,24].

With the mentioned comparison limitations in mind, we can say

that the results are similar to those reported in [23,24], with

Chung et al. [23] achieving sensitivity equal to 87.5% and

specificity equal to 75% using a pH cutoff value of 7.15, and

Salamalekis et al. [24] obtaining sensitivities equal to 83.3, 100

and 100% and specificities of 97.9, 92.6 and 86.2% for pH

cutoff values of 7.2, 7.15 and 7.1, respectively. However, it must

be mentioned that in the work of Salamalekis et al. [24] features

were also extracted from the oximetry signal, which may

account for the high values in the performance of their proposed

methodology.

The results of the proposed method are better compared to

our previous work, where a Support Vector Machine (SVM)

classifier and a PCA reduction stage was used for the same FHR

features extracted from the frequency and time domain and for

the same, but one, morphological features (number of small

accelerations) [35]. The current results, which were achieved

using an even more heavily imbalanced data set compared to

other previous works [26,35], manifest the potential of the

proposed method. However, further investigation is required in

order to claim that this methodology is the best choice for the

identification of metabolic acidosis based solely on FHR traces.

In addition to this, the whole procedure has to be tested for

greater number of data in order to allow ‘‘extrapolation’’ for

any unseen case.

In this work, the classification accuracy was used as the

fitness function for the selection of the features. In future work,

we will examine a fitness function that is not depended on the

selection of the classification method and we will try to

maximize the separability of the classes in feature space

[55,56]. This approach can be combined with simpler classifiers

reducing the potential overfitting problems that can occur when

neural networks are involved. An interesting alternative would

also be to employ as the induction method SVMs which are

well known for their intrinsic ability to exhibit increased

generalized performance.

Other areas of interest will include increasing the number of

FHR features and employing features extracted using the

discrete wavelet transform [26] and probably some other

morphological FHR features, namely those extracted by

commercially available systems, in current use in clinical

practice.

Especially, the current study showed a ‘‘reluctance’’ of the

grammatical evolution method to select features describing

decelerations. However, in clinical practice decelerations are

considered to convey valuable prognostic information, so

maybe a refinement of the morphological feature extraction

protocol is needed. This could be done by the use of a system

such as SisPorto1 (Speculum, Portugal), which closely follows

the FIGO guidelines for fetal monitoring [19], integrated in the

central monitoring station Omniview1 (Speculum, Portugal),

which can also acquire data from the STAN1 system for fetal

electrocardiographic analysis (Neoventa, Gothemburg, Swe-

den) [57,58].

Finally, the Apgar score, another important clinical indicator

of the fetal condition at delivery, which was not used in this
study, but has been widely used by other authors [59], should

also be used in future research, as another index component for

the formation of classes.
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