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Abstract

Modelling complex systems and their supervisior has attracted the high interest of many scientists and engineers. There has been a

need for highly sophisticated Autonomous Intelligent Systems. A very promising methodology to model the Supervisor of a plant is the

use of Fuzzy Cognitive Maps (FCM). FCM are a combination of Fuzzy Logic and Neural Networks. A new mathematical model for

FCMs is proposed and its representation is examined in this paper. FCM construction is presented through the development of the

model for a simple control process problem. Then, issues for the application of FCM as the model of the supervisor of a complex

system are addressed and a hierarchical two-level structure is proposed. Ó 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The requirements of next generation modelling and control systems, which will be characterised by high
autonomy and intelligence, have led engineers to search and invent new techniques that will be used as the
core of these systems. Fuzzy Cognitive Maps (FCM) is a new symbolic method for modelling and con-
trolling a system which relies on expert experience and follows the principle of ``decreasing precision and
increasing intelligence'' [12], therefore, this very promising methodology can be the medium to model and
construct Intelligent Supervisory Control Systems.

FCM can model dynamical systems, which change with time following non-linear laws [7,8]. In FCM
context, the representation of these systems is not mathematical but symbolic. FCM consist of nodes and
interconnections among nodes that compose the model of a dynamic system. Nodes of the map stand for
the states, variables, events, values, goals and trends of the dynamic system. Among nodes, which represent
characteristics of the system, there are causal links that represent the cause and e�ect from one factor of the
system to the others.

FCMs have already been used to model complex dynamic systems, characterised by hard non-linearities.
FCMs have been used to model the behaviour and reactions of virtual worlds, representing their simple
needs as survival threat, searching for food, etc. [3,4]. A similar usage has been realised for the modelling of
social systems, where anything that a�ects one sector will a�ect other sectors as well, as social systems are
feedback systems characterised by fuzzy degrees of causation they have su�ciently been modelled by FCMs
[17]. Another use of FCM is to model dynamic systems with chaotic characteristics, such as social and
psychological processes and the organisational behaviour including the ability to model simultaneously
both mediator and moderator relations [1,2]. FCMs have been used for planning and making decisions in
the ®elds of international relations, in modelling political developments [16]. From a di�erent point of view,
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FCMs have been used to control a plant [6], to model the supervisor of distributed systems [14] and to
develop system models for Failure Models and E�ects Analysis [11].

In Section 2, the representation, construction and a new proposing mathematical model of FCM will be
examined. Section 3 demonstrates the use of FCM to model and control a simple process problem. In
Section 4, the use of FCM for the modelling of the supervisor of complex systems is proposed. In Section 5
aspects of FCM convergence are examined and then some future directions and conclusions are given in
Section 6.

2. Fuzzy cognitive maps

FCMs are fuzzy signed graphs with feedback. They consist of nodes-concepts Ci and the interconnec-
tions eij between concept Ci and concept Cj. A FCM models a dynamic complex system as a collection of
concepts and causal relations between concepts. A simple illustrative picture of a FCM is depicted in Fig. 1,
for ®ve possible nodes-concepts.

Interconnections eij between concepts are characterised by a weight wij, which describes the kind and
grade of causality between two concepts. Weights take fuzzy values in the interval [ÿ1, 1]. The sign of the
weight indicates positive causality wij � 0 between concept Ci and concept Cj, which means that an increase
of the value of concept Ci will cause an increase in the value of concept Cj and a decrease of the value of
concept Ci will cause a decrease in the value of concept Cj. When there is negative causality between two
concepts, then wij � 0; the increase in the ®rst concept means the decrease in the value of the second
concept and the decrease of concept Ci causes the increase in value of Cj. When there is no relationship
between concepts, then wij � 0. The strength of the weight wij indicates the degree of in¯uence between
concept Ci and concept Cj.

The value of each concept is calculated by the computation of the in¯uence of other concepts to the
speci®c concept, by applying the calculation rule of Eq. (1):

Ai�s� � f
Xn

j�1
j 6�i

Aj�s

0B@ ÿ 1�wji

1CA; �1�

where Ai�s� is the value of concept Ci at step s, Aj�sÿ 1� is the value of concept Cj at step sÿ 1, wji is the
weight of the interconnection between concept Cj and concept Ci and f is a threshold function, which will
convert the result into the fuzzy interval [0, 1] or [ÿ1, 1], where concepts can take values. Sigmoid function
and hyperbolic tangent function are two popular functions, which are used in FCM calculations, for the
two corresponding intervals.

The mathematical description of FCM consists of a n� 1 vector A which gathers the values of n con-
cepts, and an n� n matrix W � �wij�16 i;j6 n which represents the matrix of the causal edge weights for the
FCM, where the dimension of the matrices is equal to the number n of the distinct concepts that are

Fig. 1. Graphical representation of a simple FCM.

Fig. 2. The illustration of the simple process.
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presented on the map. So the new state vector A at step s of simulation is calculated according to the
equation:

As � f WTAsÿ1

ÿ �
: �2�

The calculation rule of FCM can be improved if the previous value of each concept is taken into con-
sideration. FCM will have memory capabilities and so the values of concepts will have a slight variance
after each simulation step. Here, in order to take into account these observations, a new mathematical
formulation is presented for the ®rst time. Namely, we propose the following equation:

Ai�s� � f k1

Xn

j�1
j 6�i

Aj�s

264 ÿ 1�wji � k2Ai�sÿ 1�

375; �3�

where Ai�s� is the value of concept Ci at step s, Ai�sÿ 1� the value of concept Ci at step sÿ 1, Aj�sÿ 1� the
value of concept Cj at step sÿ 1, and wji the weight of the interconnection from Cj to Ci, and f a threshold
function, like the sigmoid function. The parameter k2 represents the proportion of the contribution of the
previous value of the concept in the computation of the new value and the k1 expresses the in¯uence from
the interconnected concepts in the con®guration of the new value of concept Ai. For the two parameters k1

and k2, it is,

06 k1; k26 1: �4�
Using Eq. (3), a more general and compact mathematical model for FCM is proposed by the following
equation:

As � f k1�WTAsÿ1�
� � k2Asÿ1

�
: �5�

Therefore, Eq. (5) computes the new state vector As, which results from the multiplication of the previous,
at step sÿ 1, state vector Asÿ1 by the edge matrix WT and the adding of a fraction of the values of concepts
at step sÿ 1. The new state vector holds the new values of the concepts after the interaction among
concepts of the map. The interaction was caused by the change in the value of one or more concepts.

It is proposed for the values of two parameters to vary during the training period of the FCM, starting
with a high value for parameter k2, near or equal to 1, and a low value for parameter k1 near to zero, and
then to converge to equal values. Generally, the values of two parameters are dependent on speci®c FCM
for each particular system and the selection of the values of two parameters needs more investigation.

It must be mentioned that the role of experts is very critical in the designing and construction of FCM.
Experts, who have knowledge on the operation and model of the system, determine the concepts and in-
terconnections of the map [14]. At this point the Neural Network nature of FCM can been exploited and
learning algorithms are utilised in order to train FCM. Unsupervised learning are proposed to train the
weights of FCM [9]. During the training period, the weights of the map change with a ®rst-order learning
law that is based on the correlation or di�erential Hebbian learning law:

w0ij � ÿwij � A0iA
0
j: �6�

So A0iA
0
j � 0 if values of concepts Ci and Cj move in the same direction, and A0iA

0
j � 0 if values of concepts Ci

and Cj move in opposite directions, therefore, concepts which tend to be positive or negative at the same
time will have strong positive weights, while those that tend to be opposite will have strong negative
weights.

3. A process control problem

In this Section, an example is presenting the utilisation of FCM in modelling and controlling a well-
known process problem. This example will reveal how a FCM is constructed, how concepts are chosen,
how values are assigned to the interconnections between concepts and then, the constructed FCM is used to
control the process.
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The considered system is part of a chemical process and it consists of one tank and three valves that
in¯uence the amount of liquid in the tank, Fig. 2 shows an illustration of the system. Valve1 and valve2
empty two di�erent kinds of liquids into the tank, and during the mixing of the two liquids some chemical
reactions take place in the tank. Inside the tank there is a sensor that measures the speci®c gravity of the
new liquid, which is produced into the tank, as result of the mixing of the two liquids. When the value of the
speci®c gravity lies in the range �Gmax� and �Gmin�, this means that the desired liquid has been produced in
the tank. Moreover, there is a limit of the height of liquid in the tank, which cannot exceed an upper limit
�Hmax� and a lower limit �Hmin�. So, the control target is to keep these variables in the range of values:

Gmin6G6Gmax;

Hmin6H 6Hmax:
�7�

The construction of a FCM, which will control this simple system, includes the selection of main char-
acteristics of the system that will be represented as concepts of the map. Concepts will stand for the
variables and states of the system as for example, the height of liquid in the tank or the state of the valves. A
FCM, which consists of ®ve concepts is constructed:

After having selected the concepts that can represent the model of the system and its operational be-
haviour, the interconnections between concepts must be decided. At ®rst, it is decided for each concept,
with which other concept, it will be connected and the sign of each interconnection. Then, weights for
connection are determined, an expert or a group of experts describe the in¯uence of one concept to another
using a linguistic variable, like great in¯uence, medium in¯uence, little in¯uence, which is transformed in
numerical value. The connections between concepts represent the in¯uence of one concept to the other. So
event1 connects concept2 (valve1) with concept1 because valve1 causes the increase or not of the amount of
liquid in the tank (concept1), the other casual events have been determined in a similar reasoning. Three
operators-observers of the system have assigned linguist variables to events (connections between concepts),
which are transformed in numerical weights using a defuzzi®cation method [5] and so the weight matrix W
is constructed:

W �

0 ÿ 0:4 ÿ 0:25 0 0:3
0:36 0 0 0 0
0:45 0 0 0 0
ÿ0:9 0 0 0 0

0 0:6 0 0:3 0

266664
377775:

Concept1 The amount of liquid that the tank1 contains. This amount is dependent on the
operational state of valve1, valve2 and valve3.

Concept2 The state of valve1. Valve may be closed, open or partially opened.
Concept3 The state of valve2. Valve may be closed, open or partially opened.
Concept4 The state of valve3. Valve may be closed, open or partially opened.
Concept5 The reading on the instrument of speci®c gravity.

Table 1

The values of FCM concepts for eight simulation steps

Step Tank Valve1 Valve2 Valve3 Speci®c gravity

1 0.1000 0.4500 0.3900 0.0400 0.0100

2 0.5748 0.4915 0.4938 0.5007 0.5075

3 0.4871 0.5186 0.4641 0.5380 0.5430

4 0.4779 0.5327 0.4696 0.5406 0.5365

5 0.4791 0.5326 0.4702 0.5401 0.5358

6 0.4793 0.5324 0.4701 0.5401 0.5359

7 0.4793 0.5324 0.4701 0.5401 0.5359

8 0.4793 0.5324 0.4701 0.5401 0.5359
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Fig. 3 shows the FCM, which is used to describe the behaviour and control this simple system, the initial
value of each concept, the interconnections and the weights between concepts can be seen. The values of
concepts correspond to the real measurements of a physical magnitude. Each concept has a value, which
ranges between [0, 1] and it is obtained by transforming the real value of the concept. It is apparent that an
interface is needed, which will transform the real measures of the system to their representative values in the
FCM and vice versa. It should be mentioned that the transformation from the real values of the physical
measurements to the values of the concepts needs more investigation.

At each simulation step of the FCM, the value of concepts is calculated according to Eq. (1). The value
of each concept is de®ned by the result of taking all the causal event weights pointing into this concept and
multiplying each weight by the value of the concept that causes the event. Then the sigmoid function is used
and so the result is in the range [0, 1]. The FCM interacts for the initial values of concepts. In Table 1 the
values of concepts for eight simulation steps are represented, it can be seen that after only six simulation
steps, the FCM reaches a ®xed equilibrium point. It must be mentioned that the duration of each simu-
lation step is one time unit. The complete example with simulation results is presented in [15].

4. The use of fuzzy cognitive maps in the modelling of the supervisor

For complex systems, the construction of a realistic, accurate mathematical model is impractical and
sometimes impossible. For such systems a human operator o�ers Supervisory Intelligent Control through
the use of an imprecise model, operators of the system observe multiple data simultaneously and they make
tough decisions based on their experience and empirical knowledge. To cope with complex objectives, an
autonomous system requires integration of symbolic and numerical data, qualitative and quantitative in-
formation reasoning and computation. Furthermore, the problem of suitable performance criteria is still an
open question.

For such systems and the above associated problems, the FCM model is a very promising good solution
in order to model and implement supervisor tasks. This model describes di�erent aspects of the behaviour
of a complex system in terms of concepts, which stand for features of the system, and interrelations among
concepts showing the dynamics of the system. Supervisor is modelled as an FCM and it will perform
planning and scheduling of available resources to achieve a set of goals, deciding the strategies and pro-
cedures in various situations, deciding what an abnormal situation is and what actions would be appro-
priate. The supervisor will monitor the task, will make adjustments, will diagnose apparent abnormalities
or failure, taking control when an abnormal situation occurs and will have learning capabilities to utilise

Fig. 3. The initial FCM, with values for concepts and interconnections.

Fig. 4. The Hierarchical Supervisory Model of a plant.
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past experience in order to improve process knowledge [13]. The FCM can be used to model the operation
and diagnosis schemes of the task representing states, goals, commands of the system, normal and ab-
normal operation.

A hierarchical two level structure is proposed to model complex systems, this structural approach is
going to develop a more sophisticated model. The proposed hierarchical model of the system is depicted in
Fig. 4. On the lower level, conventional control methodologies are used to deal with the predetermined
control actions, re¯ecting the model and control of the systems during normal operation conditions. On the
upper level there is an Intelligent Supervisor, which performs the described tasks and attempts to emulate
such a human control capacity using a FCM. This FCM includes concepts for decision making, planning
and it will give the appropriate commands to the process controller in the lower level, evaluate alarm
signals, process fail signals and other inputs and send control signals to the lower level, which in¯uence the
process. In the two level structure, there is interaction between the two levels and there will be an amount of
information that must pass from one level to the other. So, the interface consisted of two parts, one will
pass information from the controller in the lower level to the FCM in the upper level and the other part will
transform and transmit information in the opposite direction. This interface combines, interprets ®lters
information from the lower level and then, this information is transformed and transmitted to the super-
visor-upper level and vice versa.

FCM on the upper level will consist of concepts that may represent the irregular operation of some
elements of the system, failure mode variables, failure e�ects variables, failure cause variables, severity of
the e�ect or design variables. In this example, the FCM could describe the failure states of the valves,
possible malfunction in the speci®c gravity instrument, leaks in tank and other alarm schemes. Moreover,
this FCM will include concepts for determination of a speci®c operation of the system. In this FCM,
analysis of the data coming from the lower level can be implemented, which will represent vital compo-
nents of the plant detecting features that re¯ect the operational state of the plant. As an example, in a
similar chemical process, as the one represented in Section 3, it could need di�erent amounts of liquid in
the output at di�erent times, according to the requisite density of the liquid. In case of a catastrophic alarm
or other emergency signal, the failure analysis FCM must act directly to the shop ¯oor level, and for this
case a separate mechanism is needed. Another part of the upper level FCM can be used for decision
making, FCM are well suited for dealing with this kind of problem and many other knowledge oriented
problems.

FCM is a symbolic method, which can increase the e�ectiveness, autonomy and intelligence of systems.
FCM can easily describe the systemÕs behaviour and handle with ¯exibility any change of the system and it
has the capability to expand the control of the system, by equipping the FCM in a higher supervisory level
with failure analysis, prediction and planning qualities. The goal of a supervisory system is very abstract

Fig. 5. The variation of values of ®ve concepts for 100 simulation steps.
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and application dependent, but the general goal is to ensure safe and optimal operation of the process
plant.

5. Fuzzy cognitive map convergence

FCM can be used to model the operation and behaviour of any dynamic complex system. When FCM
has been developed, it interacts and recalculates values of the concepts using Eq. (1) or (3) that are used to
calculate the values of concepts at each step of simulation. Threshold function plays an important role in
the simulation of the behaviour of the system, and FCM converge depends on the selection of the threshold
function. When threshold function is not applied in Eq. (1) or (3), the state vector will contain real numbers
and the behaviour of the FCM will be heavily dependent on the initial values of concepts.

As an example the FCM, which was constructed in Section 3, will be examined. At this simulation
example, calculation rule of Eq. (3) is used, assuming that k1 � 1 and k2 � 0:9 and the threshold function
f �x� � tanh�x� is applied. It must be mentioned that the hyperbolic tangent function gives values of
concepts in the range [ÿ1, 1]. Simulation starts with the same initial values and results of simulation are
depicted in Fig. 5, where variation of values of ®ve concepts have been drawn for 100 simulation steps.
Examining Fig. 5, the inferred conclusion is that FCM is driven to a limited cycle after 25 steps, which is
repeated almost every 18 simulation steps.

FCM can be used to model non-linear systems with chaotic behaviour, an example of using FCMs for
modelling chaotic behaviour is presented in [10]. Two examples of FCM convergence to a ®xed point and a
limited cycle has been presented in Section 3 and Section 5 respectively, generally, FCM are models of
dynamic systems and their simulation can lead to,
1. A ®xed equilibrium point,
2. A limited cycle,
3. Chaotic behaviour.

6. Future research ± conclusions

Future research must examine the description and construction of FCM in the supervisor level, the
learning laws for the training of an FCM, and a map construction that will be human independent. Other
issues that have to be addressed, in order to exploit thoroughly the role of an FCM as supervisor, are the
state space of the system, the controllability and the asymptotic stability of the system. FCMs have many
characteristics which make them suitable for use in Failure Mode and E�ects Analysis, which is critical for
development of Intelligent Systems. However, they must be examined in conjunction with other methods.

FCM seems to be a useful method in modelling and controlling complex systems, which will help the
designer of a system in decision analysis and strategic planning. FCM appear to be an appealing tool in the
description of the supervisor of hierarchical and distributed systems, which teamed up with other methods
will lead to the next generation control systems. The supervisor-FCM is constructed directly from experts
or operators who are manually and successfully controlling the process, exploiting their knowledge on
systemÕs model and behaviour. This methodology gives more attention to the humanÕs experience, rather
than to the process being controlled. The FCM model includes representations of subsystems normal and
irregular operation and it is supplied with useful qualities for strategic planning, decision making, failure
diagnosis and prediction. This distinctive feature makes FCM applicable and attractive for dealing with the
supervised problem where the process on the lower level is so complex that it is impossible or too expensive
to derive a mathematical model; but the process is supervised and controlled satisfactory by human
operators.

The representation and the mathematical formulation of a FCM utilising past values of concepts have
been examined. The implementation of the FCM method in a process control problem has been presented
and the simplicity with which it describes the systemÕs behaviour was shown. It is proposed to use FCM to
model the Supervisor of a plant. Finally, FCM convergence is presented and some thoughts for future
directions in this new and very exciting area have been presented.
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