

Metaheuristic approaches for scheduling the Trieste-Fernetti pickup and delivery
service

George Georgoulas*. Grigoris Piperagkas*, Giorgio Iacobellis**, Valentina Boschian***, Fabrizio Simeoni****,

Srecko Maksimovic ****, Walter Geretto****, Chrysostomos D. Stylios*

*Technological Educational Institute of Epirus, 47100, Arta, Greece (e-mail:
georgoul@gmail.com; g.piperagkas@gmail.com; stylios@teiep.gr)

**Politecnico di Bari, Via E. Orabona4, 70125 Bari, Italy (e-mail: iacobellis@deemail.poliba.it)
***University of Trieste, Via Valerio 10, 34127 Trieste, Italy (valentina.boschian@di3.units.it)

****Teorema Engineering Srl., Area Science Park Basovizza, Trieste, Italy e-mail: Fabrizio.Simeoni@teorema.net;
Srecko.Maksimovic@teorema.net; Walter.Geretto@teorema

Abstract: This work presents two metaheuristic optimization methods that are designed and developed
to assist a shuttle service process for the case of the port of Trieste and the dry-port of Fernetti. The
process is applied on simulated, yet realistic data, gathered in the context of the SAIL Marie Curie
Project corresponding to probable operational every-day scenarios. The results suggest that a satisfactory
solution can be achieved with more than one metaheuristic optimizers, providing a valuable tool to the
personnel for handling container flow.

Keywords: Metaheuristics, Harmony Search, Particle Swarm Optimization, Vehicle Routing Problem,
Dry-port.

1. INTRODUCTION

In recent years maritime traffic flow has been increasing in
terms of volume of goods and interconnections with different
means of transport, such as railway and road networks.
Moreover, for many decades, management and decision
making was considered an art acquired with experience
combined with personal intuition, creativity and judgment.
Although personal qualifications remain valuable, the
increasing complexity of modern business environments and
the vast volume of data needed to be taken into account,
make the use of computerized methods a necessity (Turban et
al., 2010).

In this context, the “ICT System Addressed to Integrated
Logistic management and decision support for intermodal
port and dry port facilities” project aims to develop an
integrated ICT platform able to support logistic chain of
goods flow, and all business operations provided in a port
and a dry-port areas. A supportive technology is developed
integrating data and models describing different levels of the
system with various degrees of abstraction as well as expert
knowledge in order to address various decisions for different
time horizons.

More specifically, the test case environment concerns the
Trieste-Fernetti complex, which plays a crucial role in the
Friuli Venezia Giulia region, an Italian region acting as a
gateway position towards East Europe and the Balkans. The
logistic system in this region is particularly significant both
for its geographical location, at the meeting point of the
trans-European Corridor V and the Adriatic Corridor, and its

concentration of ports and land, sea and railway transport
networks. Therefore the impact of the proposed solutions will
consider the benefits of new technological solutions on
intermodal traffic and will have important effects on the
overall logistic system.

One of the services that the Trieste-Fernetti complex (Figure
1) is going to establish, concerns the use of a “shuttle
service” for the containers that are parked either at the port of
Trieste or at Fernetti. This scenario involves the use of a fleet
of trailers/trucks that move containers from Trieste to
Fernetti or the other way around. Boschian et al. (2011)
provided a good description of the case study through a UML
metamodel.

Fig. 1. The Trieste- Fernetti complex environment.

13th IFAC Symposium on Large Scale
Complex Systems: Theory and Applications
Shanghai Jiao Tong University
Shanghai, China, July 7-10, 2013

WeA03.6

514

For this particular problem, a model based approach has been
adopted employing a simplified mathematical model of the
process under investigation. In this way the decision making
process is cast as an optimization problem described by
mathematical expression(s) (Giani et al., 2004). Many
attempts have been made to tackle various sub-problems
encountered at intermodal terminals, especially those which
are mainly handling containers (Stahlbock and Voss, 2008).
Different assumptions, different optimization criteria as well
as the different peculiarities of each case study lead to
different formulations and different solution approaches. In
other words there are no “off the shelf” solutions for such
logistic problems. Nevertheless model-based decision
support systems (DSSs) are among the most successful tools
in nowadays complex logistic environments (Power and
Sharda, 2007).

The main drawback of the model-based approach is that most
of the processes taking place in an intermodal Port logistics
environment (scheduling, routing etc.) are in fact NP-hard
optimization problems. That can be solved consistently to
optimality within a reasonable amount of time only if the
instance size is sufficiently small. Most of them are
combinatorial programming problems, integer programming
(IP) and mixed-integer programming (MIP) problems which
are difficult to solve within a reasonable time window (Giani
et al., 2004) using exact solution methods.

Therefore in order to have a working solution within a
reasonable amount of time the designer has to resort to fast
heuristic and meta-heuristic algorithms. (Meta)-heuristic
algorithms search for “quite good” but not necessarily the
best solution (Zapfel et al., 2010). For our problem two
popular metaheuristic algorithms are investigated, namely the
Particle Swarm Optimization (PSO) (Kennedy and Eberhart,
1995) and the Harmony Search (HS) (Geem et al., 2001).

The rest of the paper is structured as follows: in Section 2 the
problem is described in detail. Section 3 describes in brief the
two metaheuristic optimizers involved and Section 4 presents
some indicative results. Finally section 5 concludes the paper
offering also some hints for future improvements.

2. PROBLEM FORMULATION AND SOLUTION
MECHANISMS

As was pointed out in the introduction, the problem at hand
involves the management of a fleet of trailers/trucks that have
to move containers from Trieste to Fernetti or the other way
around. This is a problem that belongs to the broad family of
Vehicle Routing Problems (VRPs). It could be narrowed
down, to the VRP with time windows and/or the VRP with
pickup and delivery. An overview of these problems the
interested reader can refer to (Toth and Vigo 2002 and
Cordeau et al. 2007a; 2007b). In fact this problem looks very
similar to what is known as the dial-a-ride problem (Cordeau
and Laporte 2007; Coslovich et al., 2006) with the only
difference that the transported quantities are not humans but
containers.

However, as it was pointed by (Parragh et al., 2010) every
specific instance of a dial-a-ride like problem comes with its

own peculiarities, making difficult the use of a universal
model or formulation of the problem. In our case the special
features refers to (i) the possibility of different starting times
for the availability of the trailers, (ii) the use of two “depots”
(a trailer could originally be either at the port of Trieste or at
Fernetti) and (iii) the ability to park in any of the areas after
serving the last “customer” (a flavour of the open VRP).
There are also: (iv) only two (interchangeable) locations for
pickup and delivery, (v) the more or less constant travelling
time between the two points and (vi) the more or less
constant service time. On top of all these, as in almost all real
life applications, the objective is a synthesis of various
criteria. The above features on one hand make the specific
problem unique in one sense but on the other hand make the
“solution” procedure a bit easier compared to the classic dial-
a-ride problems.

A possible formulation of the situation described in the
previous paragraphs is the following, where we are trying to
minimize the accumulated time violation of “delivery” time
for all the involved containers/trailers and the total number of
trucks involved:

  1 2
1

min max 0,
N

ik i
i k K

w K w D s t l
 

     
 

 (1)

subject to:

1

1, 1,...,
N

ijk
k K j

y i N
 

  (2)

1 1

1, 1,...,
N N

iuk ujk
j j

y y k K u N
 

     (3)

0
1

1,
N

jk
j

y k K


  (4)

   02 , ,

1,..., ,

jk k i k jkD R G f LocC LocT t y

j N k K

    

 
 (5)

  ,

1,..., , , 1,...,

jk ik i j ijkD D t s f LocC LocC t y

j N k K i N

     

  
 (6)

, 1,..., ,jk jD e j N k K   (7)

where

K is the set of trucks.

1ijky  if container i is served before container j, both by

vehicle k (0 1jky  means that container j is the first one to

be served by trailer k while 0 1i ky  means that container i is

the last to be served by trailer k after which the trailer
remains at the area where it disposed container i).

jkD is the time that truck k start serving container j.

WeA03.6

515

 0,1 ,kLocT k K  is the location of trailer k at the

beginning of the scheduling.

2 ,kR G k K is the time instance that trailer k is

ready to go for its first pickup.

 0,1 , 1,...,iLocC i n  is the location of container i

at the beginning of the scheduling.

, 1,...,ie i n is the earliest point that the container i

can be moved.

, 1,...,il i n is the latest time instance that the

container i has to reach its destination.

     ,f a b a b a b     , where a, b are binary

variables (this function returns 1 if a is the same as b,
meaning that they are both located at the same site).

1w , 2w are the (normalised) relative weights of the two

terms comprising the cost function, with 1 2 1w w  .

Constraints (2)-(4) are routing constraints, constraints (5),(6)
ensure that a truck cannot start serving a container before
delivering the previous one or before the truck is ready to
move and constraint (7) ensures that a truck cannot start
serving a container before the earliest time that it can be
moved. In this formulation the usual constraint for the
delivery of the object (container) within a delivery window
has been incorporated into the objective function.

For solving the above problem one way is to assign to each
container a truck and define the order by which each truck
will serve them. Since the early arrival of a truck is not
penalised (a truck can wait till the container becomes
available for transportation), for the calculation of the starting
service time we used a quite common approach in the
literature that “attempts to schedule each demand at the
earliest possible time after the other demands already
assigned to that resource” (Beniaminy et al. 2009). In other
words the truck once it is ready it goes directly to the next
assigned container.

The assignment of trucks to the n containers as well as the
service order is performed by the two metaheuristic methods
that are described in the following section using the
following representation: each solution is represented as a

 1 2n vector with the first n elements assigning trucks to

containers and the rest n elements assigning priorities to
containers using an implicit representation; real values in the
range [0-1] are assigned to the containers. The container with
the smallest real value in the respective field should be
served first etc.

For example with 4 containers (n =4) and 2 trucks (K=2) a
representation of a candidate solution could be: 1 2 2 1 0.12
0.01 0.91 0.8 or if we use a matrix (Table 1):

Table 1. Solution representation

 Trucks Priorities
1 2 2 1 0.12 0.01 0.91 0.08

Containers 1 2 3 4 1 2 3 4

The above means that truck no 2 will serve containers 3 and
4 in that order because 0.01<0.91 while truck 1 will serve
first container 4 and then container 1. The same
representation has been used in frameworks involving PSO
and variations of the vehicle routing problem (Ai, J., and
Kachitvichyanukul, 2009 a-c).

Building the route for each truck is performed in a sequential
manner: starting from its available ready-to-go time stamp,
we proceed to the first assigned request; we added the
required travelling and service times. Then we continue with
the next truck until all the requests are served, calculating and
accumulating possible penalty terms at the same time. This
way neither time ordering nor routing constraints are
violated.

3. METAHEURISTICS

As pointed out in the introduction, due to the difficulty in
tackling hard optimization problems with traditional
methods, dedicated heuristic solution approaches have been
developed that aim at providing good solutions in reasonable
time for a given problem.. However, such methods have two
major drawbacks: first, they are tailored to a specific problem
and their adaption to other problems is difficult or even
impossible. Second, they are typically designed to “build”
one single solution in the most effective way, whereas most
decision problems have a vast number of feasible solutions.
Hence usually the chances are high that there exist better
ones. To overcome these limitations metaheurirstics have
been proposed (Zapfel et al., 2010).

These methods have come to be recognized as ones of the
most practical approaches for solving many complex
problems. Metaheuristics try to find good heuristic solutions
to complex optimization problems with many local optima
and limited inherent structure to guide the search balancing
two conflicting mechanisms: intensification vs.
diversification. Intensification means that we are trying to
exploit some of the properties of already visited (good)
solutions whereas diversification means that we are trying to
explore unvisited regions by broadening the search.

3.1 The Particle Swarm Algorithm

Eberhart and Kennedy introduced the original PSO algorithm
in 1995 (Eberhart and Kennedy, 1995) that has been applied
since in many fields (Piperagkas et al. 2012, Parsopoulos et
al. 2009). Its main concept includes a population, called a
swarm, of potential solutions, called the particles, probing the
search space. The particles iteratively move in the search
space with an adaptable velocity, retaining in memory the
best positions they have ever visited, i.e., the positions with
the best function.

WeA03.6

516

The exploration capability of PSO is promoted by
information exchange among particles. More specifically,
each particle is assigned a (usually index--dependent)
neighborhood. In the global PSO variant, also known as
gbest, the neighborhood of each particle is the whole swarm
and the overall best position is the main information provider
for all particles. On the other hand, in the local PSO variant,
also known as lbest, the neighborhoods are strictly smaller,
usually consisting of a few particles. In such cases, each
particle may have its own leader that influences its velocity
update. Perhaps the most common neighborhood topology is
the ring, where each particle assumes as neighbors its mates
with neighboring indices (Parsopoulos and Vrahatis, 2010).
To put it formally, consider the minimization problem:

 min
nx V

f x
 

 (8)

Then, a swarm of N particles is a set, S, of n-dimensional
search points, ix S , i=1,2,…,N. The i-th particle has a

velocity (position shift), iv , and retains in memory the best

position, ip S , it has ever visited. A ring neighborhood of

radius m for the particle ix , implies that the experience of the

particles with indices in  ,..., ,...iB i m i i m   , will be

available to ix at each iteration.

Assume that ig is the index of the best position found so far

in the neighborhood of ix i.e.  arg min
ii j B ig f p , and let

t denote the iteration counter. Then, according to the
constriction coefficient version of PSO (Clerc and Kennedy,
2002), the swarm is updated as follows:

             1
1 2

t t t t t t
ij ij ij ij gij ijv v p x p x          (9)

     1t t t
ij ij ijx x v   (10)

where i=1,2,…,N and j=1,2,…,n. The parameter χ is the
constriction coefficient and it is used as a means to control
the magnitude of the velocities. The other two parameters are
defined as 1 1 1c r  and 2 2 2c r  , where 1c and 2c are

positive constants, also called the cognitive and the social
parameter, respectively, and 1r , 2r , are random variables

uniformly distributed in [0,1], different for each i, j and t.
Based on the stability analysis of (Clerc and Kennedy, 2002),
the values, χ=0.729, 1 2 2.05c c  , are considered as the

default parameter set. If  1t
ix  improves the best position

 t
ip , it replaces it in  1t

ip  . Otherwise, the best position

remains unchanged.

3.1 The Harmony Search Algorithm

Harmony search is a metaheuristic method inspired by the
musing improvising process (Geem et al., 2001). It was
originally developed for integer variables but since then it has
been modified in order to accommodate real variables (Lee

and Geem, 2005) as well as binary variables (the extreme
case of an integer variable) (Wang et al., 2011). While it
basically mimics musicians’ behaviors such as memory
consideration, pitch adjustment and random consideration,
the HS model has problem-specific features in every different
application. The way that HS creates new solutions makes it
an ideal candidate for problems where the solution vector is
comprised of variables of different nature. HS is performed
in several steps that are described in the rest of this section
both for integer as well as real variables.

3.2.1 Harmony memory initialization

Before the application of each one of these steps, multiple
solution vectors are randomly generated (or alternatively
some could be provided by the user based on expert
knowledge or even intuition) and stored in harmony memory
(HM) as follows:

 
 

 

1 1 1 1
1 2

2 2 2 2
1 2

1 2

n

n

HMS HMS HMS HMS
n

D D D f

D D D f

D D D f

 
 
 

  
 
 
  

D

D
HM

D





    



 (11)

where j
iD is the i-th decision variable in the j-th solution

vector, which has one discrete value out of a candidate set

        1 , 2 , , , ,i i i i iD D D k D K  , and  jf D is the

objective function value for the j th solution vector, and HMS
is the harmony memory size (i.e. the number of multiple
vectors stored in the HM). The number of random harmonies
should be at least HMS or more, such as twice or three times
as many as the HM size. Then, the top-HMS harmonies are
selected as starting vectors (Degertekin, 2008).

3.2.2 Improvisation of a new harmony

The vectors stored in the Harmony Memory are used to
produce a new vector (a new harmony) using three
operations: A) Random selection, B) Memory consideration
and C) Pitch adjustment, which are presented in detail in the
following paragraphs.

In random selection a new value is chosen randomly out of a
candidate set with a probability (1-HMCR) (see next
paragraph for the definition of HMCR):

          , 1 , 2 , ,New
i i i i i i iD D k D k D D D K   (12)

In memory consideration, one value is chosen out of the HM
set, with a probability equal to the harmony memory
considering rate (HMCR):

     1 2, , , ,New HMS
i i i i i iD D l D l D D D   (13)

In pitch adjustment a value that has been selected in the
previous step of memory consideration is further changed
into neighboring values with a probability equal to the pitch
adjusting rate (PAR):

     1 21 , , , ,New HMS
i i i i i iD D l D l D D D    (14)

WeA03.6

517

If the newly improvised harmony NewD violates any
constraint, HS either abandons it, or still keeps it by adding
penalty to the objective function.

3.2.3. Update of harmony memory

If the newly generated vector  1 2, , ,New New New
nD D D is better

than the worst vector in HM with respect to the objective
function, the former takes the place of the latter. However,
for the diversity of harmonies in HM, other harmonies (in
terms of least-similarity) can be considered. Also, maximum
number of identical harmonies in HM can be considered in
order to prevent premature HM. After the HM update and if
the maximum number of iterations or a desired performance
has been reached the algorithm continues to generate new
harmonies.

3.2.4 Harmony search for real valued variables

In the case of real valued variables what changes is the
random selection and the pitch adjustment mechanisms.

In the random selection we randomly select a value within
the admissible range of values for the corresponding variable

(0,1)New
i iD Range U  (15)

where iRange is the range of values of variable i and (0,1)U

is a uniform random generator between 0 and 1.

In the pitch adjustment the new value is given by:

   2 (0,1) 1 ,New
i i iD D l bw U   

   1 2, , , HMS
i i i iD l D D D  (16)

where ibw is an arbitrary distance bandwidth for the

continuous design variable

3.2.5 Accidentaling

If the new harmony
NewD is the best one when compared

with every harmony in HM, the new harmony can consider
an additional process named accidentaling during which we
can further pitch-adjust every note of the new harmony if it is
the ever-best harmony, which may find an even better
solution:

  , for discrete variables
, 1,...,

, for continuous variables
iNew

i
i

D k m
D i n

D


   

(17)

In other words we have the application of a local search
procedure for the newly discovered best harmony

4. RESULTS

In this preliminary examination we have tested 6 different
configurations corresponding to 3 different levels of requests
and 2 different fleet configurations. More specifically for the
requests we used i) 80 (which is the average container
traffic), ii) 120 and iii) 160. For the fleet size we employed i)
5 and ii) 10 trucks.

For the case of the PSO, we used a population of 10 particles
and we let the algorithm run for 2000 iterations using the
gbest variant. For handling the integer nature of the problem
after the position update (eq.10) rounding to the nearest
integer is taking place.

For the case of the Harmony search, we used a memory of
size 20 and in order to have comparable results (even though
it was not our intention at this phase to have a thorough
comparison of the two algorithms) 20000 new harmonies
were “improvised”.

Due to the stochastic nature of the optimization algorithms
for each setup we repeated the optimization procedure 30
times. The results (using the cost function described in eq. 1
with 1 2 0.5w w ) are summarised in Table 2, while figure

2 depicts an instance of the evolution of the best solution for
the two algorithms. The pattern was similar for all runs: PSO
“slowly” moved towards better solutions whereas harmony
search was converging quickly towards a good local
minimum (due to the use of accidentaling mechanism).

Table 2. Solution representation

Requests/trucks Harmony search
(mean/std)

PSO
(mean/std)

80/5 45.53/14.83 42.35/14.34
80/10 5.26/~0 5.25/0.06
120/5 470.60/44.88 477.77/50.78

120/10 32.72/13.85 33.92/14.71
160/5 1447.2/130.9 1436.2/65.7

160/10 237.46/62.37 252.01/34.41

From Table 2, we can see that for this configuration of both
algorithms, there is no clear winner. However for larger
problems the HS seems to perform slightly better.

Fig. 2. The evolution of the “best” solution for PSO and
Harmony search for an instance of the 160/10 problem. An
“epoch” corresponds to 1 iteration of the PSO and 10
improvisations of the Harmony search.

5. CONCLUSIONS

This paper presents our preliminary results of the application
of metaheuristic algorithms for solving a particular problem
that arises at the Trieste-Fernetti port-dry port complex. In
our approach we treated the problem in a static way. Even
though this is not strictly true, due to the technologies that are

WeA03.6

518

being developed within the SAIL project (installation of on
board computers, use of booking services etc), the
information flow will allow us to provide satisfactory
solutions even using the proposed approach by minimizing
uncertainties. Moreover due to the fast execution of the
algorithm even a complete rescheduling will be available in
near-real time.

The use of metaheuristics allows for the easy modification of
the cost function (other terms of the objective function could
include the total travel distance of the trucks (forcing trucks
to serve first units that are at the same location as they are
and avoid travelling without a load), the balanced workload
of trucks etc.). Moreover it allows for the quite easily
substitution of the metaheuristic algorithm.

Our future work involves appropriate fine-tuning of the
involved algorithms and testing of other metaheuristic search
methods as well as the development of a (semi)automated
method for setting the weights of the optimization function
based for example on the analytic hierarchy process (Saaty,
1990).

Acknowledgement

This work was supported by the E.U. FP7–PEOPLE–IAPP–
2009, Grant Agreement No. 251589, Acronym: SAIL.

REFERENCES

Ai, J., and Kachitvichyanukul, V. (2009.a). A particle swarm
optimization for the vehicle routing problem with
simultaneous pickup and delivery. Computers &
Operations Research, 36, 1693-1702.

Ai, J., and Kachitvichyanukul, V. (2009.b). Particle swarm
optimization and two solution representations for solving
the capacitated vehicle routing problem. Computers &
Industrial Engineering, 56 (1), 380-387.

Ai, J., and Kachitvichyanukul, V. (2009.c). A Particle Swarm
Optimisation for Vehicle Routing Problem with Time
Windows. International Journal of OR, 6 (4), 519-537.

Beniaminy, I., Yellin, D., Zahavi, U., and Žerdin, M. (2009).
When the Rubber Meets the Road: Bio-inspired Field
Service Scheduling in the Real World. In Bio-inspired
Algorithms for the Vehicle Routing Problem, 191-213.

Boschian, V., Dotoli, M., Fanti, M. P., Iacobellis, G., and
Ukovich, W. (2011). A Metamodeling Approach to the
Management of Intermodal Transportation Networks.
IEEE Transactions on Automation Science and
Engineering, 8(3), pp. 457-469.

Clerc M. and Kennedy J. (2002). The particle swarm–
explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol.
Comput., 58–73, 2002.

Cordeau, J. F., and Laporte, G. (2007). The dial-a-ride
problem: models and algorithms. Annals of OR, 153(1),
29-46.

Cordeau, J.-F., Laporte, G., Potvin, J.-Y., and Savelsbergh,
M. W. P. (2007a). Transportation on demand. In C.
Barnhart and G. Laporte (Eds.), Transportation.
Amsterdam: Elsevier.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. P., and Vigo,
D. (2007b). Vehicle routing. In C. Barnhart and G.
Laporte (Eds.), Transportation. Amsterdam: Elsevier.

Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-
phase insertion technique of unexpected customers for a
dynamic dial-a-ride problem. European Journal of
Operational Research, 175(3), 1605-1615.

Degertekin, S. O. (2008). Optimum design of steel frames
using harmony search algorithm. Structural and
Multidisciplinary Optimization, 36(4), 393-401.

Geem, Z.W., Kim, J.-H. and, Loganathan, G.V. (2001). A
new heuristic optimization algorithm: harmony search,
Simulation 76 (2) (2001) 60– 68.

Giani, G. Laporte, G. and Musmanno, R. (2004) Introduction
to Logistics Systems Planning and Control, Willey, 2004

Kennedy, J. and, Eberhart, R.C. (1995). Particle swarm
optimization. In IEEE International Conference on
Neural Networks, Perth, Australia, 1942–1948.

Lee, K. S., and Geem, Z. W. (2005). A new meta-heuristic
algorithm for continuous engineering optimization:
harmony search theory and practice. Computer methods
in applied mechanics and engineering, 194(36), 3902-
3933.

Parsopoulos K. E. and Vrahatis M. N. (2010). Particle
Swarm Optimization and Intelligence: Advances and
Applications. Information Science Publishing, IGI
Global.

Parsopoulos, K. E., Kariotou, F., Dassios, G., and Vrahatis,
M. N. (2009). Tackling Magnetoencephalography with
Particle Swarm Optimization, International Journal of
Bio-Inspired Computation, 1 (1/2), 32-49.

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2010).
Variable neighborhood search for the dial-a-ride
problem. Computers & OR, 37(6), 1129-1138.

Piperagkas, G. S., Georgoulas, G., Parsopoulos, K. E.,
Stylios, C. D., and Likas, A. C. (2012). Integrating
particle swarm optimization with reinforcement learning
in noisy problems. In GECCO2012. 65-72.

Power, D.J., and, Sharda. R. (2007) Model-driven decision
support systems: Concepts and research directions.
Decision Support Systems, 43(3): 1044-1061.

Saaty, T. L. (1990). How to make a decision: the analytic
hierarchy process. European journal of OR, 48(1), 9-26.

Stahlbock, R., and Voss, S. (2008). Operations research at
container terminals: A literature update. OR Spectrum,
30(1), 1–52.

Toth, P., and Vigo, D. (2002). The vehicle routing problem,
SIAM monographs on discrete mathematics and
applications. Society for Industrial and Applied
Mathematics.

Turban, T., Sharda, R., and Delen, D. (2010). Decision
Support and Business Intelligence Systems. Prentice
Hall.

Wang, L., Mao, Y., Niu, Q., & Fei, M. (2011). A multi-
objective binary harmony search algorithm. Advances in
Swarm Intelligence, 74-81.

Zapfel, G., Braune, R. and. Bogl, M. Metaheuristic Search
Concepts to Production and Logistics. A Tutorial with
Applications, Springer, 2010

WeA03.6

519

