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Abstract: This work presents two metaheuristic optimization methods that are designed and developed 
to assist a shuttle service process for the case of the port of Trieste and the dry-port of Fernetti. The 
process is applied on simulated, yet realistic data, gathered in the context of the SAIL Marie Curie 
Project corresponding to probable operational every-day scenarios. The results suggest that a satisfactory 
solution can be achieved with more than one metaheuristic optimizers, providing a valuable tool to the 
personnel for handling container flow. 
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1. INTRODUCTION 

In recent years maritime traffic flow has been increasing in 
terms of volume of goods and interconnections with different 
means of transport, such as railway and road networks. 
Moreover, for many decades, management and decision 
making was considered an art acquired with experience 
combined with personal intuition, creativity and judgment. 
Although personal qualifications remain valuable, the 
increasing complexity of modern business environments and 
the vast volume of data needed to be taken into account, 
make the use of computerized methods a necessity (Turban et 
al., 2010).  

In this context, the “ICT System Addressed to Integrated 
Logistic management and decision support for intermodal 
port and dry port facilities” project aims to develop an 
integrated ICT platform able to support logistic chain of 
goods flow, and all business operations provided in a port 
and a dry-port areas. A supportive technology is developed 
integrating data and models describing different levels of the 
system with various degrees of abstraction as well as expert 
knowledge in order to address various decisions for different 
time horizons. 

More specifically, the test case environment concerns the 
Trieste-Fernetti complex, which plays a crucial role in the 
Friuli Venezia Giulia region, an Italian region acting as a 
gateway position towards East Europe and the Balkans. The 
logistic system in this region is particularly significant both 
for its geographical location, at the meeting point of the 
trans-European Corridor V and the Adriatic Corridor, and its 

concentration of ports and land, sea and railway transport 
networks. Therefore the impact of the proposed solutions will 
consider the benefits of new technological solutions on 
intermodal traffic and will have important effects on the 
overall logistic system. 

One of the services that the Trieste-Fernetti complex (Figure 
1) is going to establish, concerns the use of a “shuttle 
service” for the containers that are parked either at the port of 
Trieste or at Fernetti. This scenario involves the use of a fleet 
of trailers/trucks that move containers from Trieste to 
Fernetti or the other way around. Boschian et al. (2011) 
provided a good description of the case study through a UML 
metamodel.  

 

Fig. 1. The Trieste- Fernetti complex environment. 
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For this particular problem, a model based approach has been 
adopted employing a simplified mathematical model of the 
process under investigation. In this way the decision making 
process is cast as an optimization problem described by 
mathematical expression(s) (Giani et al., 2004). Many 
attempts have been made to tackle various sub-problems 
encountered at intermodal terminals, especially those which 
are mainly handling containers (Stahlbock and Voss, 2008). 
Different assumptions, different optimization criteria as well 
as the different peculiarities of each case study lead to 
different formulations and different solution approaches. In 
other words there are no “off the shelf” solutions for such 
logistic problems. Nevertheless model-based decision 
support systems (DSSs) are among the most successful tools 
in nowadays complex logistic environments (Power and 
Sharda, 2007).  

The main drawback of the model-based approach is that most 
of the processes taking place in an intermodal Port logistics 
environment (scheduling, routing etc.) are in fact NP-hard 
optimization problems. That can be solved consistently to 
optimality within a reasonable amount of time only if the 
instance size is sufficiently small. Most of them are 
combinatorial programming problems, integer programming 
(IP) and mixed-integer programming (MIP) problems which 
are difficult to solve within a reasonable time window (Giani 
et al., 2004) using exact solution methods.  

Therefore in order to have a working solution within a 
reasonable amount of time the designer has to resort to fast 
heuristic and meta-heuristic algorithms. (Meta)-heuristic 
algorithms search for “quite good” but not necessarily the 
best solution (Zapfel et al., 2010). For our problem two 
popular metaheuristic algorithms are investigated, namely the 
Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 
1995) and the Harmony Search (HS) (Geem et al., 2001). 

The rest of the paper is structured as follows: in Section 2 the 
problem is described in detail. Section 3 describes in brief the 
two metaheuristic optimizers involved and Section 4 presents 
some indicative results. Finally section 5 concludes the paper 
offering also some hints for future improvements. 

2. PROBLEM FORMULATION AND SOLUTION 
MECHANISMS  

As was pointed out in the introduction, the problem at hand 
involves the management of a fleet of trailers/trucks that have 
to move containers from Trieste to Fernetti or the other way 
around. This is a problem that belongs to the broad family of 
Vehicle Routing Problems (VRPs). It could be narrowed 
down, to the VRP with time windows and/or the VRP with 
pickup and delivery. An overview of these problems the 
interested reader can refer to (Toth and Vigo 2002 and 
Cordeau et al. 2007a; 2007b). In fact this problem looks very 
similar to what is known as the dial-a-ride problem (Cordeau 
and Laporte 2007; Coslovich et al., 2006) with the only 
difference that the transported quantities are not humans but 
containers.  

However, as it was pointed by (Parragh et al., 2010) every 
specific instance of a dial-a-ride like problem comes with its 

own peculiarities, making difficult the use of a universal 
model or formulation of the problem. In our case the special 
features refers to (i) the possibility of different starting times 
for the availability of the trailers, (ii) the use of two “depots” 
(a trailer could originally be either at the port of Trieste or at 
Fernetti) and (iii) the ability to park in any of the areas after 
serving the last “customer” (a flavour of the open VRP). 
There are also: (iv) only two (interchangeable) locations for 
pickup and delivery, (v) the more or less constant travelling 
time between the two points and (vi) the more or less 
constant service time. On top of all these, as in almost all real 
life applications, the objective is a synthesis of various 
criteria. The above features on one hand make the specific 
problem unique in one sense but on the other hand make the 
“solution” procedure a bit easier compared to the classic dial-
a-ride problems. 

A possible formulation of the situation described in the 
previous paragraphs is the following, where we are trying to 
minimize the accumulated time violation of “delivery” time 
for all the involved containers/trailers and the total number of 
trucks involved: 
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,   1,..., ,jk jD e j N k K                  (7) 

where  

K is the set of trucks. 

1ijky   if container i is served before container j, both by 

vehicle k  ( 0 1jky   means that container j is the first one to 

be served by trailer k while 0 1i ky  means that container i is 

the last to be served by trailer k after which the trailer 
remains at the area where it disposed container i). 

jkD  is the time that truck k start serving container j. 
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 0,1 ,kLocT k K  is the location of trailer k  at the 

beginning of the scheduling. 

2 ,kR G k K is the time instance that trailer k is 

ready to go for its first pickup. 

 0,1 , 1,...,iLocC i n  is the location of container i 

at the beginning of the scheduling. 

, 1,...,ie i n is the earliest point that the container i 

can be moved. 

, 1,...,il i n is the latest time instance that the 

container i has to reach its destination. 

     ,f a b a b a b     , where a, b are binary 

variables (this function returns 1 if a is the same as b, 
meaning that they are both located at the same site). 

1w , 2w  are the (normalised) relative weights of the two 

terms comprising the cost function, with 1 2 1w w  . 

Constraints (2)-(4) are routing constraints, constraints (5),(6) 
ensure that a truck cannot start serving a container before 
delivering the previous one or before the truck is ready to 
move and constraint (7) ensures that a truck cannot start 
serving a container before the earliest time that it can be 
moved. In this formulation the usual constraint for the 
delivery of the object (container) within a delivery window 
has been incorporated into the objective function. 

For solving the above problem one way is to assign to each 
container a truck and define the order by which each truck 
will serve them. Since the early arrival of a truck is not 
penalised (a truck can wait till the container becomes 
available for transportation), for the calculation of the starting 
service time we used a quite common approach in the 
literature that “attempts to schedule each demand at the 
earliest possible time after the other demands already 
assigned to that resource” (Beniaminy et al. 2009). In other 
words the truck once it is ready it goes directly to the next 
assigned container.  

The assignment of trucks to the n  containers as well as the 
service order is performed by the two metaheuristic methods 
that are described in the following section using the 
following representation: each solution is represented as a 

 1 2n  vector with the first n  elements assigning trucks to 

containers and the rest n  elements assigning priorities to 
containers using an implicit representation; real values in the 
range [0-1] are assigned to the containers. The container with 
the smallest real value in the respective field should be 
served first etc.  

For example with 4 containers ( n =4) and 2 trucks (K=2) a 
representation of a candidate solution could be: 1 2 2 1 0.12 
0.01 0.91 0.8 or if we use a matrix (Table 1): 

Table 1.  Solution representation 

 Trucks Priorities 
1 2 2 1 0.12 0.01 0.91 0.08 

Containers 1 2 3 4 1 2 3 4 

The above means that truck no 2 will serve containers 3 and 
4 in that order because 0.01<0.91 while truck 1 will serve 
first container 4 and then container 1. The same 
representation has been used in frameworks involving PSO 
and variations of the vehicle routing problem (Ai, J., and 
Kachitvichyanukul, 2009 a-c).  

Building the route for each truck is performed in a sequential 
manner: starting from its available ready-to-go time stamp, 
we proceed to the first assigned request; we added the 
required travelling and service times. Then we continue with 
the next truck until all the requests are served, calculating and 
accumulating possible penalty terms at the same time. This 
way neither time ordering nor routing constraints are 
violated. 

3. METAHEURISTICS  

As pointed out in the introduction, due to the difficulty in 
tackling hard optimization problems with traditional 
methods, dedicated heuristic solution approaches have been 
developed that aim at providing good solutions in reasonable 
time for a given problem.. However, such methods have two 
major drawbacks: first, they are tailored to a specific problem 
and their adaption to other problems is difficult or even 
impossible. Second, they are typically designed to “build” 
one single solution in the most effective way, whereas most 
decision problems have a vast number of feasible solutions. 
Hence usually the chances are high that there exist better 
ones. To overcome these limitations metaheurirstics have 
been proposed (Zapfel et al., 2010). 

These methods have come to be recognized as ones of the 
most practical approaches for solving many complex 
problems. Metaheuristics try to find good heuristic solutions 
to complex optimization problems with many local optima 
and limited inherent structure to guide the search balancing 
two conflicting mechanisms: intensification vs. 
diversification. Intensification means that we are trying to 
exploit some of the properties of already visited (good) 
solutions whereas diversification means that we are trying to 
explore unvisited regions by broadening the search. 

3.1  The Particle Swarm Algorithm 

Eberhart and Kennedy introduced the original PSO algorithm 
in 1995 (Eberhart and Kennedy, 1995) that has been applied 
since in many fields (Piperagkas et al. 2012, Parsopoulos et 
al. 2009). Its main concept includes a population, called a 
swarm, of potential solutions, called the particles, probing the 
search space. The particles iteratively move in the search 
space with an adaptable velocity, retaining in memory the 
best positions they have ever visited, i.e., the positions with 
the best function. 
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The exploration capability of PSO is promoted by 
information exchange among particles. More specifically, 
each particle is assigned a (usually index--dependent) 
neighborhood. In the global PSO variant, also known as 
gbest, the neighborhood of each particle is the whole swarm 
and the overall best position is the main information provider 
for all particles. On the other hand, in the local PSO variant, 
also known as lbest, the neighborhoods are strictly smaller, 
usually consisting of a few particles. In such cases, each 
particle may have its own leader that influences its velocity 
update. Perhaps the most common neighborhood topology is 
the ring, where each particle assumes as neighbors its mates 
with neighboring indices (Parsopoulos and Vrahatis, 2010). 
To put it formally, consider the minimization problem:  

 min
nx V

f x
 

               (8) 

Then, a swarm of N particles is a set, S, of n-dimensional 
search points, ix S , i=1,2,…,N. The i-th particle has a 

velocity (position shift), iv , and retains in memory the best 

position, ip S , it has ever visited. A ring neighborhood of 

radius m for the particle ix , implies that the experience of the 

particles with indices in  ,..., ,...iB i m i i m   , will be 

available to ix  at each iteration. 

Assume that ig  is the index of the best position found so far 

in the neighborhood of ix  i.e.  arg min
ii j B ig f p , and let 

t  denote the iteration counter. Then, according to the 
constriction coefficient version of PSO (Clerc and Kennedy, 
2002), the swarm is updated as follows:  

             1
1 2

t t t t t t
ij ij ij ij gij ijv v p x p x           (9) 

     1t t t
ij ij ijx x v                       (10) 

where i=1,2,…,N and j=1,2,…,n. The parameter χ is the 
constriction coefficient and it is used as a means to control 
the magnitude of the velocities. The other two parameters are 
defined as 1 1 1c r   and 2 2 2c r  , where 1c  and 2c  are 

positive constants, also called the cognitive and the social 
parameter, respectively, and 1r , 2r , are random variables 

uniformly distributed in [0,1], different for each i, j and t. 
Based on the stability analysis of (Clerc and Kennedy, 2002), 
the values, χ=0.729, 1 2 2.05c c  , are considered as the 

default parameter set. If  1t
ix   improves the best position 

 t
ip , it replaces it in  1t

ip  . Otherwise, the best position 

remains unchanged. 

3.1  The Harmony Search Algorithm 

Harmony search is a metaheuristic method inspired by the 
musing improvising process (Geem et al., 2001). It was 
originally developed for integer variables but since then it has 
been modified in order to accommodate real variables (Lee 

and Geem, 2005) as well as binary variables (the extreme 
case of an integer variable) (Wang et al., 2011). While it 
basically mimics musicians’ behaviors such as memory 
consideration, pitch adjustment and random consideration, 
the HS model has problem-specific features in every different 
application. The way that HS creates new solutions makes it 
an ideal candidate for problems where the solution vector is 
comprised of variables of different nature. HS is performed 
in several steps that are described in the rest of this section 
both for integer as well as real variables.  

3.2.1  Harmony memory initialization 

Before the application of each one of these steps, multiple 
solution vectors are randomly generated (or alternatively 
some could be provided by the user based on expert 
knowledge or even intuition) and stored in harmony memory 
(HM) as follows: 

 
 

 

1 1 1 1
1 2

2 2 2 2
1 2

1 2

n

n

HMS HMS HMS HMS
n

D D D f

D D D f

D D D f

 
 
 

  
 
 
  

D

D
HM

D





    



        (11) 

where j
iD is the i-th decision variable in the j-th solution 

vector, which has one discrete value out of a candidate set 

        1 , 2 , , , ,i i i i iD D D k D K  , and  jf D  is the 

objective function value for the j th solution vector, and HMS 
is the harmony memory size (i.e. the number of multiple 
vectors stored in the HM). The number of random harmonies 
should be at least HMS or more, such as twice or three times 
as many as the HM size. Then, the top-HMS harmonies are 
selected as starting vectors (Degertekin, 2008). 

3.2.2 Improvisation of a new harmony 

The vectors stored in the Harmony Memory are used to 
produce a new vector (a new harmony) using three 
operations: A) Random selection, B) Memory consideration 
and C) Pitch adjustment, which are presented in detail in the 
following paragraphs. 

In random selection a new value is chosen randomly out of a 
candidate set with a probability (1-HMCR) (see next 
paragraph for the definition of HMCR):  

          , 1 , 2 , ,New
i i i i i i iD D k D k D D D K       (12) 

In memory consideration, one value is chosen out of the HM 
set, with a probability equal to the harmony memory 
considering rate (HMCR): 

     1 2, , , ,New HMS
i i i i i iD D l D l D D D                 (13) 

In pitch adjustment a value that has been selected in the 
previous step of memory consideration is further changed 
into neighboring values with a probability equal to the pitch 
adjusting rate (PAR):   

     1 21 , , , ,New HMS
i i i i i iD D l D l D D D                 (14) 
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If the newly improvised harmony NewD violates any 
constraint, HS either abandons it, or still keeps it by adding 
penalty to the objective function. 

3.2.3.  Update of harmony memory 

If the newly generated vector  1 2, , ,New New New
nD D D  is better 

than the worst vector in HM with respect to the objective 
function, the former takes the place of the latter. However, 
for the diversity of harmonies in HM, other harmonies (in 
terms of least-similarity) can be considered. Also, maximum 
number of identical harmonies in HM can be considered in 
order to prevent premature HM. After the HM update and if 
the maximum number of iterations or a desired performance 
has been reached the algorithm continues to generate new 
harmonies. 

3.2.4  Harmony search for real valued variables 

In the case of real valued variables what changes is the 
random selection and the pitch adjustment mechanisms.  

In the random selection we randomly select a value within 
the admissible range of values for the corresponding variable  

(0,1)New
i iD Range U                           (15) 

where iRange is the range of values of variable i and (0,1)U  

is a uniform random generator between 0 and 1. 

In the pitch adjustment the new value is given by: 

   2 (0,1) 1 ,New
i i iD D l bw U     

   1 2, , , HMS
i i i iD l D D D                             (16) 

where ibw  is an arbitrary distance bandwidth for the 

continuous design variable 

3.2.5  Accidentaling  

If the new harmony 
NewD is the best one when compared 

with every harmony in HM, the new harmony can consider 
an additional process named accidentaling during which we 
can further pitch-adjust every note of the new harmony if it is 
the ever-best harmony, which may find an even better 
solution: 

  , for discrete variables
, 1,...,

, for continuous variables
iNew

i
i

D k m
D i n

D


   

(17) 

In other words we have the application of a local search 
procedure for the newly discovered best harmony 

4. RESULTS 

In this preliminary examination we have tested 6 different 
configurations corresponding to 3 different levels of requests 
and 2 different fleet configurations. More specifically for the 
requests we used i) 80 (which is the average container 
traffic), ii) 120 and iii) 160. For the fleet size we employed i) 
5 and ii) 10 trucks.  

For the case of the PSO, we used a population of 10 particles 
and we let the algorithm run for 2000 iterations using the 
gbest variant. For handling the integer nature of the problem 
after the position update (eq.10) rounding to the nearest 
integer is taking place.  

For the case of the Harmony search, we used a memory of 
size 20 and in order to have comparable results (even though 
it was not our intention at this phase to have a thorough 
comparison of the two algorithms) 20000 new harmonies 
were “improvised”.  

Due to the stochastic nature of the optimization algorithms 
for each setup we repeated the optimization procedure 30 
times. The results (using the cost function described in eq. 1 
with 1 2 0.5w w  ) are summarised in Table 2, while figure 

2 depicts an instance of the evolution of the best solution for 
the two algorithms. The pattern was similar for all runs: PSO 
“slowly” moved towards better solutions whereas harmony 
search was converging quickly towards a good local 
minimum (due to the use of accidentaling mechanism). 

Table 2.  Solution representation 

Requests/trucks Harmony search 
(mean/std) 

PSO 
(mean/std) 

80/5 45.53/14.83 42.35/14.34 
80/10 5.26/~0 5.25/0.06 
120/5 470.60/44.88 477.77/50.78 

120/10 32.72/13.85 33.92/14.71 
160/5 1447.2/130.9 1436.2/65.7 

160/10 237.46/62.37   252.01/34.41 

From Table 2, we can see that for this configuration of both 
algorithms, there is no clear winner. However for larger 
problems the HS seems to perform slightly better. 

 

Fig. 2. The evolution of the “best” solution for PSO and 
Harmony search for an instance of the 160/10 problem. An 
“epoch” corresponds to 1 iteration of the PSO and 10 
improvisations of the Harmony search. 

5. CONCLUSIONS 

This paper presents our preliminary results of the application 
of metaheuristic algorithms for solving a particular problem 
that arises at the Trieste-Fernetti port-dry port complex. In 
our approach we treated the problem in a static way. Even 
though this is not strictly true, due to the technologies that are 
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being developed within the SAIL project (installation of on 
board computers, use of booking services etc), the 
information flow will allow us to provide satisfactory 
solutions even using the proposed approach by minimizing 
uncertainties. Moreover due to the fast execution of the 
algorithm even a complete rescheduling will be available in 
near-real time. 

The use of metaheuristics allows for the easy modification of 
the cost function (other terms of the objective function could 
include the total travel distance of the trucks (forcing trucks 
to serve first units that are at the same location as they are 
and avoid travelling without a load), the balanced workload 
of trucks etc.). Moreover it allows for the quite easily 
substitution of the metaheuristic algorithm. 

Our future work involves appropriate fine-tuning of the 
involved algorithms and testing of other metaheuristic search 
methods as well as the development of a (semi)automated 
method for setting the weights of the optimization function 
based for example on the analytic hierarchy process (Saaty, 
1990).  
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