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Abstract 

Fuzzy Cognitive Maps have been 
introduced as a combination of Fuzzy logic 
and Neural Networks. In this paper a new 
learning rule based on unsupervised 
Hebbian learning and a new training 
algorithm based on Hopfield nets are 
introduced and are compared for the 
training of Fuzzy Cognitive Maps. 
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1 Introduction 

Fuzzy Cognitive Map (FCM) is a soft computing 
modeling methodology for complex systems, which 
originated from the combination of fkq logic and 
neural networks. FCM is a symbolic representation 
for the description and modeling of the behavior and 
operation of a system. FCMs consist of concepts, 
that illustrate different aspects in the behavior of the 
system and these concepts interact each other and 
are interconnected with weighted arcs showing the 
dynamics of the system. Human experts, who have 
knowledge and experience in the operation of the 
system construct and develop the FCM, experts 
define the number and kind of concepts and the 
weighted interconnections between them [9]. But, 
the human knowledge and experience aren't always 

reliable. Therefore, learning algorithms are proposed 
to training the FCM and select the appropriate 
weights [6,8]. 

Fuzzy Cognitive Maps are a combination of 
techniques from fuzzy logic theory and neural 
networks. So, it is expected to have learning 
capabilities. The learning rule for a FCM is a 
procedure for modifying its weight matrix in order 
to train the FCM to model the behavior of a system. 
The Differential Hebbian learning algorithm has 
been considered as the more appropriate for Fuzzy 
Cognitive Maps [6] and here it is proposed the use 
of Hopfield learning algorithm. 

2 Differential Hebbian Learning 

The unsupervised Hebbian learning rule have been 
proposed to be implemented in training FCMs. 
Hebb' s postulate of learning states the following: 

1.If two neurons on either side of a synapse 
(connection) are activated simultaneously (i.e., 
synchronously), then the strength of that synapse 
is selectively increased. 

2.If two neurons on either side of a synapse are 
activated asynchronously, then that synapse is 
selectively weakened or eliminated. 

An initial FCM is constructed with arbitrary weight 
values. It is then trained to make predictions of 
future average value of concepts, the FCM runs 
through the historical data set one state at a time. For 



comparing the FCM's output with the expected 
output provided in the data. Weights are adjusted 
when error is identified. The data set is cycled until 
the error has been reduced sufficiently for no more 
changes in weights to occur. If a correlated change 
between two concepts is observed, then a causal 
relation between the two is likely and the strength of 
this relationship should depend on the rate of the 
correlated change. This proposition forms the basis 
of the Differential Hebbian Learning (DHL). Kosko 
discusses the use of DHL as a form of unsupervised 
learning for FCMs [7]. 

DHL can be used to make an FCM adapt causal link 
strengths as part of an unsupervised training with a 
sequence of state vectors. However, there is no 
guarantee that DHL will encode the sequence into 
the FCM. It has been proposed a potential of DHL 
by creating a bivalent simple FCM, which is fed 
with stimulus vectors to obtain some limit cycles. 
Using these limit cycles as training data, DHL is 
then used to create a new FCM. It has been showed 
that the new FCM tends to learn the same attractors 
(limit cycles) as those in the initial FCM. 

The general unsupervised Hebbian rule is : 

where A C ~  is the change in concept i and 
~~i(t)=Ci(t)-~i(t-1). The learning coefficient i ,  
decreases slowly over time. Kosko [6] suggested the 
coefficient : 

The constant N ensures the learning coefficient C, 
never becomes negative. 

So, at each time step t, the value for eij, the edge 
linking concept i and j, is given by the discrete 
version of the DHL law from equation (1). 

2.1 Proposed Hebbian law for FCMs. 

Here it is suggested a new training algorithm, based 
on the above unsupervised Hebbian learning rule: 

where Ci(t) is the value of concept i at time step t, 

and a is the learning coefficient. After simulation 
experiments the most appropriate value of a is equal 
to 0,2, which gives better and faster results. 

The general update rule for each concept ina a FCM 
is: 

~ , ( t + 1 ) = f ( ~ ~ ( t ) + C w , ( t + 1 ) - ~ , ( t ) )  (4) 
j t i  

In section 5 the suggested learning rule is 
implemented for a simple example. 

3 Hopfield Neural Networks 

The Hopfield network is a single-layer feedback 
Neural Network as shown in Figure 1. When 
operated in discrete-time fashion, it is called a 
discrete Hopfield network and its structure is termed 
as recurrent [4]. 

Figure 1 : Hopfield auto associative neural network 

The neurons in Hopfield networks are characterized 
with: binary or bivalent input signals, binary or 
bivalent output signals, simple summation function, 
and hard-limited threshold activation function. 
Every neuron j, j=1,2,. . .n, in the network is 
connected back to every other one, except itself. 
Input patterns xj are supplied as external inputs and 
cause activation of the external outputs. The 
response of such a network, when an input vector is 
supplied during the recall procedure, is dynamic, 
that is, after supplying the new input pattern, the 
network calculates the outputs and then feeds back 
to the neurons; new output values are then calculated 
and so on, until an equilibrium point is reached. 

In this research work a new learning rule for weights 
of a FCM is proposed, based on the theory of 
Hopfield networks. A part of the discrete Hopfield 
algorithm is adopted and it is adjusted in the 
framework of FCMs, considering updated values of 



concepts due to feedback. The transition process 
continues until no new updated responses are 
produced, the values of concepts are the Desired 
Values of Concepts (DVC) and the FCM has 
reached an equilibrium point. 

4. FCM training based on Hopfield NN 

Hopfield considers that each node has an external 
input xj and a threshold ~ j ,  where j=l,..n (figure 1). 
It is important to point out that there is no self- 
feedback in a Hopfield network. The same is also 
considered in FCMs. The j-th node output is 
connected to each 7other nodes' inputs through a 
multiplicative weight wij for i=l,. . . ,n, i#j; that is 
wii=O for i=l,..n. Furthermore, it is required that the 
network weights be symmetric, that is, wji'wij, 
ij=1,2,. . .n. the evolving rule (or the update rule) for 
each node in a discrete Hopfield network is: 

where sgn( ) is the signum function defined by the 
equation: sgn (f) = {I, if fiO and -1, if f<O) and the 
superscript k denotes the index of recursive update. 

Asynchronous fashion means that for a given time 
only a single node is allowed to update its output. 
The next update on a randomly chosen node in a 
series uses the already updated output. In other 
words, under asynchronous operation of the 
network, each output node is updated separately, 
while taking into account the most recent values that 
have already been updated. 

The training procedure for the Hopfield network is 
reduced to the simple calculation of the weights wij 
on the basis of the training examples with the use of 
the formula: 

where the summation is held for all the training 
patterns x@) , and the expressions in parentheses can 
be only 1 or 0 according to the value of the input 
pattern. 

In FCM case, it is considered that there are not input 
values in each node and the thresholds Ei have 
constant values for each concept, suggested by us. 
Each value of concept will be updated, due to the 

training procedure, and it is named as Desired value 
of Concept (DVC). 

The following update rule for each DVC in a FCM 
is proposed: 

D V q  (t + 1) = f { D  VC,. ( t )  + x w,; ( t  + 1) - D VC, ( I ) }  
i 

(7) 
where f is the activation function given 
f(x)=l/(l+exp(-x)), and t denotes the recursive 
update (iteration). 

The training algorithm for the weights is: 

wi, (t + 1)  = y, ( t )  + (2D V q ( t )  - 1) .  (W VC/ ( t )  - 1)  

(8) 
It is assumed that wij'wji for i#j due to symmetry 
suggested by Hopfield and wii=O because there is no 
feedback from the DVC to itself. 

Due to asynchronous updating, only a concept is 
allowed to update its value every step. The next 
update on a randomly chosen node in a series uses 
the already updated concept, DVC. 

It is defined that the FCM reaches an equilibrium 
region after t steps when no new updated responses 
are produced, the DVCs are constant and the same 
for the weights. 

4.1 The energy function 

Hopfield also defined a parameter E, called the 
energy of the network, which is a dynamical 
parameter and which can be calculated at any 
moment t (step) as follows: 

The energy for DVCs of FCM is defined: 

We introduce the concept of energy in the FCMs and 
we calculate the total energy of the interesting 
concept at the final state and if this energy is 
minimum at the same time with the stable state of 
the outputs, then we conclude that the FCM has 
reached an equilibrium point. 

The energy E, suggested by Hopfield can be 
illustrated as a surface in n-dimensional space. The 



equilibrium point in a trained Hopfield network can 
be explained by the attractor principle. 

During training the network "sets" some basins of 
attraction, which are stable states for the network 
corresponding to the training patterns. When a new 
vector x' is supplied for a recall, the network will 
eventually rest after some cycles in an attractor, thus 
associating the new vector with one of the known 
attractors (figure 3). 

t 

Figure 2: When a new input pattern X' is presented the 
network relaxes in an equilibrium state, "a basin of 
attraction" where the energy E is minimum, thus 
associating the new pattern with class pattern P3. [:I ] 

In an extreme case, the number of basins of 
attraction is equal to the number of training patterns. 
During the recall procedure, when a new input 
pattern is applied, the network tries to relax into the 
nearest basin of attraction, thus finding the right 
pattern to associate the new one with. The recall 
process is the process of relaxation. 

The main property of the energy function is that it 
always decreases or stays constant as the network 
cycles. In the following it is easy to show 
mathematically why this function always decreases 
at each time step. 

Suppose that at time t, the state of the jth concept is 
changed. If the change in the state of the ith concept 
is: 

ACi ( t  + 1) = Ci (t + 1)  - Ci ( t )  , then we have 

ACi(t+ 1)=0 for izj, and else ACj(t+l)zO. 

The change in the energy caused by the change in 
the state of the jth concept is: 

Adding and subtracting Ci(t+l)Cj(t+l), and 
simplifling, we get: 

which can be reduced to: 

using the facts that Aci(t+l)=O for izj and wij=wji . 
If the term in brackets is positive, the value of 
~ C , ( t + l )  is also positive, so & is negative. If the 
value in brackets is negative, the same is Acj(t+l), 
and again & is negative. Hence each change of 
state brought about by the asynchronous updating 
method reduces the value of the energy function. 

The change in E, as based on a change in a single 
desired value of concept ~ v c ~ ,  can be expressed 
as 

N N 

A E ,  = -%.ADVC ,x x w j i  D V C  (11) 
j  i # j  

This is a steadily decreasing function as the network 
evolves. During the recall procedure, the system 
continues to calculate desired values of concepts 
DVCs until it reaches a minimum of the energy 
function E at the same time, which is an equilibrium 
state. 

4.2 Proposed training FCM algorithm 

Here it is proposed a training algorithm for FCM. 

There are presented two ways of calculating new 
values of weights, one based on Hopfield nets that 
described in section 3, and the other based on 
Hebbian learning that described in section 2.1. 

There are two methods for updating the states of the 
concepts. In the asynchronous updating method, the 
states of the concepts are changed one at a time, in 
random order. In the simultaneous method, the states 
of the concepts are all changed at the same time, on 
the basis of their states after the previous update. 

We suggest here the asynchronous updating for the 
concepts of FCM. 

1. The FCM is developed [9] and the weights w,j 

take their initial values. 

2. Randomly initial values Aj(0) are assigned to the 
concepts j, j=1,2,. . .n 

3. Due to asynchronous updating only one of the 
concepts Cj is selected as the first updated concept 
(DVCj), and the other concepts DVCi of FCM are 
updated randomly at next steps t. 



4. The new values of the updated concept, DVCj(l) 
for j= 1,2,. . .n, is calculated using the equations (8) 
and (9): 

where 

in the case of Hopfield training algorithm, and 

w, (t + 1) = wii (t) + 0.2(DVCi (t)DVC (t) - wii (t)) 

(14) 

in the case of unsupervised Hebbian training 
algorithm, f is the activation function and wij(t+l) 
is the value of weight at step t+l. 

5. The updated value DVCi of concept from the 
selected node Ci becomes the new updated input 
through the feedback connections to the other 
nodes Cj. 

6. The transition process continues until no new 
updated responses are produced and the systern- 
FCM has reached its equilibrium. 

7. 0he total energy E(t) of the system at every step 
is also calculated. When the energy function E 
reaches a minimum value comparing with the 
values of energy at next and previous steps, the 
transition process stops. 

When all the outputs-DVCs, no longer change their 
values for at least three consecutive cycles and at the 
same time the total energy E is minimum then the 
FCM reaches an equilibrium region. 

Figure 3. A simple FCM of 3 concepts where concept C, 
is a feedback node and Wjlt , w3; are the trained 
weighted arcs. 

5. Example and simulation results. 

We consider an FCM consisted of 3 concepts 
without inputs to nodes, assuming all the values of 
thresholds E~ equal to zeros, (Figure 3). 

The initial values of concepts and weights are the 
following: 

c0=[0.32, 0.4,0.45] and 

For the case of the Hopfield algorithm the equation 
(13) is used to calculate the updated weights and 
equation (12) to calculate the updated Desired 
Values of Concepts (DVCs), for t time steps. 
The weights take their final updated values after 

two simulation steps: 

At the next steps the values of weights do not longer 
change. The DVCs take their constant values after 8 
simulation steps, as shown in Table 1. 

Table 1. The values of DVCs for 9 simulation steps. 

At each simulation step the total energy is calculated 
according to the equation (10) for the Desired Value 
of Concept. 

The energy function decreases and at the 7~ step 
stays constant for the consecutive cycles. At this step 
we take the minimum value of energy (equals to 



0,0895) and the change in energy .&E is always 
negative, as shown in the previous section. 

For the case of Differential Unsupervised Hebbian 
learning algorithm, the equation (14) is used to 
calculate the updated weights and equation (12) to 
calculate the updated DVCs. 

After 30 simulation steps the values of weights 
remain unchanged and do the updated DVCs. 

The final updated values of weights after the 
proposed training procedure are: 

The DVCs stay constant after 28 time steps. Table 2 
gives the DVCs for 30 consecutive cycles: 

0.7569 
0.7569 
0.7569 

0.5 0.5 0.7569 
As we observe from the above, the DVC for the 3d 
concept is reached the desired value 0.7569 and the 
other two DVCs are reached the value 0.5, as it was 
expected 

So, from the results of Hebbian learning, for three or 
more consecutive steps the updated weights and the 
Desired Values of Concepts (DVCs) no more change 
their values and calculating the energy we observe 
that it always decreases taking at 2 9 ~  time step a 
minimum value. At this step the FCM reaches an 
equilibrium region. 

6. Conclusions 

Two methods for training FCM based on Hopfield 
Networks and Hebbian learning law was presented. 
The Hebbian learning algorithm gives better results 
comparing with the Hopfield algorithm. 
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