
Learning Algorithms For Fuzzy Cognitive Maps

Elpiniki Papageorgiou Chrysostomos Stylios Peter Groumpos
Laboratory for Automation& Laboratory for Automation & Laboratory for Automation &

Robotics, Dep. of Electrical and Robotics, Robotics,
Computer Engineering, University Dep. of Electrical and Computer Dep. of Electrical and Computer

of Patras, 26500 Rion, Patras, Engineering, University of Patras, Engineering, University of Patras,
GREECE 26500 Rion, Patras, GREECE 26500 Rion, Patras, GREECE

epapageo@ee.upatras.gr stylios@ee.upatras.gr groumpos@ee.upatras.gr

Abstract

Fuzzy Cognitive Maps have been
introduced as a combination of Fuzzy logic
and Neural Networks. In this paper a new
learning rule based on unsupervised
Hebbian learning and a new training
algorithm based on Hopfield nets are
introduced and are compared for the
training of Fuzzy Cognitive Maps.

Keywords: Fuzzy Cognitive Maps, Learning
algorithms, Hopfield Networks, Unsupervised
Hebbian learning law.

1 Introduction

Fuzzy Cognitive Map (FCM) is a soft computing
modeling methodology for complex systems, which
originated from the combination of fkq logic and
neural networks. FCM is a symbolic representation
for the description and modeling of the behavior and
operation of a system. FCMs consist of concepts,
that illustrate different aspects in the behavior of the
system and these concepts interact each other and
are interconnected with weighted arcs showing the
dynamics of the system. Human experts, who have
knowledge and experience in the operation of the
system construct and develop the FCM, experts
define the number and kind of concepts and the
weighted interconnections between them [9]. But,
the human knowledge and experience aren't always

reliable. Therefore, learning algorithms are proposed
to training the FCM and select the appropriate
weights [6,8].

Fuzzy Cognitive Maps are a combination of
techniques from fuzzy logic theory and neural
networks. So, it is expected to have learning
capabilities. The learning rule for a FCM is a
procedure for modifying its weight matrix in order
to train the FCM to model the behavior of a system.
The Differential Hebbian learning algorithm has
been considered as the more appropriate for Fuzzy
Cognitive Maps [6] and here it is proposed the use
of Hopfield learning algorithm.

2 Differential Hebbian Learning

The unsupervised Hebbian learning rule have been
proposed to be implemented in training FCMs.
Hebb' s postulate of learning states the following:

1.If two neurons on either side of a synapse
(connection) are activated simultaneously (i.e.,
synchronously), then the strength of that synapse
is selectively increased.

2.If two neurons on either side of a synapse are
activated asynchronously, then that synapse is
selectively weakened or eliminated.

An initial FCM is constructed with arbitrary weight
values. It is then trained to make predictions of
future average value of concepts, the FCM runs
through the historical data set one state at a time. For

comparing the FCM's output with the expected
output provided in the data. Weights are adjusted
when error is identified. The data set is cycled until
the error has been reduced sufficiently for no more
changes in weights to occur. If a correlated change
between two concepts is observed, then a causal
relation between the two is likely and the strength of
this relationship should depend on the rate of the
correlated change. This proposition forms the basis
of the Differential Hebbian Learning (DHL). Kosko
discusses the use of DHL as a form of unsupervised
learning for FCMs [7].

DHL can be used to make an FCM adapt causal link
strengths as part of an unsupervised training with a
sequence of state vectors. However, there is no
guarantee that DHL will encode the sequence into
the FCM. It has been proposed a potential of DHL
by creating a bivalent simple FCM, which is fed
with stimulus vectors to obtain some limit cycles.
Using these limit cycles as training data, DHL is
then used to create a new FCM. It has been showed
that the new FCM tends to learn the same attractors
(limit cycles) as those in the initial FCM.

The general unsupervised Hebbian rule is :

where A C ~ is the change in concept i and
~~i(t)=Ci(t)-~i(t-1). The learning coefficient i ,
decreases slowly over time. Kosko [6] suggested the
coefficient :

The constant N ensures the learning coefficient C,
never becomes negative.

So, at each time step t, the value for eij, the edge
linking concept i and j, is given by the discrete
version of the DHL law from equation (1).

2.1 Proposed Hebbian law for FCMs.

Here it is suggested a new training algorithm, based
on the above unsupervised Hebbian learning rule:

where Ci(t) is the value of concept i at time step t,

and a is the learning coefficient. After simulation
experiments the most appropriate value of a is equal
to 0,2, which gives better and faster results.

The general update rule for each concept ina a FCM
is:

~ , (t + 1) = f (~ ~ (t) + C w , (t + 1) - ~ , (t)) (4)
j t i

In section 5 the suggested learning rule is
implemented for a simple example.

3 Hopfield Neural Networks

The Hopfield network is a single-layer feedback
Neural Network as shown in Figure 1. When
operated in discrete-time fashion, it is called a
discrete Hopfield network and its structure is termed
as recurrent [4].

Figure 1 : Hopfield auto associative neural network

The neurons in Hopfield networks are characterized
with: binary or bivalent input signals, binary or
bivalent output signals, simple summation function,
and hard-limited threshold activation function.
Every neuron j, j=1,2,. . .n, in the network is
connected back to every other one, except itself.
Input patterns xj are supplied as external inputs and
cause activation of the external outputs. The
response of such a network, when an input vector is
supplied during the recall procedure, is dynamic,
that is, after supplying the new input pattern, the
network calculates the outputs and then feeds back
to the neurons; new output values are then calculated
and so on, until an equilibrium point is reached.

In this research work a new learning rule for weights
of a FCM is proposed, based on the theory of
Hopfield networks. A part of the discrete Hopfield
algorithm is adopted and it is adjusted in the
framework of FCMs, considering updated values of

concepts due to feedback. The transition process
continues until no new updated responses are
produced, the values of concepts are the Desired
Values of Concepts (DVC) and the FCM has
reached an equilibrium point.

4. FCM training based on Hopfield NN

Hopfield considers that each node has an external
input xj and a threshold ~ j , where j=l,..n (figure 1).
It is important to point out that there is no self-
feedback in a Hopfield network. The same is also
considered in FCMs. The j-th node output is
connected to each 7other nodes' inputs through a
multiplicative weight wij for i=l,. . . ,n, i#j; that is
wii=O for i=l,..n. Furthermore, it is required that the
network weights be symmetric, that is, wji'wij,
ij=1,2,. . .n. the evolving rule (or the update rule) for
each node in a discrete Hopfield network is:

where sgn() is the signum function defined by the
equation: sgn (f) = {I, if fiO and -1, if f<O) and the
superscript k denotes the index of recursive update.

Asynchronous fashion means that for a given time
only a single node is allowed to update its output.
The next update on a randomly chosen node in a
series uses the already updated output. In other
words, under asynchronous operation of the
network, each output node is updated separately,
while taking into account the most recent values that
have already been updated.

The training procedure for the Hopfield network is
reduced to the simple calculation of the weights wij
on the basis of the training examples with the use of
the formula:

where the summation is held for all the training
patterns x@) , and the expressions in parentheses can
be only 1 or 0 according to the value of the input
pattern.

In FCM case, it is considered that there are not input
values in each node and the thresholds Ei have
constant values for each concept, suggested by us.
Each value of concept will be updated, due to the

training procedure, and it is named as Desired value
of Concept (DVC).

The following update rule for each DVC in a FCM
is proposed:

D V q (t + 1) = f { D VC,. (t) + x w,; (t + 1) - D VC, (I) }
i

(7)
where f is the activation function given
f(x)=l/(l+exp(-x)), and t denotes the recursive
update (iteration).

The training algorithm for the weights is:

wi, (t + 1) = y, (t) + (2D V q (t) - 1) . (W VC/ (t) - 1)

(8)
It is assumed that wij'wji for i#j due to symmetry
suggested by Hopfield and wii=O because there is no
feedback from the DVC to itself.

Due to asynchronous updating, only a concept is
allowed to update its value every step. The next
update on a randomly chosen node in a series uses
the already updated concept, DVC.

It is defined that the FCM reaches an equilibrium
region after t steps when no new updated responses
are produced, the DVCs are constant and the same
for the weights.

4.1 The energy function

Hopfield also defined a parameter E, called the
energy of the network, which is a dynamical
parameter and which can be calculated at any
moment t (step) as follows:

The energy for DVCs of FCM is defined:

We introduce the concept of energy in the FCMs and
we calculate the total energy of the interesting
concept at the final state and if this energy is
minimum at the same time with the stable state of
the outputs, then we conclude that the FCM has
reached an equilibrium point.

The energy E, suggested by Hopfield can be
illustrated as a surface in n-dimensional space. The

equilibrium point in a trained Hopfield network can
be explained by the attractor principle.

During training the network "sets" some basins of
attraction, which are stable states for the network
corresponding to the training patterns. When a new
vector x' is supplied for a recall, the network will
eventually rest after some cycles in an attractor, thus
associating the new vector with one of the known
attractors (figure 3).

t

Figure 2: When a new input pattern X' is presented the
network relaxes in an equilibrium state, "a basin of
attraction" where the energy E is minimum, thus
associating the new pattern with class pattern P3. [:I]

In an extreme case, the number of basins of
attraction is equal to the number of training patterns.
During the recall procedure, when a new input
pattern is applied, the network tries to relax into the
nearest basin of attraction, thus finding the right
pattern to associate the new one with. The recall
process is the process of relaxation.

The main property of the energy function is that it
always decreases or stays constant as the network
cycles. In the following it is easy to show
mathematically why this function always decreases
at each time step.

Suppose that at time t, the state of the jth concept is
changed. If the change in the state of the ith concept
is:

ACi (t + 1) = Ci (t + 1) - Ci (t) , then we have

ACi(t+ 1)=0 for izj, and else ACj(t+l)zO.

The change in the energy caused by the change in
the state of the jth concept is:

Adding and subtracting Ci(t+l)Cj(t+l), and
simplifling, we get:

which can be reduced to:

using the facts that Aci(t+l)=O for izj and wij=wji .
If the term in brackets is positive, the value of
~ C , (t + l) is also positive, so & is negative. If the
value in brackets is negative, the same is Acj(t+l),
and again & is negative. Hence each change of
state brought about by the asynchronous updating
method reduces the value of the energy function.

The change in E, as based on a change in a single
desired value of concept ~ v c ~ , can be expressed
as

N N

A E , = -%.ADVC ,x x w j i D V C (11)
j i # j

This is a steadily decreasing function as the network
evolves. During the recall procedure, the system
continues to calculate desired values of concepts
DVCs until it reaches a minimum of the energy
function E at the same time, which is an equilibrium
state.

4.2 Proposed training FCM algorithm

Here it is proposed a training algorithm for FCM.

There are presented two ways of calculating new
values of weights, one based on Hopfield nets that
described in section 3, and the other based on
Hebbian learning that described in section 2.1.

There are two methods for updating the states of the
concepts. In the asynchronous updating method, the
states of the concepts are changed one at a time, in
random order. In the simultaneous method, the states
of the concepts are all changed at the same time, on
the basis of their states after the previous update.

We suggest here the asynchronous updating for the
concepts of FCM.

1. The FCM is developed [9] and the weights w,j

take their initial values.

2. Randomly initial values Aj(0) are assigned to the
concepts j, j=1,2,. . .n

3. Due to asynchronous updating only one of the
concepts Cj is selected as the first updated concept
(DVCj), and the other concepts DVCi of FCM are
updated randomly at next steps t.

4. The new values of the updated concept, DVCj(l)
for j= 1,2,. . .n, is calculated using the equations (8)
and (9):

where

in the case of Hopfield training algorithm, and

w, (t + 1) = wii (t) + 0.2(DVCi (t)DVC (t) - wii (t))

(14)

in the case of unsupervised Hebbian training
algorithm, f is the activation function and wij(t+l)
is the value of weight at step t+l.

5. The updated value DVCi of concept from the
selected node Ci becomes the new updated input
through the feedback connections to the other
nodes Cj.

6. The transition process continues until no new
updated responses are produced and the systern-
FCM has reached its equilibrium.

7. 0he total energy E(t) of the system at every step
is also calculated. When the energy function E
reaches a minimum value comparing with the
values of energy at next and previous steps, the
transition process stops.

When all the outputs-DVCs, no longer change their
values for at least three consecutive cycles and at the
same time the total energy E is minimum then the
FCM reaches an equilibrium region.

Figure 3. A simple FCM of 3 concepts where concept C,
is a feedback node and Wjlt , w3; are the trained
weighted arcs.

5. Example and simulation results.

We consider an FCM consisted of 3 concepts
without inputs to nodes, assuming all the values of
thresholds E~ equal to zeros, (Figure 3).

The initial values of concepts and weights are the
following:

c0=[0.32, 0.4,0.45] and

For the case of the Hopfield algorithm the equation
(13) is used to calculate the updated weights and
equation (12) to calculate the updated Desired
Values of Concepts (DVCs), for t time steps.
The weights take their final updated values after

two simulation steps:

At the next steps the values of weights do not longer
change. The DVCs take their constant values after 8
simulation steps, as shown in Table 1.

Table 1. The values of DVCs for 9 simulation steps.

At each simulation step the total energy is calculated
according to the equation (10) for the Desired Value
of Concept.

The energy function decreases and at the 7~ step
stays constant for the consecutive cycles. At this step
we take the minimum value of energy (equals to

0,0895) and the change in energy .&E is always
negative, as shown in the previous section.

For the case of Differential Unsupervised Hebbian
learning algorithm, the equation (14) is used to
calculate the updated weights and equation (12) to
calculate the updated DVCs.

After 30 simulation steps the values of weights
remain unchanged and do the updated DVCs.

The final updated values of weights after the
proposed training procedure are:

The DVCs stay constant after 28 time steps. Table 2
gives the DVCs for 30 consecutive cycles:

0.7569
0.7569
0.7569

0.5 0.5 0.7569
As we observe from the above, the DVC for the 3d
concept is reached the desired value 0.7569 and the
other two DVCs are reached the value 0.5, as it was
expected

So, from the results of Hebbian learning, for three or
more consecutive steps the updated weights and the
Desired Values of Concepts (DVCs) no more change
their values and calculating the energy we observe
that it always decreases taking at 2 9 ~ time step a
minimum value. At this step the FCM reaches an
equilibrium region.

6. Conclusions

Two methods for training FCM based on Hopfield
Networks and Hebbian learning law was presented.
The Hebbian learning algorithm gives better results
comparing with the Hopfield algorithm.

Acknowledgements

This research was partially supported by the Greek
GSRT and European Social Fund under PENED'99
project 99ED5 14

References

[l] M. Hagan, H. Demuth, M. Beale (1996). Neural
Network Design. PWS Publishing Company.

[2] S. Haykin (1994). Neural Networks: A
comprehensive Foundation, Prentice Hall, Inc.

[3] J. Hopfield (1982). Neural Networks and
Physical Systems with emergent collective
computational abilities. Proc. Nat. Acad. Sci.
USA Volume 79 pages 2554-255 8.

[4] J. Hopfield and D. Tank (1985). Neural
computation of decisions in optimization
problems. Biological Cybernetics Volume 52
pages 142- 152.

[5] N. Kasabov (1996). Foundations of Neural
Networks, Fuzzy Systems and Knowledge
Engineering. MIT Press Cambridge, London.

[6] B. Kosko (1992). Neural Networks and Fuzzy
Systems. Prent.Hal1, Inc. Englewood Cliffs, N.
Jersey, USA

[7] B. Kosko (1997). Fuzzy Engineering. Prentice
Hall, Inc. Upper Saddle River, N. Jersey, USA

[8] C.D. Stylios and P.P. Groumpos (1999).
Mathematical formulation of Funy Cognitive
Maps. In: Proc. of the 7Ih IEEE Med. Conference
on Control and Automation, CD, Haifa, Israel,
June 1999.

[9] C. D. Stylios and P.P. Groumpos (2000). Fuzzy
Cognitive Maps: A soft computing technique for
Intelligent Control. In Proc. of the 1.5'~ IEEE
Int.Symp. on Intelligent Control, pages 67- 72
Patras, Greece, July 2000.

[lo] P. Vuorirnaa (1994). Fuzzy self-organizing
Map", FSS 66,223-23 1.

