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Abstract—The power market is becoming more complex as 

independent small producers are entering it but their energy 

offerings are often based on alternative sources which may be 

dependent on transient weather conditions. Power market 

auction behavior is a typical large-scale system characterized by 

huge amounts of data and information that have to be taken into 

consideration to make decisions. Fuzzy Cognitive Maps (FCM) 

offer a method for using the knowledge and experience of domain 

experts to describe the behavior of a complex system. This paper 

discusses FCM representation and development, and describes 

the use of FCM to develop a behavioral model of the system. This 

paper then presents the soft computing approach of FCM for 

modeling complex power market behavior. The resulting FCM 

models a variety of factors that affect individual participant 

behaviors during power auctions and provides an abstract 

conceptual model of the interacting entities for a specific case 

problem. 
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I. INTRODUCTION  

Modeling is the basis for effective knowledge 
representation. It is accepted that the requirements in the 
modeling and adequate describing systems cannot be met only 
with the existing methodologies and theories. It is necessary to 
investigate and use new methods that will exploit human 
experience, will have learning capabilities and identification 
characteristics, and will take into account imprecision and 
uncertainty, which characterize real world systems [1]. The 
flourishing of new theories and approaches capable of 
synergizing multiple mature discipline theories such as Fuzzy 
Logic, Neural Networks, Genetic Algorithms, Probabilistic 
Reasoning and Knowledge Based Systems, is known as Soft 
Computing and/or Computational Intelligence. These new 
techniques enable engineers to utilize them to create and 
develop new models and sophisticated systems based on 
domain knowledge [2]. Such advanced techniques effectively 
utilize the knowledge of the complex system resources, 
especially the insights and experience of front-line operators 
and experts, to achieve continuous improvement in 
productivity and understanding. 

In past years, conventional methods have been used 
successfully in modeling and control systems but their 
contribution is limited in the representation and solution of 
complex systems. In complex systems, their operation, 
especially in the upper level, depends on human leadership. 
Generally, there is a greater demand for autonomous systems, 
which may be achieved by taking advantage of human-like 
reasoning and description of systems. Human reasoning often 
includes uncertain descriptions and can have subtle variations 
in relation to time and space; in such situations, Fuzzy 
Cognitive Maps (FCM) and modeling can offer a capable 
approach. 

 FCM modeling offers a synergism of Fuzzy Logic and 
Neural Networks. FCM is a network of interconnected 
concepts that can be used to model situations by classes and the 
causal links between them. FCM have been introduced by 
Kosko [3,4], who enhanced the cognitive maps theory that had 
been used in social and political sciences to analyze social 
decision-making problems; showing a causal relationship 
between different factors, where the causal relationship is 
expressed by either positive or negative sign of knowledge 
expression [5]. Fuzzy values introduced in cognitive maps and 
FCM were used to represent causal reasoning [6]. FCM have 
been used to provide decision analysis and cooperation among 
distributed agents [7], to model Medical Decision Support 
Systems [8], and have been accompanied with case-based 
reasoning approaches [9]. FCM have been used as structures 
for automating human problem-solving skills [10] and to 
represent complex social systems where relationship between 
social forces demand feedback [11]. In addition, FCM have 
been used to model and support plant control systems for water 
distribution [12] and to perform Failure Mode and Effects 
Analysis (FMEA) in the process industry [13]. FCM have been 
proposed in modeling supervisor functionality in complex 
manufacturing systems [14], and for investigating concerns in 
hierarchical systems, where the supervisor incorporates 
knowledge [15] and is capable of learning relational structures 
and evidential reasoning [16]. 

 Soft Computing approaches have been suggested as a 
means to improve model representation and development of 
sophisticated systems. By employing a modeling methodology 
that combines characteristics from fuzzy logic and neural 



networks, FCM models can employ a behavioral point of view 
to model systems first at the initial base level and second at the 
supervisory control level [17]. 

The aim of this work is to introduce FCM in the specific 
application of modeling the availability and pricing behavior in 
distributed power auctions. As distributed generation continues 
to increase, understanding the factors affecting distributed 
markets will continue to grow in importance, affecting policy 
makers, utilities, investors, and advisory services [18]. The 
number of factors and complexity of the relationships between 
them make direct numerical analysis challenging [19]. The 
flexibility of a neuro-fuzzy approach enables engineers to 
identity a broad range of contributing factors that arise due to 
the environment, the behaviors and preferences of different 
human participants, and the emergent properties of the auctions 
as they unfold. FCM allows us to capture the relationships 
between numerous factors and identify specific complementary 
and contradictory concepts influencing auctions that should be 
included in the model. Capturing the concepts and identifying 
the causal relationships provides a foundation for applying a 
soft computing approach to designing configurable 
cyberphysical agents to assist in distributed power auctions. 

The distributed power application area in general meets the 
requirements for a complex system. Distributed and renewable 
generation are often variable, and the specific area of 
distributed generation with which we concern ourselves in this 
effort, distributed power production from residential, roof-top, 
solar photovoltaic (PV) panels, may be highly variable, 
resulting from a large number of interconnected, 
interdependent, and dynamic factors [20]. It is highly 
dependent on weather-related factors, and weather is 
recognized as a dynamic, complex, chaotic system. Other 
contributing factors include those related to the availability and 
reliability of the associated PV equipment and the necessary 
transmission and distribution connections to other auction 
participants [21]. These factors are further influenced by the 
financial, economic, social, community, and environmental 
considerations, objectives, and inclinations of the participating 
homeowners that affect their behaviors while acting as auction 
participants.  

The complexity of the interrelated systems and 
shareholders acting in a dynamic environment and the desire to 
have autonomous cyberphysical agents engage in a challenging 
combination of planning, scheduling, risk management, 
estimating, and bidding, given approximate and incomplete 
information provides a potential application area for soft 
computing and FCM [22]. FCM was chosen for its 
combination of fuzzy thinking (addressing the incomplete and 
approximate knowledge available) and the ability to model the 
approximate direction and level of influence of multiple 
interrelated concepts (through directed, weighted concept 
maps).  

In the following paper, we provide this introduction, offer 
background on the FCM modeling approach (Section II) and 
introduce the specific domain of distributed power auctions 
associated with residential rooftop solar PV panels (Section 
III). In Section IV, we describe the specifics of our proposed 

modeling approach, and in Section V and Section VI, 
respectively, we present our results and conclusions.  

II. FUZZY  COGNITIVE  MAPS 

FCM can be categorized as neuro-fuzzy systems, which 
aim at solving real-world decision-making problems, modeling 
challenges, and control problems [23]. Thus, neuro-fuzzy 
systems with their ability to incorporate human knowledge and 
to adapt their knowledge base via new optimization techniques 
are likely to play increasingly important roles in the conception 
and design of hybrid intelligent systems [24]. Each FCM 
developed is a conceptual network, which is built by experts, 
using an interactive procedure of knowledge acquisition [6]. 

The graphical illustration of an FCM is a signed directed 
graph with feedback, consisting of nodes and weighted arcs 
[25]. Each node in the graph represents one of the concepts 
identified as contributing to the behavior of the system. 
Concept nodes are connected by signed, weighted arcs 
representing causal relationships among the concepts. An 
example FCM is shown in Fig. 1. This model includes four 
concepts, identified by the four circular nodes, numbered as c1 
through c4. Six causal relationships have been identified and 
are depicted with directed connectors. Each connector starts 
from an originating concept and points to the concept that is 
influenced by changes in the originating concept. Each 
relationship arc is assigned a weight as depicted by the six w 
values. All values in the graph are fuzzy. Concepts take values 
in the range [0,1] and interconnection weights belong in the 
range [-1,1]. Graphical representation shows which concepts 
influence other concepts along with the approximate degree of 
influence. Visualization facilitates discussions during 
construction of the graph with subject matter experts. The 
resulting FCM is a fuzzy-graph structure which allows 
systematic causal propagation, with both forward and 
backward chaining. 

 

 
 

Fig. 1 Fuzzy Cognitive Map model 

 



Experts design and develop the fuzzy graph structure of the 
system, consisting of concepts-nodes that represent the key 
principles-factors-functions of the system operation and 
behavior. Then, experts determine the structure and the 
interconnections of the network using fuzzy conditional 
statements. Experts use linguistic variables in order to describe 
the relationship between concepts. Finally, all the variables are 
combined and the weights of the causal interconnections 
among concepts are determined. 

FCM modelers employ symbolic representation for the 
description and modeling of systems [4][22]. FCM models 
critical concepts and illustrates different aspects in the behavior 
of the system. The manner in which these concepts interact 
with each other describes the dynamics of the system. An FCM 
offers a means to integrate the accumulated experience and 
knowledge of the operation and behavior of the system based 
on the method by which it is constructed, i.e., using human 
experts that know the operation of system and its behavior. 
Development of the FCM is an attempt to represent the human 
accumulated knowledge describing the operation and behavior 
of the system, using concepts to represent each characteristic of 
the system. Experts are actively involved in the creation of 
FCM models and as they interact with the models and their 
understanding of the benefits of models increase, the quality of 
FCM models and the knowledge inherent in the models 
increases, and the models are more likely to be accepted and 
employed on a regular basis [24].  

FCM is used to model any system from a behavioral point 
of view and it utilizes an abstract methodology to describe and 
model the behavior of the system. To start modeling complex 
systems, it can be helpful to consider groups of factors at a 
higher level initially. Here, each node in the graph depicts a 
conceptual group and each of these nodes can be further 
decomposed into an FCM that models just that group as shown 
in Fig. 2.  In this illustration, each node serves as a high-level 
concept group, identified by a circle with a single letter. In this  

 

 
 

Fig. 2 FCM aggregating multiple models 

  

diagram, for example, the concept node T represents the set of 
temporal, time-based nodes, such as time of day and day of the 
week. The temporal concept group is not influenced by any 
factors and is therefore depicted with no incoming arcs. 
However, temporal factors do influence other concept groups, 
such as the weather concept group, a set of concepts in the 
external environment that influence still other concept groups. 
This approach was employed to assist with identifying the 
many interrelated concepts that drive behavior in our test case 
of distributed power auctions. Each conceptual group can be 
broken down to determine individual concepts for the final 
working model (e.g. time of day from the temporal concept 
group and ambient temperature from the weather concept 
group). When the temporal group is expanded, all sub nodes 
(such as time of day) will also have no incoming nodes, but at 
least one of the sub nodes will have an arc to at least one of the 
weather sub-concepts (such as ambient temperature).  

III. DISTRIBUTED POWER  AUCTIONS  

The future distributed power market auction system will be 
a complex system that will include weather, complex devices, 
and cyberphysical systems (CPS), as well as humans and 
customizable intelligent agents authorized to act on the specific 
preferences of the homeowner participating in the auction [24]. 
While individual homeowner preferences, objectives, and 
behaviors vary considerably across participants, they may 
generally respond somewhat consistently over time when 
aggregated geographically. Conversely, weather systems are 
likely to highly geographically correlated, but may be highly 
dynamic in the temporal domain. Affecting the systems in still 
a different way are the planned and scheduled maintenance 
provided on the CPS, devices, and electrical conduits and 
equipment. In turn, different assumptions and provisions for 
planned maintenance (as well as other factors, such as usage 
and cycling) affect the likelihood, severity, and time-to-repair 
of unplanned events, as well as the reliability of various aspects 
of the system. All these characteristics combine to affect the 
amount, timing, and confidence that a given amount of 
distributed generation will be available in any particular area at 
any particular time. Pricing, too, is a result of the complex 
interrelationship of many contributing factors, including time 
of day, weather conditions, availability, and consumption 
flexibility. 

We describe our problem as one of determining a flexible, 
extensible mechanism for modeling this complex system and 
relating these various interdependent factors using an approach 
that is will be easy to evolve, enhance, develop, and tune as our 
understanding grows.  

Several approaches to modeling dynamic renewable 
distributed energy systems and/or their associated online 
auctioning systems have been proposed including agent-based 
modeling and simulation techniques [27][28]. As far we know, 
an FCM approach has not yet been proposed to the particular 
problem domain of distributed generation based on residential 
PV panels. Because of the complex nature of the associated 
distributed market and the complex interplay of factors, we 
believe that an FCM approach provides unique value for 
identifying and characterizing the interrelationships between 
the various contributing factors.   



IV. PROPOSED MODELING APPROACH 

First, we begin defining the main concept groups identified. 
Factors affecting the location, amount, and timing of available 
distributed generation from rooftop solar PV panels were 
identified in each of the following areas to ensure we had 
captured many of the necessary concepts. Concepts began as 
high-level groups to begin with, but the interrelatedness of 
factors do not support clear segmentation. 

  Concept groups (CG) were used for identifying major 
concepts. Each CG identifier (CGID) and the CG description 
are shown in the following list: 

1. T: Temporal (e.g., time of day) 

2. W: Weather (e.g., opacity) 

3. O: Owner preferences (e.g., green-focus, profit-focus) 

4. H: Household (e.g., schedules) 

5. E: Equipment (e.g., type, maintenance, reliability) 

6. C: Higher-level combined concepts 

 
In one case, Temporal, the concept group is purely 

transmitter and receives no concepts that influence the group. 
One group, C, the higher-level combined concepts group, has 
no transmitters; all group members are purely group-level 
receivers, although within the CG, specific nodes may be 
ordinary (serving as both transmitters and receivers) locally. 
All other GC are ordinary at the group level, in that they are 
both influenced by factors in one or more groups and influence 
factors in one or more groups. Exploring each GG resulted in a 
set of concepts, each assigned a unique Concept Identifier 
(CID), that form the basis for the FCM model (see Table 1).  

Table 1. Model concepts. 

 

Concept 

identifier 

(CID) 

CG 

ID 

High-level concept description* Node 

ID 

T1 T Proximity to daily noon (max sunlight 

by hour) 

7 

T2 T Proximity to max demand day in week 8 

T3 T Proximity to summer solstice (max 

sunlight by year) 

9 

W1 W Ambient temperature 10 

W2 W Ambient humidity 11 

W3 W Wind speed 12 

W4 W Opacity 13 

W5 W Opacity variability 14 

O1 O Comfort-focus 15 

O2 O Green-focus 16 

O3 O Community-focus 17 

O4 O Profit-focus 18 

O5 O Load flexibility (the ability to defer 

load to a different time) 

19 

H1 H PV installed (yes/no) 1 

H2 H PV capacity 2 

H3 H Use of luxury appliances (e.g., pool)  3 

H4 H Required, inelastic load each hour 4 

H5 H Elastic load demand each hour 5 

H6 H Elastic load demand each day 6 

E1 E PV reliability 20 

E2 E PV maintainability 21 

E3 E PV availability (f of R, M) 22 

C1 C Total load 23 

C2 C Desire to buy in auction 24 

C3 C Desire to sell in auction 25 

C4 C Amount to sell in auction 26 

C5 C Amount to buy in auction 27 

 

*In each case, identified concepts may be entered or learned 

over time, and each may still be relatively complex, e.g., the 

specifics determining the allowable flexibility in the load may 

require additional characterization. Reliability / availability / 

maintainability (RAM) is complex enough to warrant its own 

FCM model, described separately.  

 
The causal relationships among concepts were declared 

with a variable T(influence) that codifies both the direction and 
the intensity of the relationship as shown in Table 2.  

Table 2. T(influence) options 

 

Relationship Intensity T(influence) Membership 

function 

inverse very strong very strongly 

negative 

μnvs 

inverse strong strongly 

negative  

μns 

inverse medium moderately 

negative 

μnm 

inverse weak weakly negative μnw 

no  

impact 

zero no  

influence 

μz 

direct weak weakly positive μpw 

direct medium moderately 

positive 

μpm 

direct strong strongly 

positive 

μps 

direct very strong very strongly 

positive 

μpvs 

 
Relationships among the concepts identified in Table 1 

were described to express the direction and degree to which a 
change in one concept influences another concept. Each active 
relationship was identified in terms of both the direction of the 
relationship, either direct or inverse, and a qualitative 
assessment of direction was provided. When no relationship 
exists between a concept CIDi and a resulting concept CIDo, 
the weight was assigned to the μz membership function. 
Assessments of existing relationships are provided in Table 3. 



Table 3. Interconnection weights between concepts (non-μz) 

 

Node 
ID 

Source CID  
Description 

Node 
ID 

Target CID 
Description 

T(influence) 

1 Has PV installed 24 Desire to buy very strongly 
negative 

1 Has PV installed 27 Amount to buy very strongly 
negative 

3 Use of luxury 
appliances 

25 Desire to sell very strongly 
negative 

3 Use of luxury 
appliances 

26 Amount to sell very strongly 
negative 

4 Required Load Each 
Hour 

25 Desire to sell very strongly 
negative 

4 Required Load Each 
Hour 

26 Amount to sell very strongly 
negative 

8 Proximity to max 
demand day in week 

25 Desire to sell very strongly 
negative 

8 Proximity to max 
demand day in week 

26 Amount to sell very strongly 
negative 

13 Opacity 26 Amount to sell very strongly 
negative 

13 Opacity 27 Amount to buy very strongly 
negative 

24 Desire to buy 25 Desire to sell very strongly 

negative 

25 Desire to sell 24 Desire to buy very strongly 

negative 

5 Adjustable Load Each 

Hour 
25 Desire to sell moderately negative 

5 Adjustable Load Each 

Hour 
26 Amount to sell moderately negative 

10 Ambient Temperature 25 Desire to sell moderately negative 

12 Wind Speed 26 Amount to sell moderately negative 

12 Wind Speed 27 Amount to buy moderately negative 

14 Opacity Variability 26 Amount to sell moderately negative 

14 Opacity Variability 27 Amount to buy moderately negative 

19 Load flexibility 4 Required Load 

Each Hour 
moderately negative 

23 Total hourly load 26 Amount to sell moderately negative 

2 PV capacity 20 PV reliability weakly negative 

2 PV capacity 21 PV 
maintainability 

weakly negative 

3 Use of luxury 
appliances 

18 Profit-focus weakly negative 

3 Use of luxury 
appliances 

19 Load flexibility weakly negative 

6 Adjustable Load Each 

Day 
25 Desire to sell weakly negative 

6 Adjustable Load Each 
Day 

26 Amount to sell weakly negative 

12 Wind Speed 20 PV reliability weakly negative 

15 Comfort-focus 19 Load flexibility weakly negative 

15 Comfort-focus 25 Desire to sell weakly negative 

15 Comfort-focus 26 Amount to sell weakly negative 

16 Green-focus 3 Use of luxury 

appliances 
weakly negative 

16 Green-focus 5 Adjustable Load 

Each Hour 
weakly negative 

16 Green-focus 6 Adjustable Load 

Each Day 
weakly negative 

16 Green-focus 23 Total hourly 

load 
weakly negative 

10 Ambient Temperature 19 Load flexibility weakly negative 

11 Ambient Humidity 19 Load flexibility weakly negative 

11 Ambient Humidity 25 Desire to sell weakly negative 

14 Opacity Variability 20 PV reliability weakly negative 

11 Ambient Humidity 23 Total hourly 

load 
weakly positive 

11 Ambient Humidity 24 Desire to buy weakly positive 

11 Ambient Humidity 27 Amount to buy weakly positive 

17 Community-focus 1 Has PV installed weakly positive 

3 Use of luxury 

appliances 
4 Required Load 

Each Hour 
weakly positive 

6 Adjustable Load Each 

Day 
23 Total hourly 

load 
weakly positive 

6 Adjustable Load Each 

Day 
24 Desire to buy weakly positive 

6 Adjustable Load Each 

Day 
27 Amount to buy weakly positive 

7 Proximity to daily noon 

(max sun) 
4 Required Load 

Each Hour 
weakly positive 

8 Proximity to max 

demand day in week 
5 Adjustable Load 

Each Hour 
weakly positive 

8 Proximity to max 

demand day in week 
6 Adjustable Load 

Each Day 
weakly positive 

9 Proximity to annual 

summer solstice 
3 Use of luxury 

appliances 
weakly positive 

15 Comfort-focus 3 Use of luxury 

appliances 
weakly positive 

15 Comfort-focus 4 Required Load 

Each Hour 
weakly positive 

15 Comfort-focus 5 Adjustable Load 

Each Hour 
weakly positive 

15 Comfort-focus 6 Adjustable Load 

Each Day 
weakly positive 

15 Comfort-focus 23 Total hourly 

load 
weakly positive 

15 Comfort-focus 24 Desire to buy weakly positive 

15 Comfort-focus 27 Amount to buy weakly positive 

16 Green-focus 1 Has PV installed weakly positive 

16 Green-focus 24 Desire to buy weakly positive 

24 Desire to buy 5 Adjustable Load 

Each Hour 
weakly positive 

24 Desire to buy 6 Adjustable Load 

Each Day 
weakly positive 

3 Use of luxury 

appliances 
5 Adjustable Load 

Each Hour 
moderately positive 

3 Use of luxury 

appliances 
6 Adjustable Load 

Each Day 
moderately positive 

5 Adjustable Load Each 

Hour 
23 Total hourly 

load 
moderately positive 

5 Adjustable Load Each 

Hour 
24 Desire to buy moderately positive 



5 Adjustable Load Each 

Hour 
27 Amount to buy moderately positive 

8 Proximity to max 

demand day in week 
4 Required Load 

Each Hour 
moderately positive 

9 Proximity to annual 

summer solstice 
4 Required Load 

Each Hour 
moderately positive 

9 Proximity to annual 

summer solstice 
5 Adjustable Load 

Each Hour 
moderately positive 

9 Proximity to annual 

summer solstice 
6 Adjustable Load 

Each Day 
moderately positive 

10 Ambient Temperature 23 Total hourly 

load 
moderately positive 

10 Ambient Temperature 24 Desire to buy moderately positive 

10 Ambient Temperature 27 Amount to buy moderately positive 

17 Community-focus 24 Desire to buy moderately positive 

17 Community-focus 25 Desire to sell moderately positive 

23 Total hourly load 27 Amount to buy moderately positive 

19 Load flexibility 6 Adjustable Load 
Each Day 

strongly positive 

1 Has PV installed 2 PV capacity very strongly positive 

1 Has PV installed 25 Desire to sell very strongly positive 

1 Has PV installed 26 Amount to sell very strongly positive 

2 PV capacity 26 Amount to sell very strongly positive 

3 Use of luxury 
appliances 

23 Total hourly 
load 

very strongly positive 

3 Use of luxury 
appliances 

24 Desire to buy very strongly positive 

3 Use of luxury 
appliances 

27 Amount to buy very strongly positive 

4 Required Load Each 
Hour 

23 Total hourly 
load 

very strongly positive 

4 Required Load Each 

Hour 
24 Desire to buy very strongly positive 

4 Required Load Each 
Hour 

27 Amount to buy very strongly positive 

7 Proximity to daily noon 
(max sun) 

10 Ambient 
Temperature 

very strongly positive 

7 Proximity to daily noon 
(max sun) 

22 PV availability very strongly positive 

7 Proximity to daily noon 
(max sun) 

25 Desire to sell very strongly positive 

7 Proximity to daily noon 
(max sun) 

26 Amount to sell very strongly positive 

8 Proximity to max 
demand day in week 

23 Total hourly 
load 

very strongly positive 

8 Proximity to max 
demand day in week 

24 Desire to buy very strongly positive 

8 Proximity to max 

demand day in week 
27 Amount to buy very strongly positive 

9 Proximity to annual 
summer solstice 

10 Ambient 
Temperature 

very strongly positive 

9 Proximity to annual 
summer solstice 

25 Desire to sell very strongly positive 

9 Proximity to annual 
summer solstice 

26 Amount to sell very strongly positive 

16 Green-focus 25 Desire to sell very strongly positive 

16 Green-focus 26 Amount to sell very strongly positive 

18 Profit-focus 22 PV availability very strongly positive 

18 Profit-focus 24 Desire to buy very strongly positive 

18 Profit-focus 25 Desire to sell very strongly positive 

18 Profit-focus 26 Amount to sell very strongly positive 

19 Load flexibility 5 Adjustable Load 

Each Hour 
very strongly positive 

20 PV reliability 22 PV availability very strongly positive 

21 PV maintainability 22 PV availability very strongly positive 

 

 

V. SIMULATION RESULTS 

 
The simulation included 27 concepts, about a third of 

which were transmitters. Ten percent were receivers and the 
remaining were ordinary, a combination of transmitters and 
receivers. The model includes over 100 interconnections.  

The results show that the critical combined concepts (those 
with a CGID of C) are heavily influenced by a variety of 
different factors. Visualization was employed to further refine 
and develop the models. In some cases, intensity levels were 
further subdivided and additional membership functions were 
employed. After several iterations, the final inputs were 
selected and the model evaluated. The FCM was visualized by 
adding colors and line weights to the arcs and minimizing the 
size of the nodes. The resulting interactive, responsive model 
allows us to determine the key factors evaluated in this initial 
case that drive five critical outcomes: 

 

1. Total hourly load demand 

2. Amount to sell 

3. Desire to sell  

4. Amount to buy 

5. Desire to buy 

 
The most important factors, their relative degree of 

influence, and the associated precedents for each are presented 
in Figures 3-7, respectively. Currently, the interactive model 
does not explicitly depict the direction of influence (either 
direct or inverse) between nodes.   



 
 

Fig 3. Resulting key factors affecting total hourly load 
 

 
 

 
 

Fig 4. Resulting key factors affecting amount to sell 

 
 

Fig 5 Resulting key factors affecting desire to sell 

 

 
 

Fig 6. Resulting key factors affecting amount to buy 

 

 

 
Fig 7. Resulting key factors affecting desire to buy 

 

 

 

VI. CONCLUSIONS AND FUTURE WORK 

Results from our initial FCM development provide insights 
into the key factors driving autonomous agent auction 
execution. Work continues with the development of 
configurable models, models that will accept necessary inputs 
and information from a variety of governing sources, including 
the utility company (e.g., power rates and schedules), the 
participating owners (e.g., preferences, load scheduling 
flexibility), and external services including local solar 
schedules (e.g., dawn, dusk, solar noon) and weather services 
(e.g., temperature, humidity, opacity). Further, the models 
continue to evolve, and are being augmented with additional 
concepts and relationships (e.g., availability of onsite battery 
storage, electric vehicles, cloud speed, opacity variability, and 
forecasts).  
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