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Introducing Grammatical Evolution in Fetal
Heart Rate Analysis and Classification

Joannis Tsoulos, George Georgoulas, Dimitris Gavrilis, Chrysostomos Stylios Member, IEEE, Joao
Bemardes, Peter Groumpos Senior Member, IEEE

Abstract-Electronic fetal monitoring is an essential tool for
fetal surveillance during labor. It is mainly based on the
monitoring and evaluation of the Fetal Heart Rate (FHR)
signal, which has to be interpreted online. Evaluation and
interpretation of FHR gives an indication of the fetal
condition. A lot of research efforts have been done towards
the development of automatic and reliable methods for
processing and evaluating FHR. This research work
introduces an integrated methodology for processing and
classifying FHR based on the novel approach of grammatical
evolution for feature construction and selection. The proposed
methodology is presented, and it is applied to a data set.
Experimental results are promising paving the way for
further research in that direction.

Index Terms-Fetal heart rate, Genetic algorithms,
Grammatical evolution, Hypoxia, Neural Networks, SMOTE

I. INTRODUCTION

Electronic Fetal Monitoring (EFM) consists of the
continuous recording and monitoring of the instantaneous
Fetal Heart Rate (FHR) (beats/min) and Uterine Activity
(UA) that are called cardiotocogram (CTG). The typical
printout of a CTG has the FHR at the upper part and the
UA at the lower part for the same time axis (Fig. 1).

Obstetricians evaluate and interpret the CTG to infer
about the fetal health condition so as to avoid neonatal
compromise, namely metabolic acidosis [1]. The medical
device, which is used to acquire, process, display and print
out the FHR and UA signals, is the cardiotocograph.

Despite the fact that EFM was introduced into clinical
practice more than four decades ago, there is still
controversy regarding its effectiveness, especially among
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obstetricians. Another important issue is that statistical
studies revealed an increase in operative vaginal deliveries
when obstetricians are heavily depend on EFM to infer
fetal condition [2]. Furthermore, studies on the FHR
analysis and interpretation by obstetricians have shown
significant inter-observer and intra-observer variation in
tracing interpretation [3]. Even though specific guidelines
have been published for FHR interpretation [4], [5], the
different levels of experience of the various specialists,
along with the subjectivity of the approach, have great
influence on their final judgment. All these reports have
created a mistrustful environment for FHR monitoring and
interpreting methods.

There is a difficulty in distinguishing benign variant
patterns from patterns associated with significant fetal
acidemia. This may be caused because FHR monitoring
was introduced into clinical practice before the
physiological mechanism, which defines the FHR patterns
was well understood.
On the other hand, there is an increasing need for

automated methods for FHR processing and analysis that
drives the development of computer based systems able to
analyse, classify and interpret the FHR [7]-[30]. These
approaches are based on classical signal processing
methods, Neural Networks, Fuzzy logic and hybrid
methods. Some of these efforts tried to develop a system
not to just record the FHR, but to monitor the fetal health
condition in a reliable, effective and reproducible manner.
These research efforts have shown that it is still worth to
further investigate methods to analyze the FHR not just by
imitating the way a clinician does, but by employing
techniques based on the signal processing and pattern
recognition fields.
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Fig. 1. A simple cardiotocogram (printout) consisting of the FHR at the

upper part and UA at the lower part.
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In this research work we introduce a new integrated
methodology for feature extraction and classification of the
FHR. The proposed methodology uses the conventional
well known method to identify the FHR features in the time
domain, frequency domain and morphological features.
Due to the imbalanced data set employed, which may
induce a bias towards the class with the greatest number of
instances, we introduce a stage of creating "synthetic"
features for the undersampled class based on the original
data belonging to that class, with the procedure of Synthetic
Minority Oversampling Technique (SMOTE) [31]. Then,
the grammatical evolution technique is applied to the
balanced feature sets to produce new features and classify
the FHR simultaneously with a hybrid approach for training
the neural network classifier.

This paper is structured as follows; section II gives a
brief introduction to the grammatical evolution method.
Section III presents the overall proposed procedure and its
main stages. Section IV presents the implementation and
validation of the proposed methodology based on the
grammatical evolution method and section V analyses and
compares the experimental results in the FHR data set.
Finally section VI concludes the paper and some ideas for
future work are discussed.

Grammatical evolution is used to construct new artificial
features reducing the number of the features. This allows
the construction of a very small number of features (e.g. 2
or 3), which can achieve good classification performance.
By constructing a small number of features, the well known
problem of curse of dimensionality is alleviated.

III. OVERALL PROCEDURE

The overall proposed procedure is an integrated
approach taking as input the FHR and classifying it,
making a prediction about the pH value of the fetus. Fig. 2
depicts the overall procedure consisting of five stages,
where the last one stage validates the proposed
methodology [35].

II. GRAMMATICAL EVOLUTION

Grammatical evolution is a method that uses genetic
programming and a Backus-Naur form (BNF) description
to create programs in an arbitrary language. In grammatical
evolution, chromosomes are a series of production rules of
the appropriate BNF syntax. Each bit of the chromosome
denotes a production rule from the BNF grammar. The
algorithm starts from the first symbol of the grammar and
gradually creates the program string by replacing
nonterminal symbols with the right hand of the production
rule [32], [33]. The selection of the appropriate rule is
performed by using the scheme:

Rule=BmodRNV (1)

where B is the specific chromosome element and RN is the
number of rules for the specific non-terminal symbol. This
selection process is repeated and it stops when the end of
the chromosome has been reached. When newly
constructed features have been created, a new training and
test set are created from the original data set, according to
the new features. The newly constructed feature is assigned
a fitness value, which in this case is the test error of a
supervised classifier. According to that fitness value, the
newly constructed feature will be accepted or rejected in
the successive generations.

The grammar of the proposed method uses mathematical
functions and operators as non-terminal symbols and the

original features (XIX2 ... XI)and the digits (0-9) as the
terminal symbols. In the proposed method the sin, cos, exp
and log functions are used but any other function can be
utilized. More details about the proposed method can be
found in [33].

An example of this grammar can be seen below:

Fig. 2. The overall procedure

A. Preprocessing stage
The FHR is a noisy signal due to the acquisition method

employed and also due to extraneous interferences that
cannot be isolated. Although the missing or "spiky" parts
do not provoke serious difficulties to simple eye inspection
and interpretation, they may lead to wrong results when
digital processing is applied to FHR. Therefore, it is
necessary to remove the "spiky" segments or segments
where the signal is zeroed by employing a pre-processing
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stage. The pre-processing stage firstly detects a stable FHR
segment, which is defined as a segment where the
difference (in beats/min) between five adjacent samples is
less than 10 beats/min [17]. Whenever a difference between
adjacent beats higher than 25 beats/min is found, a linear
interpolation is applied between the first of those two
signals and the first signal of a new stable FHR segment.

B. Feature extraction stage
Feature extraction is the most important phase during the

development of any classification system. As it is pointed
out in [34], it is more an art than a science. Therefore
sometimes it is worth testing a number of features to select
an appropriate set. In this work the selection it is performed
through the feature construction phase, which has the
intrinsic ability to reject irrelevant features.

Since we are dealing with a time series signal, it is
natural to extract features from both the complementary
domains of time and frequency. In addition to this, from the
medical point of view, there are a number of
"morphological" features that are evaluated by the clinician
in charge [35]. Thus the extracted features can be classified
into 3 categories:

* Features extracted in time domain
* Features extracted in frequency domain
* Morphological features

1) Time domainfeatures
Seven time parameters of FHR signal are calculated in

the time domain and are used as features. The set of
parameters and their definitions are given bellow.
* Mean value ofFHR signal
* Standard deviation ofFHR signal

L max (FHR (i))- min(FHR (i))
* Delta= l iem iem j

m
where max and min are computed within each minute of
the signal and m is the number of minutes

* STV=

24

sFHR (i + 1) - sFHR (i)
i=l

24
sFHR (i) is the value of the signal FHR (i) taken
each 2.5 sec (i.e. once each 10 samples) (Short Term
Variability)

*H= STVSI[ (Interval Index)
std [sFHR(i)]

LTI is defined as the interquartile range [,] of

the distribution m(J) with

m(I) = JFHR2 (I) + FHR2 (I + 1) (Long Term
Irregularity)
Delta totalmax(FHR(i))-min(FHR(i))

The above time domain parameters were successfully
used in the anteparum case [20], [21], therefore it was
reasonable to assume that they may also perform well in the
intrapartum case

2) Frequency domain features
Contrary to what is in effect for adults, in the case of

FHR, there is no standardized use of frequency bands. In
this work we experimented following suggestions of [6],
partitioning the frequency range into 4 bands and
calculating the corresponding energies:

* the Very Low Frequency (VLF) 0-0.03 Hz
* the Low Frequency (LF) 0.03-0.15
* the Movement Frequency (MF) 0.15-0.5 Hz
* the High Frequency (HF) 0.5-1 Hz

As a fifth feature for this feature set we used the ratio:
* LFI(HF + MF)

3) "Morphological "features
Conventional interpretation of FHR is based upon certain
morphological characteristics, according to the guidelines
given in [4] and [5]. In this work we included the following
set of morphological parameters:

* Baseline
* Number of accelerations
* Number of Small accelerations
* Number of Mild decelerations
* Number of Prolonged decelerations
* Number of Severe decelerations
* The percentage of the time occupied by

decelerations
A detailed description of these features can be found in

[35], [36].

C. SMOTE Stage
In this work, the data set consisted of 160 recordings.

The recordings were collected in the context of the
Research Project POSI/CPS/40153/2001, funded by
Funda,co para a Ciencia e Tecnologia, Portugal. The data
recordings had various lengths, ranging from 20 minutes to
more than 1 hour. Regarding the recordings, 137 of them
were acquired using an HP 1350 fetal monitor at a
sampling frequency of 4 Hz, and 23 were acquired using a
Toitu MT810B. In both cases, scalp electrodes were used
for the acquisition, giving more accurate recordings [37].
The latter recordings were irregularly sampled and had to
be transformed into "pseudo-regularly" sampled signals
[38].
The data set consisted of 130 recordings belonging to

fetuses with umbilical artery pH>7.2, which represent the
"normal group" while the rest 30 having pH<7.1 consisted
the "at risk" group of fetuses. As is obvious this
segregation of data has an intrinsic imbalance and if no
precautions are taken, the construction of the classifier may
favor the class with the greatest number of instances, which
in this case is the class with the normal subjects. In order to
alleviate this problem we adopted the technique of
Synthetic Minority Oversampling Technique (SMOTE),
which creates "synthetic" instances for the undersampled
class based on real data belonging to that class [3 1 ].

The algorithm for each instance of the minority class
introduces a synthetic example along any/all of the lines
joining that particular example with its k nearest neighbors
that belong to the minority class. A representative example
for the application of SMOTE on some artificial data is
depicted in Fig. 3.
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Fig 3. The minority class in marked with circles and the majority class
with squares. The black circles indicate the original minority data
while the grey circles indicate the produced ones. In the above
example it is assumed that we want 200% oversampling and that
the neighbourhood of each minority consists of 5 samples.

For this particular data set, we used 8 nearest neighbours
and an oversampling percentage of 40000.

500 and 9500 respectively. Again, the tournament selection
algorithm is applied and the tournament size is set to 10.

C. Validation
In order to validate the proposed method we employed

a the 10 fold stratified cross validation method [39]. We
divided the 160 samples into 10 non overlapping sets each
one containing 13 samples from the majority class and 3
samples from the minority class. Each time one set was
excluded form the training phase and was used only for the
estimation of the classification performance. The remaining
9 sets (consisting of 107 examples from the normal group
and 27 of the at risk group) were used for training. We
applied SMOTE to the 27 samples creating 4*27 synthetic
examples, and those 108 examples plus the 27 original data
comprised the set of the "at risk" cases that would be used
for training.

V. EXPERIMENTAL RESULTS

The experimental results for the proposed method, tested
for 1-3 constructed features are depicted in Fig 4.

IV. FEATURE EXTRACTION AND CLASSIFICATION

After the SMOTE stage, there are available balanced
feature sets ready for the grammatical evolution stage. The
feature extraction and classification algorithm itself is
divided into two phases: the construction and the evaluation
phase.

A. Construction Phase
A new artificial set of features is derived from the

original feature set using a combination of grammatical
evolution and a neural network. The Feed Forward Multi
Layer Perceptron with one hidden layer and one neuron is
used. The network is trained using a Powell's BFGS variant
algorithm [38]. The grammatical evolution is used to
construct the features utilizing a non-linear mapping from
the original ones. The training error of the neural network
described above is used as the fitness function for the
grammatical evolution procedure. In order to reduce the
computation time, only a small number of steps in the
training algorithm is performed. The grammatical evolution
procedure is evolved for 200 generations and each
generation has 500 genomes. The chromosome length for
each genome is 100. The mutation rate is set to 500 and the
crossover rate to 9500. The selection is performed using the
tournamet selection algorithm and the tournament size is
set to 10.

B. Evaluation Phase
The derived features are evaluated using neural networks

with 5-10 hidden nodes. This neural network is trained
using two phases. In the first phase the nodes are trained
using a classical genetic algorithm and in the second phase
the BFGS variant of Powell's is used in order to increase
the efficiency of the network. The genetic algorithm, which
is used to initialize the network weights, is evolved for 50
generations and has 100 genomes. Each genome is 100
length and the mutation and crossover operators are set to
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Fig. 4. Performance for I to 3 different constructed features.

To test the efficiency of the proposed method, we
compared the achieved results with the classification results
when two well known conventional methods, the linear and
the quadratic classifier [40], are applied to the same data
set. The best results for the linear and the quadratic
classifier are depicted in Fig. 5 and Fig. 6 respectively.
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Fig. 5. Best performance of the linear classifier for different retained
principal components.
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Fig. 6. Best performance of the quadratic classifier for different retained
principal components.

It is mentioned that we introduced a dimensionality
reduction stage based on Principal Component Analysis in
order to achieve better results for the conventional methods
[41]. PCA is a very common method for the reduction of
the dimensionality of the feature vector. It projects the
original vectors onto a lower dimensional space whose axes

are defined by the eigenvectors that correspond to the
largest eigenvalues of the covariance matrix of the data.

Comparing the experimental results of the proposed
method with the conventional classifiers, the superiority of
the method is apparent despite the fact the performance of
the conventional classifiers have increased with the
introduction of the PAC method.

VI. CONCLUSIONS ANDFUTURE WORK

In this work we introduced grammatical evolution and
we experimented with the use of constructed features
combined with a neural network trained with a hybrid
method, for the difficult problem of discriminating fetuses
which are "at risk" from normal ones. For the alleviation of
the problem concerning the imbalanced distribution of the
examples we adopted the SMOTE procedure, which turned
out to be a very effective technique. This is indicated by the
fact that even the conventional classifiers perform better
compared to our previous work [35], indicating the
usefulness of the SMOTE technique as an intermediate
stage in the whole process of building a classification
system when dealing with imbalanced data sets. SMOTE
technique may increase the performance of other successful
proposed approaches to extract features and classify FHR
[42]-[44].
The proposed method performs better compared to the

scheme with the conventional classifiers and the PCA
stage. However further investigation is needed since the
results do improve the performance especially in the case

of the "at risk" cases but do not overwhelm the
conventional classifiers.

Another issue that we would also point out is that the pH
value should be probably chosen lower for the "at risk"
cases. A more justified threshold would be to choose
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threshold value of pH at 7. In future work, we will try this
cut off but in the current data set only 2 cases fulfill that
criterion.

It must be mentioned that this is the first time that
grammatical evolution method combined with a hybrid
trained neural network is used for feature construction and
classification of FHR. These results are promising but
further investigation is required in order to achieve better
results.
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