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Abstract

A Fuzzy Cognitive Maps (FCMs) is a modelling methodology based on exploiting knowledge and 
experience. It comprises the main advantages of fuzzy logic and neural networks, representing 
a graphical model that consists of nodes-concepts (describing elements of the system) which 
are connected with weighted edges (representing the cause and effect relationships among the 
concepts). FCMs have proved to be a promising modeling methodology with many successful 
applications in different areas especially for simulating system design, modeling and control. In 
this work, FCMs are introduced to model a decision support system for precision agriculture (PA). 
The FCM model developed consists of nodes which describe soil properties and cotton yield and 
of the weighted relationships between these nodes. The nodes of the FCM model represent the 
main factors influencing cotton crop production i.e. essential soil properties such as texture, pH, 
OM, K, and P. The proposed FCM model addresses the problem of crop development and spatial 
variability of cotton yield, taking into consideration the spatial distribution of all the important 
factors affecting yield. The first results of the study are very promising; our model achieves a 70% 
average success rate on yield class prediction between two possible categories (low and high) for 
three different years. This model will be further investigated to achieve better results by introducing 
learning algorithms into FCMs.
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Introduction

Fuzzy Cognitive Maps (FCMs) constitute an attractive modeling technique for complex systems. 
FCMs were proposed by Kosko (1986) to represent the causal relationship between concepts and 
analyze inference patterns. FCM is a soft computing technique that follows an approach similar to 
the human reasoning and decision-making process. An FCM consists of nodes which illustrate the 
different aspects of the system behavior. These nodes (concepts) interact with each other, illustrating 
the dynamics of the model. Human experts who supervise a system and know its behavior under 
different circumstances develop a FCM model of the system in such a way that their accumulated 
experience and knowledge are integrated into the causal relationships between factors/characteristics 
of the FCM model (Stylios and Groumpos, 1999).
FCMs have been used in many disciplines for easy comprehension of complex social systems and 
for decision-making (Peláez and Bowles, 1996; Miao and Liu, 2000; Papageorgiou et al., 2003). 
Here, a first study on implementing FCM for decision making in PA has been investigated using seed 
cotton production as an example. This approach creates a novel simulation model to describe the 
seed cotton yield spatial distribution based on the spatial distribution of soil properties in a field. 
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Previous studies in the field of precision agriculture mainly employed linear algorithms, direct 
processes and statistical methods. Some studies have been made using artificial neural networks 
(ANNs) and machine-learning algorithms for setting target yields which is one of the problems 
in PA (Liu et al., 2001; Miao et al., 2006). In the case of knowledge-based systems using fuzzy 
logic techniques, only a few studies have been undertaken so far (Ambuel et al., 1994; Khan and 
Khor, 2004), but their first results on predicted yields were preliminary and further work is needed 
using real measurements.
This work proposes an alternative methodology to yield prediction in precision farming, which is 
based on the formalization of specialized knowledge and experience from experts (soil scientists, 
experienced farmers). Here, a first study on implementing FCM for predicting final yield as a part 
of the decision-making process in precision agriculture has been investigated. FCMs have been 
applied to model spatial variable seed cotton production.

Materials and methods

In 2001, the Laboratory of Farm Mechanization of the University of Thessaly established an 
experimental 5ha field at Myrina, Karditsa prefecture, Central Greece. Over the last 6 years, the 
field was cultivated and managed using spatially uniform applications and a series of measurements 
were made each year. 
Yield mapping was undertaken for the years 2001-06 using a commercial yield monitor system 
from Farmscan installed on a two row John DeereTM cotton picker (Gemtos et al., 2004). After 
harvesting of a field was complete, a calibration procedure was performed to improve the yield 
estimation (Markinos et al., 2004).
In May 2006, a VERIS machine was used to measure the apparent soil electrical conductivity (EC) 
and produce maps at two depths 0-0.30 and 0-0.90 m. The machine consists of a sensor cart with 
four vertical disks mounted on it (Lund et al., 1999). The machine was pulled through the field at 
a speed of approximately 7 km/h, in tracks at a spacing of 4 m. Data were recorded every 1 s.
In February 2002, a 16x26 m grid was formed in the north part of the field (4.3 ha). Overall, 114 
soil samples were taken at the grid points at 0-30cm depth. The samples were analyzed for texture, 
N, P, K, pH, Mg, Ca, Na and organic matter.
The SSToolboxTM 3.61 software was used to store, represent, filter and analyze the acquired field 
data (SSToolbox, 2004). All the collected data were interpolated in order to produce a map (4.3 ha) 
on a 10x10 m grid size that corresponds to a reliable field management unit (cell). The interpolation 
method of inverse distance was used for yield and EC due to dense data sampling, while kriging was 
used for the soil properties maps derived from a sparse spatial sampling-grid (SSToolbox, 2004).
Data from 20m strips around the field near the edges were filtered and removed to avoid machinery 
compacted soil with lower yields. The data from every cell (10x10 m) of the filtered maps represent 
the data to be used as inputs in the FCM model simulations with the yield from each year as output. 
Every cell of each input map linked to a scalar value in a GIS database. Each particular cell defines 
a vector of scalar values for the same spatial point for each corresponding map layer (for every 
measured parameter) complete with the specified measured yield at the same point. Every vector 
constitutes a record in the database matrix extracted from GIS and imported into MATLAB code 
for the specific FCM model. 

Fuzzy Cognitive Maps representation

FCMs represent knowledge in a symbolic manner and relate states, processes, events, values and 
inputs. The knowledge which accumulated for years on the operation and behavior of a system can be 
adequately explained using FCMs. Figure 1 illustrates a graphical representation of a FCM consisting 
of five concepts (C1 to C5) and ten weights wji (cause-effect relationships among the concepts).



Precision agriculture ’07 225

The cause and effect interconnection between two concepts Cj and Ci is described with the weight wji, 
taking a value in the range –1 to 1. Three possible types of causal relationships exist: wji > 0 which 
indicates positive causality between concepts Cj and Ci, wji < 0 which indicates negative causality 
between concepts Cj and Ci and wji = 0 which indicates no relationship between Cj and Ci.
The value Ai of the concept Ci expresses the degree of its corresponding physical value. At each 
simulation step, the value Ai of a concept Ci is calculated by computing the influence of other 
concepts Ci’s on the specific concept Ci following the calculation rule: 
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Figure 2. The 7 membership functions corresponding to the 7 linguistic variables 
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where Ai
(k+1) is the value of concept Ci at simulation step k+1, Aj

(k) is the value of concept Cj at 
simulation step k, wji is the weight of the interconnection from concept Cj to concept Ci and f is a 
sigmoid threshold function: 

 (2)

1 ( )

1

N
k k k

i i j j i
j i
j

A f ( A A w )     (1) 

xe
f

1
1           (2) 

Figure 2. The 7 membership functions corresponding to the 7 linguistic variables 

0 0.1 0.2 0.35 0.5 0.65 0.8 0.9 1 

µ
1

Influence 

µvvl µvl µl µm µh µvh µvvh

where λ > 0 is a parameter that determines its steepness. In our approach, the value λ=1 has been 
used. This function is selected since the values Ai lie within [0,1]. 
The procedure for constructing fuzzy cognitive maps is as follows: experts define the main concepts 
that represent the model of the system; they describe the structure and the interconnections of the 
network using fuzzy conditional statements. The fuzzy IF-THEN rule that experts use to describe 
the relationship among concepts assumes the following form, where A and B are linguistic 
variables:

IF value of concept Ci is A THEN value of concept Cj is B.

The linguistic variable, describing the causal relationship between the value of concept Ci and 
concept Cj, is inferred from the fuzzy rule.
More specifically, the linguistic variables describing the causal inter-relationships among concepts 
are declared using the variable Influence which takes values in the universe U=[-1,1]. Its term set 
T(influence) is suggested to comprise seven variables. Using seven linguistic variables, an expert can 
describe in detail the influence of one concept on another and can discern between different degrees 
of influence. The seven variables that are used frequently according to the problem characteristics 
are: T(influence)={very very low, very low, low, medium, high, very high, and very very high}. 
The corresponding memberships functions, that describe each linguistic variable, for these terms 
are shown in Figure 2 and they are: µvvl, µvl, µl, µm, µh, µvh and µvvh.
Then, all the proposed linguistic variables suggested by experts, are aggregated using the SUM 
method and an overall linguistic weight is produced which, with the defuzzification method of Center 
Of Gravity (Jang et al., 1997), is transformed to a numerical weight wji, within the interval [-1, 1]. A 

Figure 1. A simple Fuzzy Cognitive Map 
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Figure 1. A simple Fuzzy Cognitive Map.
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detailed description of the development of FCM model is given in (Stylios and Groumpos, 2004). 
The flexibility of FCMs in system design, model and control, as well as their learning properties, 
make their choice attractive for a variety of modeling and decision support tasks (Papageorgiou et 
al. 2004; Papageorgiou and Groumpos 2005).

Fuzzy Cognitive Map model for precision farming

To design the FCM model for precision farming, one experienced cotton farmer and two experienced 
soil scientists played the role of experts and they designed the FCM model following the developing 
methodology described in Stylios and Groumpos (1999). The three experts stated that there are 
eleven main factors-concepts (which represent soil properties) that determine the cotton yield; (see 
Table 1). The output concept C12 represents the first cotton yield picking measured with the yield 
monitor. The set of linguistic variables that every concept can take are described in Table 1 and 
the corresponding membership functions for the four selected soil parameters (e.g. sand, clay, OM 
and shallowEC) are illustrated in Figure 3.
Then, the experts were asked to describe the degree of influence from one concept to another using 
IF-THEN rules among factor concepts and yield. An example of this process is given, selecting the 
relation between concepts C8 to C12 for the calculation of linguistic variable. The following rules 
were proposed by each expert:

1st Expert: IF value of concept C8 is low THEN value of concept C12 is low
 IF value of concept C8 is med THEN value of concept C12 is med
2nd Expert: IF value of concept C8 is high THEN value of concept C12 is med
3rd Expert: IF value of concept C8 is high THEN value of concept C12 is high

These fuzzy rules for each causal relationship are aggregated using the approach described in 
(Stylios and Groumpos, 2004) and so an overall linguistic rule is produced from which, using the 
SUM fuzzy inference method, a numerical weight for wij is calculated. Using this, the weights of 
the FCM model are inferred and the FCM shown in Figure 4 is developed.
The PA procedure is based on the determination of the value of output concept “Yield” that estimates 
the cotton yield measured with the yield monitor. 

Results

Some of the resulting yield and soil property maps are showed in Figure 5. The proposed FCM 
approach developed a simulation model for precision farming which can be implemented for 
decision-making to examine different scenarios and determine the category of the cotton yield. Three 
different cases have been examined using the proposed FCM model and the simulation results for 
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Table 1. Concepts of the FCM: Type of values.

C1: ShallowEC (mS/m) C2: Mg (ppm) C3: Ca (ppm) C4: Na (ppm)
Five Fuzzy Five Fuzzy Five Fuzzy Five Fuzzy

0 – 10 Very Low < 60 Very Low < 400 Very Low < 25 Very Low
10 – 20 Low 60 – 180 Low 400 – 1000 Low 25 – 70 Low
20 – 30 Medium 181 – 360 Medium 1001 – 2000 Medium 71 - 160 Medium
30 – 40 High 361 - 950 High 2001 – 4000 High 161 – 460 High

> 40 Very High > 950 Very High > 4000 Very High > 460 Very High

C5: K (ppm) C6: P (ppm) C7: N (ppm) C8: OM (ppm)
Five Fuzzy Five Fuzzy Five Fuzzy Three Fuzzy

< 40 Very Low < 5 Very Low < 3 Very Low < 1.0 Low
40 – 120 Low 5 – 15 Low 3 – 10 Low 1.0 – 2.0 Medium

121 – 240 Medium 16 – 25 Medium 11 – 20 Medium > 2.0 High
241 – 470 High 26 – 45 High 21 – 40 High

> 470 Very High > 45 Very High > 40 Very High

C9: Ph C10: Sand % C11: Clay % C12: Yield (tons/ha)
Seven Fuzzy Four Fuzzy Three Fuzzy Three Fuzzy

<4.5 Very Low < 20 Low < 15 Low < 2.5 Low
4.6 – 5.5 Low 20 – 70 Medium 15 – 37 Medium 2.5 - 3.5 Medium
5.6 – 6.5 Slightly Low 71 – 80 High Texture >3.5 High
6.6 – 7.5 Neutral > 80 Very High > 37 High
7.6 – 8.5 Slightly High
8.6 - 9.5 High 

> 9.5 Very High

Sand (%)
Clay (%)

OM (%) Shallow EC (mS/m) 

Figure 3. Membership functions for Shallow EC, OM, Sand and Clay. 

Figure 3. Membership functions for Shallow EC, OM, Sand and Clay.
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the crop were comparable to the real measurements. The initial values of concepts for each case 
are derived from the real measurements for corresponding concepts of the yield assessment.

First case: In this case, the initial fuzzy values of the concepts (as they have been measured and 
converted to corresponding fuzzy sets), are the following: 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
 Very low high med low med med low high low med high

The initial vector for the first case of yield production is:

A1 = [0.1 0.75 0.7 0.4 0.5 0.5 0.2 0 0.3 0.5 0.7 0],

representing the real data of the physical process (after thresholding), and the initial value of yield 
production was put equal to zero. These values are used in Equation (1) to calculate the equilibrium 
region of the process. After 11 iteration steps, the FCM reaches an equilibrium point where the 
values do not change any more from their previous ones, that is:

Afin_1 = [0.7201 0.75 0.7548 0.4 0.5 0.5 0.2 0 0.739 0.5 0.7 0.8226]

Figure 4. The FCM model for describing the final cotton yield 
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Figure 4. The FCM model for describing the final cotton yield.

Figure 5. Two of the yield (years 2001 and 2003) and some of the soil properties maps.
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Figure 6 depicts the subsequent values of calculated concepts for every simulation step. It is observed 
that the final value of concept C12 is 0.8226, which means that, in this region, the yield is less than 
the approximate value 0.85 that has been chosen as the threshold value to achieve desired results. 
Actually, for this case, the measured yield production was low so that the derived result of the FCM 
model is the expected one according to the initial measurements.
The concept “yield” takes three values, either low when its numerical value is less than the threshold 
of 0.83, medium when its numerical value is between 0.83 and 0.87 and high when the calculated 
numerical weight is greater than 0.87. 

Second case: Here the initial measured fuzzy values of the concepts are the following: 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
 verylow low med low med med Low high low med high

Thus, the initial vector for this case is:

A2 = [ 0.1 0.25 0.2 0.4 0.5 0.5 0.2 0 0.3 0.5 0.7 0],

representing the real measured data (after defuzzification). These values and the initial weights are 
used in Equation (1) to calculate the equilibrium region of the process. After 12 iteration steps, the 
equilibrium region is reached: 

Afin_2 = [0.7201 0.25 0.7548 0.4 0.5 0.5 0.2 0 0.739 0.5 0.7 0.8539]

In this case, it is observed that the value of concept C12 (“yield”) in its final state is 0.8539, which 
means that, in this region, the yield is approximately 0.85 and equal to the medium yield. Actually 
for this case, the measured yield production was medium, thus the derived result is the expected 
one. 

Third case: For this case, the initial fuzzy values of the concepts have been selected from real 
measurements. Actually, for this case, the measured yield production was high: 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
 low high med low med med low high med med high
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Figure 6. Subsequent values of concepts for first case till convergence 

Figure 6. Subsequent values of concepts for first case till convergence
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The initial vector with the concept values is:

A3 = [ 0.4 0.75 0.7 0.4 0.5 0.5 0.2 1 0.5 0.5 0.7 0.5],

representing the real data of the physical process. Then, using Equation (1), the FCM simulates 
and, after 12 iteration steps, the equilibrium region is reached in vector:

Afin_3 = [0.8073 0.75 0.7548 0.4 0.5 0.5 0.2 0 0.739 0.5 0.7 0.8824]

It is observed that the value of concept C12 in its final state is 0.8824, which means the yield is 
higher than 0.87 so that it is considered high. The derived result is the expected according to the 
real measurements.
The FCM simulation model was tested for all the available 360 cases using the data for 2001in order 
to calculate the average accuracy of the yield production. For these experiments, two categories of 
low and high yield respectively were considered. For decision making reasons, a threshold value has 
been selected equal to 0.85 to discriminate the two yield categories- low and high. This means that 
if the calculated output values of yield are lower than 0.85 then the produced yield is low and vice 
versa. The average accuracy for 2001 is almost 74% which is efficient for this first trial using FCMs. 
For the 182 cases of low yield, 135 were characterized as low yield and the rest as high yield, and 
for the 178 cases of high yield, 131 were characterized as high yield and the others as low yield.
The same FCM model to estimate the yield output for the years 2003 and 2006 was used with the 
same threshold value. The results for the three years are gathered in Table 2.
It is important to address here the limitations of the proposed model that have been considered: 
the pH values at every point of the specified field were well below medium in the acid region and 
only the specific fuzzy sets were used and the weights of the FCM have not been trained using 
any training algorithm. Another limitation is that this model is a general one that estimates the 
intrinsic yield potential for each part of the field according to the soil property values and using 
the experts’ experience and knowledge. As has been mentioned in a previous study (Gemtos et al., 
2004), the difference in yield spatial distribution could be attributed to the weather conditions of 
each year. The high degree of complexity in this problem requires the input of factors related to 
weather (rainfall, temperature, growing degree days, etc.).
The results of the FCM-model are very promising; our model achieved prediction of the cotton 
yield production of about 70% average success for the three years. This FCM-based processing 
approach will be further investigated in order to achieve better results, by using learning algorithms 
to fine-tune the causal relationships of the FCM model.

Conclusions

In this work, a new modelling and simulation approach based on Fuzzy Cognitive Maps was 
proposed for the first time to address the issue of crop yield prediction. The main goal of this work 
was not to propose a new classification technique for soil data analysis to improve accuracy, but 

Table 2. Average accuracy for three years (2001, 2003 and 2006).

Accuracy/year 2001 2003 2006

Low yield (135/182):74.18% (126/185):67.57% (123/174):70.69%
High yield (131/178):73.6% (117/175):66.86% (130/186):69.89%
Average accuracy 73.8% 67.2% 70.3%
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to propose a new modelling approach for the complex process of precision farming, using the 
FCM tool. The proposed soft computing technique is an advanced knowledge representation and 
processing method that can handle the main characteristics and site-specific management behaviour 
of the cotton crop providing an interpretable and transparent model.
In future work, we are going to further extend the FCM model to work with different soil properties 
(for example alkaline soils). That could lead to an advanced model which could estimate the yield 
production of every field. For this reason, it is required to choose specific interfaces for filtering 
the initial values and adapt dynamically the weights of each factor interaction.
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