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Abstract: This paper presents a preliminary study of 
the applicability of a novel signal processing 
technique as a means to exact valuable information 
so that to diagnose the possible existence of a speech 
articulation disorder in a speaker. Articulation, in 
effect, is the specific and characteristic way that an 
individual produces the speech sounds. Emprirical 
Mode Decomposition and the Hilbert Huang 
transform is applied in an attempt to identify 
potential features to be used in an articulator 
disorder detector.

Introduction

Articulation refers to the production process of 
speech sounds in isolation or in words. The process 
describes the physiological movements involved in 
modifying the airflow, in the vocal tract above the 
larynx, for the production of the various speech sounds. 
In essence sounds, syllables, and words are formed 
when the vocal chords, tongue, jaw, teeth, lips, and 
palate change the stream of air that is produced by the 
respiratory system. Articulation is a complicated 
procedure that is often difficult to master. An 
articulation problem appears when a person produces 
sounds, syllables or words incorrectly so that listeners 
do not understand what is being said or they have to pay 
more attention to the way the words sound than to what 
he/she means. Most articulation errors fall into one of 
three categories: omissions, substitutions, or distortions.

In a typical substitution error, for example, a child 
may say /θ/ instead of /s/ in the Greek word /sela/ 
(saddle) so it would be heard as /θela/. Another case is 
the omission error where the second syllable of the 
word may be omitted leaving only /se/. These kinds of 
mistakes are systematic, which means that a child may 
only misarticulate a couple of sounds, but he/she does 
so in all words that contain those sounds. In many cases,
this disorder results in unintelligible speech while in 
other cases the speech remains intelligible. This is a fact 
that depends on the frequency of the misarticulated 
sounds. In any of these cases, the articulation disorder 
constitutes a serious communication problem for the 
patient that has to be diagnosed so that to be solved
through training .

From the clinical practice and experience [1], a few 

of the most common substitution articulation errors that 
Greek children make are shown in Table 1.
Table 1: Some of the common articulation errors in 
Greek 

Target sound Produced sound

/γ/
/s/ //, /θ/, or /ç/  
/v/ /f/
/ / /θ/

The area of speech processing is an active and 
interesting area of signal processing and much work has 
been done for event detection in speech signals [2]-[3].
In this research work we propose the use of a novel 
signal processing technique to analyze the speech 
signal in an atempt to find a characteristic footptint for 
each one of the aforementioned articulation disorders. 

Most real life processes are inheritably nonlinear 
and nonstationary. As a result, using techniques that 
assume linearity and stationarity even though they are 
build upon solid mathematical background can be 
suboptimal, misleading or even have completely no 
connection to the physical system that they are supposed 
to “model”. Empirical Mode Decomposition (EMD) and 
the Hilbert Huang transform, introduced in [4] came to 
fill this gap between theory and real life. EMD lacks 
rigorous mathematical analysis and it decomposes the 
signal into a collection of Intrinsic Mode Functions 
(IMFs), where an IMF represents a simple oscillatory 
function with a number of conditions that have to be 
satisfied. The well behaved Hilbert transforms of the 
IMFs give an alternative approach to time-frequency 
decomposition which results from the traditional short 
time Fourier transform and the most recently developed 
wavelet transform [4]. 

In this research work we investigate the use of EMD 
and Hilbert Huang transform as a means to analyze the 
speech signal in order provide a more suitable 
representation that can be eventually combined with an 
advanced learning paradigm from the field of pattern 
recognition for the discrimination of articulation 
disorders.

This paper is organized: in the following section the 



data set used for analysis is described and then a brief 
description of the EMD algorithm and then Hilbert-
Huang spectrum is presenting. The results of the 
application of EMD and Hilbert-Huang transform to 
normally and misarticulated phonemes are discussed
and finally, conclusions and future directions are 
included.

Materials and methods 

Using a computer with a sound card and an ordinary 
microphone, samples of 16-bit precision at a sampling 
rate of 44.1 KHz were collected from 16 children ages 
6-8 whose mother tongue was Greek. All children were 
asked to produce the pseudoword /asa/. Speech 
therapists were used as experts to evaluate and 
categorize the articulation of children. Of the 16
children 4 had normal production of the pseudoword, 
and 12 produced articulation errors of which 4 were 
substitution of /s/ with //, 4 were substitution of /s/ with 
/θ/ and 4 were substitution of /s/ with /ç/.

Empirical Mode Decomposition and the Hilbert-
Huang spectrum

EMD is an algorithm that decomposes a signal into a 
fine set of oscillatory components (IMFs). These 
functions are symmetric with respect to a local zero 
mean and have the same number of zero crossings and 
extrema. The method for computing these functions was 
originally introduced by Huang et al. [4] and is 
implemented through the following steps [6]:

1. Identify all minima and maxima of the given signal 
(x(t))

2. Create an upper (emax(t)) and a lower (emin(t))
envelope interpolating between successive maxima 
and minima respectively (usually via cubic 
interpolation)

3. Calculate the running mean
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4. Subtract the mean from the signal to extract the 
detail d(t)=x(t)-m(t)

5. Repeat the whole process replacing x(t) with m(t)
until the final residual is a monotonic function (or a 
user specific number of IMFs has been extracted –
application dependant)..

In practice, step 5 may not produce a valid IMF. As a 
result the sifting needs to take place which implies the 
iteration of steps 1 to 4 upon the detail d(t) until this 
fulfils the criteria of an IMF. Therefore the original 
signal x(t) is eventually decomposed into a sum of  
IMFs plus a residual

( ) ( ) ( )i
i

x t IMF t r t 

as it is shown in Figure.1.
Following the EMD the Hilbert transform can be 

applied to each IMF separately and the instantaneous 
frequency can be calculated as the derivative of the 
phase function. After performing the Hilbert transform 
to ach IMF the original signal can be expressed as the 
real part, RP, in the following form
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The above equation gives both the amplitude and the 

frequency of each component as a function of time. This 
time-frequency distribution of the amplitude is called 
the Hilbert-Huang spectrum (H(ω,t)). Integrating over 
time we get the marginal spectrum.

 
0

( ) ,
T

h H t dt  
The marginal spectrum offers a measure of total 

amplitude (or energy) contribution from each frequency 
value.

The frequency in either H(ω,t) and h(ω), has a totally 
different meaning from the Fourier spectral analysis [4]. 
While in the classical Fourier representation the 
existence of energy at frequency, ω, means a component 
of a sine or a cosine wave persisted through the whole 
time span, in the case of the of the marginal spectrum 
the existence of energy at the frequency ω, means only 
that in the whole time span, there is a higher likelihood 
for such a wave to have appeared locally. 
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Figure 1: Application of the EMD algorithm to 
phoneme /s/ produced by a normal speaker



Results

The implementation of the EMD has been performed 
using the freely available MATLAB toolbox by Rilling 
et al. [6],[7] along with the TFTB toolbox developed by 
the same group [8]. 

In our first attempt to investigate the utility of EMD 
in the analysis of phonemes we focused on the analysis 
of the marginal spectrum h(ω) of the first 4 IMFs. As it 
can be seen in Figures 2-5 the 3 types of disorders give 
rise to a somewhat different “energy concentration” as it 
is depicted in terms of the marginal spectrum.
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Figure 2: Normalized of marginal h(ω) of phoneme /s/
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Figure 3: Normalized of marginal h(ω) of phoneme /θ/
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Figure 4: Normalized of marginal h(ω) of phoneme /ç/
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Figure 5: Normalized of marginal h(ω) of phoneme //

Figures 2-5 come from 4 different individuals. 
Merging together the marginal spectrums of the 
different individuals we come up with Figure 6.
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Figure 6. Averaged normalized marginal spectrum 
across all subjects

As it can be seen the normally pronounced phoneme 
/s/ gives rise to higher frequencies followed by the 
erroneously produced phoneme /ç/. Phonemes /θ/ and //
seem to have most of their concentrated in lower 
frequencies. 

Conclusions 

The proposed method to analyze correctly 
pronounced and misarticulated phonemes seems to give 
promising results according to this preliminary study, 
but there are still some issues that have to be 
considered. First of all the whole analysis was restricted 
on a qualitative analysis of the results. A more rigorous 
quantitative analysis has to be performed that will also 
involve the extraction of specific features to be used in a 
second stage responsible for the automatic classification 
of the different phonemes.

Furthermore, only the marginal spectrum of the first 4 
IMFs was employed in this analysis. The time evolution 



of the speech signal was not explicitly taken into 
account. In future work we will try to exploit this 
specific capability provided by the Hilbert-Huang 
transform.

Finally even though the proposed method is 
promising, it still has to be tested using a larger data set 
with words, pseudowords, and continuous speech before 
safer conclusions can be drawn
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