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Abstract
Medical decision support systems can provide assistance in crucial clinical judgments, particularly for inexperienced medical professionals.

Fuzzy cognitive maps (FCMs) is a soft computing technique for modeling complex systems, which follows an approach similar to human reasoning

and the human decision-making process. FCMs can successfully represent knowledge and human experience, introducing concepts to represent the

essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Medical decision systems are

complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into

consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall clinical

decision with a different degree. Thus, FCMs are suitable for medical decision support systems and appropriate FCM architectures are proposed

and developed as well as the corresponding examples from two medical disciplines, i.e. speech and language pathology and obstetrics, are

described.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Any successful medical decision support system (MDSS)

has to take into consideration a high amount of data and

information from interdisciplinary sources (patient’s records

and history, doctors’ physical examination and evaluation,

laboratory tests, imaging tests, etc.). In general, the medical

decision procedure is a complex one since, often, the medical

data and information may be vague, conflicting, missing or not

easy to interpret. Thus, MDSSs are complex systems consisting

of non-related and related subsystems and elements, taking into

consideration many factors that may be complementary,

contradictory, and competitive; these factors influence each

other and determine the overall decision with a different degree.

It is apparent that medical decision support systems require a

sophisticated modeling methodology that can handle all these
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challenges, while at the same time, is able to infer a decision.

An advanced medical decision support system must be capable

of extracting causal knowledge from the appropriate medical

domain, building a causal knowledge base, and making

inference through it.

Fuzzy cognitive maps (FCMs) are a powerful vehicle of

causal knowledge representation and inference [1]. FCMs is a

modeling and simulation methodology describing on an

abstract conceptual representation any system. In fact, they

are a computational intelligence modeling and inference

methodology suitable for modeling complex systems and

processes that are systems consisted of a great number of highly

related and interconnected elements and subsystems.

Kosko [2] first introduced expanded cognitive maps in the

engineering area to describe the cause and effect between

concepts. This primitive FCM used crisp values {�1, 0, 1} to

describe causality and introduced concepts and dis-concepts to

represent positive or negative concepts. Since then, FCMs have

further developed, new methods have been proposed and they

have been applied to many areas [3]. Recently, FCMs have been
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Fig. 1. The fuzzy cognitive map model.
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used successfully in the medical diagnosis and decision area;

specifically, they have been used to model the complex process

of radiotherapy [4], for differential diagnosis of specific

language impairment [5] and for diagnosis and characterization

for tumor grade [6].

Three FCM architectures suitable for medical decision

support systems, as well as corresponding examples from

medical disciplines are discussed in the subsequent sections.

The first architecture is the Competitive FCM which is

implemented for differential diagnosis of two language

disorders. The second architecture is a distributed m-FCM

and an example for the differential diagnosis of speech

disorders is discussed. Thirdly, a hierarchical architecture for

FCMs is presented and the use of this approach in an obstetrics

decision support problem assisting obstetricians on how to

proceed during labor is analyzed. Finally, conclusions are

included and future directions are discussed.

2. Fuzzy cognitive maps

Fuzzy cognitive map is a soft computing technique that

follows an approach similar to human reasoning and the human

decision-making process. An FCM looks like a cognitive map,

it consists of nodes (concepts) that illustrate the different

aspects of the system’s behavior. These nodes (concepts)

interact with each other showing the dynamics of the model.

Concepts may represent variables, states, events, trends, inputs

and outputs, which are essential to model a system. The

connection edges between concepts are directed and they

indicate the direction of causal relationships while each

weighted edge includes information on the type and the degree

of the relationship between the interconnected concepts. Each

connection is represented by a weight which has been inferred

through a method based on fuzzy rules that describes the

influence of one concept to another. This influence can be

positive (a promoting effect) or negative (an inhibitory effect).

The FCM development method is based on Fuzzy rules that can

be either proposed by human experts and/or derived by

knowledge extraction methods [3], in such a way that the

accumulated experience and knowledge are integrated in the

causal relationships between factors/characteristics/compo-

nents of the process or system modeled [7].

2.1. Mathematical representation of fuzzy cognitive maps

The graphical illustration of an FCM is a signed directed

graph with feedback, consisting of nodes and weighted arcs.

Nodes of the graph stand for the concepts that are used to

describe the behavior of the system and they are connected by

signed and weighted arcs representing the causal relationships

that exist between the concepts (Fig. 1).

Each concept is characterized by a number Ai that represents

its value and it results from the transformation of the fuzzy real

value of the system’s variable, for which this concept stands, in

the interval [0, 1]. Between concepts, there are three possible

types of causal relationships that express the type of influence

from a concept to the others. The weights of the arcs between
concept Ci and concept Cj could be positive (Wij > 0) which

means that an increase in the value of concept Ci leads to the

increase of the value of concept Cj, and a decrease in the value

of concept Ci leads to the decrease of the value of concept Cj. Or

there is negative causality (Wij < 0) which means that an

increase in the value of concept Ci leads to the decrease of the

value of concept Cj and vice versa.

The value Ai of concept Ci expresses the degree which

corresponds to its physical value. At each simulation step, the

value Ai of a concept Ci is calculated by computing the

influence of the interconnected concepts Cj’s on the specific

concept Ci following the calculation rule:

Ai
ðkþ1Þ ¼ f A

ðkÞ
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where A
ðkþ1Þ
i is the value of concept Ci at simulation step k + 1,

A
ðkÞ
j is the value of concept Cj at simulation step k, w ji is the

weight of the interconnection from concept Cj to concept Ci and

f is the sigmoid threshold function:

f ¼ 1

1þ e�lx
(2)

where l > 0 is a parameter determining its steepness. In this

approach, the value l = 1 has been used. This function is

selected since the values Ai of the concepts, lie within [0, 1].

3. Medical decision support systems based on fuzzy

cognitive maps

When medical experts are called upon to make a decision

they take into consideration a variety of factors (concepts)

giving each one a particular degree of importance (weight).

Medical experts have a conceptual model in mind by which

they process these factors and their degrees of importance,

making comparisons, integrating the available information, and

differentiating their importance, thus, finally reaching a

decision out of a number of alternative potential decisions.

Based on this approach, one can create a representation of the

experts’ knowledge using causal concept maps, which are



Fig. 2. Membership functions of the linguistic variable Influence.

Fig. 3. A conceptual model for medical differential diagnosis.
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developed by considering experts as the creators of the ‘‘map’’

that explicitly represents their expert knowledge drawn out as a

diagram. In essence, this is an integrated interactive, graphic

diagram of each expert’s mental model of his inference

procedure to reach a decision. Concepts of the map are factors

that are usually considered to reach a decision, as well as the

potential decisions. In the graphical form of a cognitive map the

concepts are the nodes. The ‘‘causal’’ component of these maps

refers to the cause–effect relationships that hold between

factors involved in the decision and the possible diagnosis and

between the different factors themselves. The cause–effect

relationships are connections between the nodes and are

depicted in the graphical form as signed directed edges from

one node (the causing concept) to another node (the affected

concept). Given that the weighting in a human reasoning

decision process almost never carries an exact numerical value,

on the contrary, it carries a fuzzy (linguistic value), the

appropriate modeling technique for developing medical

decision support systems are fuzzy cognitive maps.

3.1. MDSS fuzzy cognitive map construction method

The method used to develop and construct a MDSS FCM has

considerable importance in order to represent the medical

decision procedure as accurately as possible. The methodology

described here extracts the knowledge from the experts and

exploits their experience of the process [8].

The appropriate medical experts, consisting in most cases of

interdisciplinary teams, determine the number and kind of

concepts that comprise the MDSS FCM. Each expert from his/

her experience knows the main factors that contribute to the

decision; each of these factors is represented by one concept of

the FCM. The expert also understands potential influences and

interactions between factors themselves or between factors and

decisions, thus establishing the corresponding fuzzy degrees of

causation between concepts. In this way, an expert’s knowledge

is transformed into a dynamic weighted graph, the MDSS FCM.

Experts describe the existing relationship between the concepts

firstly, as ‘‘negative’’ or ‘‘positive’’ and secondly, as a degree of

influence using a linguistic variable, such as ‘‘low’’,

‘‘medium’’, ‘‘high’’, etc.

More specifically, the causal interrelationships among

concepts are declared using the variable Influence which is

interpreted as a linguistic variable taking values in the universe

U = [�1, 1]. Its term set T(influence) is suggested to be

comprised of eight variables. Using eight linguistic variables,

an expert can describe in detail the influence of one concept on

another and can discern between different degrees of influence.

The nine variables used here are: T(influence) = {zero, very

very low, very low, low, medium, high, very high, very very

high, one}. The corresponding membership functions for these

terms are shown in Fig. 2 and they are mz, mvvl, mvl, m1, mm, mh,

mvh, mvvh and m0. A positive sign in front of the appropriate

fuzzy value indicates positive causality while a negative sign

indicates negative causality.

Once one expert describes each interconnection as above,

then, all the proposed linguistic values for the same
interconnection, suggested by experts, are aggregated using

the SUM method and an overall linguistic weight is produced,

which with the defuzzification method of center of gravity

(COG) [9], is transformed to a numerical weight w ji, belonging

to the interval [�1, 1]. A detailed description of the

development of FCM model is given in [7].

In the following sections three MDSS FCM architectures

are described which are based on the general construction

method.

4. Competitive FCM for medical differential diagnosis

In a differential diagnosis MDSS where only one diagnosis

is always inferred, a novel configuration, the competitive fuzzy

cognitive map (CFCM) can be used [5]. The CFCM introduced

the distinction of two main kinds of concepts: decision-

concepts and factor-concepts. Fig. 3 illustrates an example

CFCM model which is used to perform medical decision/



Table 1

Weights between concepts for CFCM for dyslexia and specific language impairment

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 �1

C2 �1

C3 +VVH +M–H +L +L +L +L

C4 +VH +L–M

C5 +VVH +M–H +L +L

C6 +VVH +M–H +L +L

C7 +H +VVH +L +L +L

C8 +M–H Nonea

C9 +M-H +VVH +L +L +L +L

C10 +M +VVH +L +L

C11 +M +L

C12 +VVH +VVH

C13 +M-H +VH

C14 +M-H +M

C15 +M CD +L +L

C16 +M +M–H

C17 +M–H CD

a No consistent and clear relationship was reported in the literature regarding the pragmatic aspects of language of children with dyslexia.
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diagnosis, and includes both types of concepts of the FCM and

the causal relations among them. All the concepts can interact

with each other and determine the value of the diagnosis

concepts, which are mutually exclusive, in order to indicate

always a single diagnosis. This is the case in most medical

applications, where, according to symptoms, medical profes-

sionals must conclude only one diagnosis and then determine

the treatment, accordingly.

The factor-concepts can be considered as inputs to the

MDSS such as patient data, observed symptoms, patient

records, experimental and laboratory tests etc, which can be

dynamically updated based on the system interaction,

whereas the decision-concepts are considered as outputs

where their estimated values outline the possible diagnosis

for the patient. The factor-concepts can be interrelated and

they partially influence the diagnosis. For such a situation,

FCMs are suitable as their strength is their ability to describe

systems and handle situations where there are feedback

relationships and relationships between the factor-concepts.

Such interconnections are shown in Fig. 3 where the

‘‘competitive’’ interconnections between the diagnosis con-

cepts are also illustrated.

4.1. CFCM for dyslexia and specific language impairment

Dyslexia and specific language impairment (SLI) are

frequent developmental disorders that may have a serious

impact on an individual’s educational and psychosocial life. In

general terms, developmental dyslexia is identified if a child

has poor literacy skills despite adequate intelligence and

opportunity to learn [10]. SLI is diagnosed when oral language

lags behind other areas of development for no apparent reason

[11]. Although, these two developmental disorders have

separate and distinct definitions, they share many similar

symptoms and characteristics that can make it difficult for

clinicians to differentiate between them.
In the current differential diagnosis model there are two

diagnosis concepts, i.e. the two disorders that are studied:

concept 1 specific language impairment (SLI) and concept 2

dyslexia. The factor-concepts are considered as measurements

that determine the result of the diagnosis in this model and they

are
� c
oncept 3 reduced lexical abilities;
� c
oncept 4 decreased MLU;
� c
oncept 5 problems in syntax;
� c
oncept 6 problems in grammatical morphology;
� c
oncept 7 impaired or limited phonological development;
� c
oncept 8 impaired use of pragmatics;
� c
oncept 9 reading difficulties;
� c
oncept 10 problems in writing and spelling;
� c
oncept 11 reduced ability of verbal language comprehen-

sion;
� c
oncept 12 difference between verbal and nonverbal IQ;
� c
oncept 13 heredity;
� c
oncept 14 impaired sociability;
� c
oncept 15 impaired mobility;
� c
oncept 16 attention distraction;
� c
oncept 17 reduced arithmetic ability.

The connections between the concepts are determined from

Table 1 [12]. Four case studies from the literature are examined

here, two on specific language impairment [13,14] and two on

dyslexia [15,16] and, as experimental clinical cases to illustrate

the differential diagnosis model. In Table 2 the factors used by

the model in the diagnosis of each case are presented. In

addition, the degree of occurrence of each factor in each case

study is denoted with similar qualitative degrees of very very

high, very high, high, medium, low, very low, and 0. The

designation of weight ‘‘NR’’ in Table 2 indicates that the factor

is not reported in the particular case and a value of zero is used

in the computational model and ‘‘CD’’ is case dependent.



Table 2

Initial factor-concept fuzzy values for four cases

Factor-concepts Case 1 Case 2 Case 3 Case 4

C3 VVH VVH M VVH

C4 NR VVH NR NR

C5 VVH H M VH

C6 VH VH M NR

C7 0 L VVH VVH

C8 L VVH 0 0

C9 0 NR VVH VVH

C10 0 NR VVH VVH

C11 0 VH H H

C12 H VVH 0 VH

C13 H 0 NR NR

C14 -M 0 M 0

C15 0 0 M to H NR

C16 0 0 VVH NR

C17 0 NR M NR Fig. 4. The distributed m-FCM model.
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Results showed that in all four cases, even though some of

the information was incomplete, the outcome given by the

model agreed with the published diagnosis:
Case 1: concept 1 (SLI) = 0.9659
 concept 2 (dyslexia) = 0.8975
Case 2: concept 1 (SLI) = 0.9394
 concept 2 (dyslexia) = 0.8540
Case 3: concept 1 (SLI) = 0.9302
 concept 2 (dyslexia) = 0.9634
Case 4: concept 1 (SLI) = 0.9287
 concept 2 (dyslexia) = 0.9620
That is in all four cases, the correct diagnosis was concluded:

SLI, SLI, dyslexia, and dyslexia, respectively. In the two cases

of dyslexia the largest-final diagnosis, even though correct,

differed by a relatively small amount from the other diagnosis

(SLI) which points out the difficulty in differential diagnoses of

the two disorders.

5. Distributed m-FCM for medical diagnosis

A common approach proposed for modeling large complex

system is based on the decomposition into subsystems [17,18].

But usually decomposition is not easily applicable, especially,

when subsystems have common elements that prohibit the

simplified approach of summing up the individual components

behavior. We follow the same direction in using FCMs to model

complex medical decision support systems where every

subsystem is modeled by an FCM. With the proposed

perspective for the modeling and analysis of complex systems,

each component of the infrastructure constitutes a part of the

intricate web that forms the overall infrastructure [19].

Here the case where multiple infrastructures are connected

as ‘‘systems of systems’’ is considered. A fuzzy cognitive map

is used to model each subsystem and the complex system is

modeled with the interacting fuzzy cognitive maps. FCMs

communicate with each other as they operate in a common

environment, receiving inputs from other FCMs and transmit-

ting outputs to them. The links between two FCMs have the

meaning that a concept of one FCM influences or is correlated

to the state-concept of the other. This distributed multiple m-

FCM is shown in Fig. 4. FCMs are connected at multiple points

through a wide variety of mechanisms, represented by bi-
directional relationship existing between states of any pair of

FCMs, that is, FCMk depends on FCMl through some links, and

probably FCMl depends on FCMk through other links. There

are multiple connections among FCMs such as feedback and

feed forward paths, and intricate and branching topologies. The

connections create an intricate web, depending on the weights

that characterize the links. Interdependencies among FCMs

increase the overall complexity of the ‘‘system to systems’’.

Fig. 4 illustrates a combined distributed fuzzy cognitive map,

which aggregates five FCM models for the five subsystems of the

complex system. Among the subsystems and thus, among the

FCM models, there are interdependencies that are illustrated as

interconnections between concepts belonging to different FCMs,

where each FCM can be easily modeled [7].

5.1. Distributed m-FCM for differential diagnosis of

dysarthria and apraxia of speech

Dysarthria is the term used to describe a group of disorders of

oral communication resulting from disturbances in muscle

control over the speech production mechanism due to damage to

the central or peripheral nervous system [20,21]. Neurological

impairment in the form of paralysis, weakness, or lack of co-

ordination of the muscles that support speech production, can

result in different forms of dysarthria. Darley et al. [20,21]

identified seven forms of dysarthria: spastic, flaccid, ataxic,

hypokinetic, hyperkinetic chorea, hyperkinetic dystonia, and

mixed dysarthrias. Apraxia of speech is defined as ‘‘a neurogenic

speech disorder resulting from impairment of the capacity to

program sensorimotor commands for the positioning and

movement ofmuscles for thevolitional production of speech [22].

The differentiation between the dysarthria types can be a

challenging task for a speech and language pathologist (SLP),

since many speech and oral motor characteristics of the

dysarthrias are overlapping. Additionally, despite the fact that

the distinction between AOS (apraxia of speech) and dysarthrias

is usually an easier process, differentiation between AOS and

ataxic dysarthria or the establishment of a co-occurrence of both

AOS and a dysarthria type can be challenging as well [22]. One of



Fig. 5. Diagram of differential diagnosis distributed system of dysarthria and

apraxia of speech.
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the most widely used and accepted systems for the differential

diagnosis of the dysarthria types is the DAB system or the Darley

et al. [20,21] system which has some difficulties associated with

its use since there are too many parameters to remember,

overlapping symptoms, etc.

In the distributed m-FCM differential diagnosis system

developed 89 factors were used as the factor-concepts. Of these

31 were oral motor characteristics and 58 were speech

characteristics (see [22] for a complete set of the factors

used). Since some of these factors can be grouped together

given that they represent separate assessment procedures,

certain FCM subsystems can be developed so as a distributed
Table 3

Examples of fuzzy values of weights between factor-concepts and diagnosis conce

Factor Flaccid dys. Spastic dys. Ataxic dys.

Head tremor 0 0 M

Dysphagia M M 0

Drooling M M 0

Voice quality M to H M to H L to M

Distorted vowels 0 0 H

. . . . . . . . . . . .

Table 4

Comparison of diagnosis provided by speech and language therapist and dysarthri

Actual diagnosis of case by SLP Output values of distributed FCM different

Flaccid dys. Spastic dys. Ataxic

Case 1 ataxic dys. 0.5622 0.8081 0.9170

Case 2 flaccid dys. 0.9284 0.6900 0.5156

Case 3 AOS 0.5467 0.7432 0.8936

Case 4 mixed dys. 0.5101 0.9272 0.9487
m-FCM diagnosis model is developed. For example, ‘‘voice

quality assessment’’ can include nasality of speech, hoarseness,

breathiness, voice tremor, strained voice, voice breaks,

diplophonia in the DAB system. A fuzzy cognitive map

subsystem with these factors can provide a value for the concept

voice quality in the FCM of Fig. 5. Similarly, the concept

‘‘voice pitch’’ consists of another FCM system with concepts

such as low pitch, high pitch, pitch breaks, and monopitch.

Thus, in the distributed m-FCM model for the differential

diagnosis system of dysarthria and apraxia of speech, shown in

Fig. 5 the results of subsystem FCMs used for various

assessments are aggregated into one combined distributed

fuzzy cognitive map. Table 3 represents an example of some of

the weights between factors and diagnoses since it is not

possible to show all 89 factors here and their connection to each

of the seven possible diagnoses. It is important to note that the

diagnosis FCM here is not a CFCM since there can be co-

occurrence of more than one dysarthria, as well as dysarthria

and apraxia. This can be observed in Table 4 where there is a

comparison of diagnosis provided by a speech and language

pathologist (SLP) and the dysarthria–apraxia distributed m-

FCM DSS for four patient cases where the bold values indicate

the final diagnoses.

6. Hierarchical architecture for obstetric decision

A knowledge-based system is more suited to accomplish

tasks when the nature of the problems and solutions is not well

defined or not known beforehand. In medical applications there

are situations involving a significant number of variable factors

such as changing characteristics, unexpected disturbances,

different combinations of fault and alarm situations, where the

approach of knowledge-based system has certain advantages

and flexibility which make such method particularly attractive

for complex systems.

A hierarchical architecture is proposed where the m-FCM

can be used to model the supervisor, which is the medical
pt

Hypokinetic dys. Hyperkinetic dys. Apraxia of speech

M M 0

M M 0

M 0 0

M to H M to H 0

0 H M

. . . . . . . . .

a–apraxia distributed FCM DSS

ial diagnostic system-resulting diagnosis

dys. Hypokinetic dys. Hyperkinetic dys. Apraxia of speech

0.5000 0.8355 0.6225

0.6514 0.5312 0.5312

0.7186 0.8727 0.9975

0.6934 0.8222 0.5248



Fig. 6. The hierarchical architecture with the m-FCM for medical decision

support systems.
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decision support systems (Fig. 6). The m-FCM consists of

concepts representing each one of the FCM modeling discipline

sources (patient’s records and information, doctors’ physical

examination and evaluation, laboratory tests, imaging tests,

etc.). In addition there are other concepts representing issues for

emergency behavior, estimation and overall decision and etc.

The m-FCM is an integrated model of the complex system and

it represents the relationships among the subsystems and their

models while inferring the final decision by evaluating all the

information from them.

Consequently, the m-FCM system has a generic purpose, it

receives information from all the subsystems in order to

accomplish a task, it makes decisions and it can plan

strategically. This m-FCM uses a more abstract representation,

general knowledge, and adaptation heuristics.

6.1. Two-level architecture for decision support during

labor

During the crucial period of labor, obstetricians evaluate the

whole situation, they take into consideration a variety of
Table 5

Relationships among concepts representing by fuzzy values in obstetrics example

C1 C2 C3 C4

C1 – – – –

C2 – – – –

C3 Very high (normal) Very high (pathological) – –

C4 Low High – –

C5 High (<8h) High (>8h) – Mediu

C6 Medium High – –

C7 – – – –

C8 – – – –

C9 – – – –
factors, they interpret and evaluate the fetal heart rate (FHR)

signal and they continuously reconsider regarding the

procedure of the delivery. Obstetricians have to determine

whether they will proceed with a Caesarian section or a natural

delivery based on the physical measurements, FHR and the

intepretation of and other essential indications and measure-

ments.

Cardiotocography was introduced into obstetrics practice

and it has been widely used for antepartum and intrapartum

fetal surveillance. Cardiotocogram (CTG) consists of two

distinct signals, i.e. the recording of instantaneous fetal heart

rate (FHR) and uterine activity (UA), which are two biosignals.

FHR variability is believed to reflect the interactions between

the sympathetic nervous system (SNS) and the parasympathetic

nervous system (PSNS) of the fetus. Considerable research

efforts have been made to process, evaluate and categorise FHR

either as suspecious, or pathological or normal. There have

been proposed integrated methods based on support vector

machines, wavelets and other computational intelligence

techniques to interpet the FHR [23].

Here, the development of a fuzzy cognitive map to model the

way by which the obstetrician makes a decision for a normal

delivery or a Caesarian section is investigated. This is an online

procedure where the obstetrician evaluates whether either the

woman or the fetus are at serious risk and thus, he/she has to

intervene, stopping the physiological delivery and perform a

Caesarian section or to continue with natural delivery.

The main parameters, that the obstetrician evaluates,

constitute the nine concepts of the FCM model:
� c
m

oncept 1 decision for normal delivery;
� c
oncept 2 decision for caesarian section;
� c
oncept 3 fetus heart rate (FHR) evaluation;
� c
oncept 4 presence of meconium;
� c
oncept 5 time duration of labor;
� c
oncept 6 bishop score;
� c
oncept 7 quantity of the medicine oxytocine given;
� c
oncept 8 contractions of the uterine;
� c
oncept 9 hypertension.

Experienced obstetricians have estimated the degree of

influence from one concept to another as presented in Table 5.

Then the obstetrics fuzzy cognitive map model is constructed,
C5 C6 C7 C8 C9

– – – – –

– – – – –

– High – – –

High – – – –

– Medium – – –

Medium – Medium – –

– Medium – Medium Medium

– – Medium – –

– – Low – –



Fig. 7. The two-level architecture for decision support during labor.
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which is illustrated at the upper level of the architecture for

decision-making during labor (Fig. 7).

At each step, values of concepts are calculated according to

the influence from interconnected concepts. Some concepts can

have only external input such as the concept C3 (FHR), which

stand for the evaluation and classification of FHR, which is

performed at the lower level by the support vector machine

[24]. The interactions among concepts will change values of

concepts. New values of some concepts may mean some action

from the obstetrician; as an example, a new value for oxytocine

requires pharmaceutical action to the woman. When the system

reaches the steady state, the value of the concept for natural

delivery and value of the concept for Caesarian section have to

be mutually exclusive and only one suggestion will be the

outcome of the system. Thus, the FCM in the upper level is a

CFCM, as shown in Fig. 7.

In the two-level architecture presented, at the lower level

there are either simple sensors or more advanced systems such

as the FHR classification system based on support vector

machines. Information from the lower level is transformed in

suitable form through the interface and this information is

transmitted to the FCM on the upper level. This supervisor

FCM will infer a final suggestion to the obstetrician on how to

proceed with the labor.

7. Conclusion

The area of medical diagnosis and medical decision support

is characterized by complexity requiring the investigation of

new advanced methods for modeling and development of

sophisticated systems. Medical decision support systems

(MDSSs) have attracted the interest of many researchers and

still considerable efforts are under way. MDSSs must

adequately take into consideration the needs of medical
practitioners. The novel MDSS fuzzy cognitive map archi-

tectures described here are developed with appropriate medical

experts from interdisciplinary background and are based on

human reasoning approaches.

Three novel types of fuzzy cognitive map (FCM)

architectures suitable for medical decision support systems

were presented: (a) the competitive FCM, suitable when a

single out of many possible diagnoses must be reached, (b) a

distributed m-FCM for complex medical decision support

system where a large number of interacting factors are

involved, and (c) a hierarchical architecture with the m-FCM

where it receives information from all the subsystems in order

to accomplish a task, it makes decisions and it can plan

strategically. For each architecture, a corresponding example of

the FCM is described performing a medical decision support

function. The real examples are successful applications of the

architectures in the fields of language pathology, speech

pathology, and obstetrics illustrating the potential of the FCM

models in enhancing clinical judgments.

It is expected that the proposed FCM architectures for

MDSS will be further evaluated for the previously described

application areas and the results of the evaluation will help us

to select the best architecture and further improve it.

Clinicians have to evaluate the usefulness, applicability and

user friendliness of each of the developed tools before

promoting them available for incorporation into clinical

practice. Additionally, the implementation of the proposed

architectures in other areas of medical decision support will

be investigated.
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