
Fuzzy Cognitive Maps as a Tool for Modeling 

Construction Labor Productivity  

Seungjun Ahn, A. J. Antony Chettupuzha, Ronald 

Ekyalimpa, Stephen Hague and Simaan M. 

AbouRizk   

Department of Civil and Environmental Engineering 

University of Alberta 

Edmonton, Canada 

 

Chrysostomos D. Stylios 

Department of Computer Engineering 

Technological Educational Institute of Epirus 

Arta, Greece 

 

Abstract—Labor productivity is a fundamental building block 

of planning and controlling in construction, and therefore, 

predicting labor productivity levels for a given condition is very 

important in construction management. However, predicting 

labor productivity is extremely difficult due to a large number of 

factors that can affect productivity in perplexing ways. Another 

obstacle to predicting labor productivity is the qualitative nature 

and subjectivity of productivity factors. To address these issues, a 

soft computing technique called Fuzzy Cognitive Maps (FCMs) is 

proposed as a tool to model the complex inter-relationships 

between productivity factors based on expert knowledge, and for 

assessing the impact of the productivity factors on labor 

productivity. In this paper, the methodology for creating and 

using FCMs for this purpose is introduced, and then an exercise is 

presented for demonstration purposes. Additionally, issues 

identified from this exercise are described, and the way that 

FCMs can be practically used in the field for predicting labor 

productivity is also discussed in the paper.  

Keywords—Construction Labor Productivity; Fuzzy Cognitive 

Map (FCM); Knowledge representation; Soft computing  

I. INTRODUCTION
1
 

Construction labor productivity is defined as man-hours per 
unit quantity (e.g., man-hours/m

3
 for concrete, man-hours/ft

2
 

for formwork, and man-hour/ft for pipe rigging) [1]. Labor 
productivity tells us how much output can be/has been 
produced by a given labor input in construction processes. 
Labor productivity is a fundamental building block of 
construction planning and controlling, including cost 
estimating, scheduling, and performance tracking. Therefore, it 
is important to be able to reasonably predict labor productivity 
of construction processes to efficiently manage a construction 
project. 

However, predicting labor productivity is extremely 
difficult, and this is mainly due to a large number of factors—
whether known or unknown—that can affect labor productivity. 
The factors that have been verified to significantly affect labor 
productivity include weather [2], noise [3], health [4], 
motivation [5], skill level [6], fatigue [7], shift work [8], 
overtime [9], rework [10], communication method [11], 
material/equipment technology [12][13], material availability 
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[14], congestion and crowding in workspace [15], change 
orders [16], supervision [5], to name a few. These factors may 
be different from project to project due to the uniqueness of 
construction projects. Furthermore, these factors often have 
inter-related causal relationships [17], and have a non-linear 
relationship with labor productivity [18].  

Another problem in predicting labor productivity is the 
difficulty of quantifying the impact of productivity factors. For 
example, the impacts of workers’ conditions like healthiness, 
motivation, skill level, fatigue, and site conditions like 
supervision, workspace congestion and crowding, are 
extremely difficult to quantify due to the subjectivity and 
uncertainty inherent in these factors [18]. Additionally, labor 
productivity is affected by both factors that are quantitative 
(e.g., temperature) and qualitative in nature (e.g., shift), and the 
combined effect that these factors have on labor productivity is 
even more difficult to predict. Hence, construction labor 
productivity is a complex phenomenon, and developing precise 
numerical models of construction productivity might not be 
feasible [19].  

Given this background, the objective of this paper is to 
demonstrate the effectiveness of a soft computing technique 
called Fuzzy Cognitive Maps (FCM) as a tool for modeling 
construction labor productivity based on expert knowledge. 
The premise of this approach is that the knowledge of 
experts—who have prolonged experience in the field—on 
labor productivity is generalizable, reliable, and applicable to 
approximate reasoning and predicting the pattern of labor 
productivity and that this is especially true when multiple 
experts’ knowledge is combined. As mentioned previously, 
construction labor productivity is dependent on many inter-
related factors that are sometimes contradictory and/or can 
only be defined by subjective evaluations. Soft computing 
approaches can be a solution to capturing such elusive factors 
based on expert knowledge and representing and analyzing the 
dynamic behavior of a complex system while taking into 
account the nature of the variables in the real world—such as 
imprecision and uncertainty. Once constructed, FCMs can be 
used for conducting thought experiments for testing 
hypothetical scenarios—i.e., what-if analysis. Given that, this 
paper aims to demonstrate how FCMs can be used to model the 
complex inter-relationships among the productivity factors and 
to assess the impact of the factors on labor productivity.  
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This paper is organized as follows: In the next section 
(section II), the previous efforts to computationally model 
labor productivity are reviewed. In the following sections 
(section III and IV), an overview of FCMs is provided, and 
then, the methodology used in this research to create an FCM 
of construction labor productivity is described. Then, the 
results of the FCM, discussion of the results, and conclusions 
follow in the subsequent sections (section V and VI).    

II. PREVIOUS EFFORTS TO COMPUTATIONALLY MODEL LABOR 

PRODUCTIVITY 

A. Simulation  

In computer simulation, the main components, processes, 
and factors of a system are modeled as variables and 
computational rules, such that simulation runs can reproduce 
the behavior of the system under investigation. To account for 
the various factors that affect labor productivity and to assess 
the impact of the factors on construction operations, several 
simulation approaches have been proposed. Among them, 
discrete-even simulation has been most widely used. In 
discrete-event simulation, the processes of construction 
operations are represented as an array of events, and factors 
that would affect the processes are modeled as input variables, 
which are often defined as a stochastic variable (i.e., random 
variable) to quantify the impact of a given factor on the entire 
system’s performance in a statistical way.  

Computer simulation has been used for analyzing different 
types of construction processes, including pile construction 
[20], steel fabrication [21][22], drainage operation maintenance 
[23], pavement construction [24], pipe spool fabrication [25], 
pipe line construction [26][27], bridge construction [28], 
concrete production in a plant [29], and tunnel construction 
[30]. The factors that were accounted for in these models 
include weather conditions, contractor experiences, equipment 
breakdown, site conditions, work hours, worker fatigue, 
schedule delays, shifts, overtime, worker experiences, and 
project management practices.  

A major challenge in computer simulation for labor 
productivity is determining computational rules for the impact 
of productivity factors on labor productivity (e.g., the impact of 
experiences on an individual’s production rate), and 
determining statistical parameters of the input variables for the 
productivity factors. In response to these difficulties, other 
approaches to model labor productivity have been proposed, 
including expert systems (e.g., fuzzy logic-based expert 
systems) and other artificial intelligence methods (e.g., 
artificial neural networks). Also, hybrid approaches combining 
the simulation modeling approach with others have been 
proposed, such as the simulation-based fuzzy logic approach 
[26].  

B. Expert systems  

An expert system is defined as a computer system that is 
designed to emulate the knowledge and the decision-making 
ability of human experts. In expert systems, the knowledge is 
acquired from domain experts, and the knowledge base is 
explicitly represented by a set of rules, and these rules are used 
to produce a solution to a given problem by reasoning (i.e., 
rule-based approach). 

Fuzzy logic-based expert systems have been proposed 
several times as an approach to model construction 
productivity [19][26][31]. Problems in existing approaches to 
model labor productivity have been identified as: (1) the 
inability to deal with a large number of factors affecting 
productivity, (2) the inability to incorporate subjective 
variables, (3) the difficulties in obtaining data that is 
statistically significant, and (4) the difficulties in adapting 
models for different project contexts and factors [31]. It has 
been proposed that fuzzy expert system models can address 
these issues [31]. 

In fuzzy logic-based expert systems, knowledge about the 
factors affecting labor productivity can be obtained and 
expressed in linguistic forms, such as “if the supervision is 
good, labor productivity is high,” and “if the weather 
conditions are extremely bad, labor productivity is very low,” 
i.e., the same terminology that is used in daily construction 
management processes. Therefore, fuzzy logics deals with 
imprecision-inherent linguistic evaluations, and enables the 
processing of subjective variables in computerized decision 
support systems. However, identifying and obtaining the 
rules—which increase exponentially as the number of factors 
increase—has been identified as one of the main problems with 
this approach [31]. 

C. Artificial Neural Networks 

Artificial Neural Network (ANN) approach is a data-driven 
modeling approach which is facilitated by learning algorithms 
mimicking the cognitive learning process of humans. Using 
such algorithms, an ANN can be automatically constructed 
from data through trial and error.   

Due to its capability to learn patterns from historical data, 
ANN approach has been used for modeling the relationships 
between factors and labor productivity and for predicting labor 
productivity for a given condition. This approach has been 
applied to several different construction processes, and has 
shown promising results [18]. The construction processes that 
have been studied using this approach include formwork [32], 
concrete work [33], pipe installation [34], and pipe spool 
fabrication [18].  

Although ANNs have found many applications, the main 
challenges in applying ANNs in estimating and predicting 
construction labor productivity are the extensive data collection 
required for a network to learn, and the time consuming 
experimentation with ANNs required to find satisfactory 
behavior of the ANN. 

III. FUZZY COGNITIVE MAPS 

An alternative to the approaches reviewed in the previous 
section is the Fuzzy Cognitive Map (FCM). FCM was 
introduced by Kosko (1986) [43], who enhanced the cognitive 
maps theory that had been used in social and political sciences 
to analyze social decision-making problems. An FCM is a 
signed digraph structure that consists of fuzzy concepts and 
causal feedback relationships. FCM originates from the 
combination of Fuzzy Logic and Neural Networks—i.e., a 
neuro-fuzzy system [35]. An FCM models a system’s behavior 
in terms of interacting concepts. FCMs are built by experts 
using an interactive procedure of knowledge acquisition. The 



process of developing an FCM mimics the process of 
developing a cognitive map in human mind. Therefore, the 
development of an FCM is heavily dependent on the 
knowledge and judgment of experts. Once constructed, FCMs 
represent human knowledge, adapt the knowledge base, and 
allow for causal reasoning and predicting the system’s 
behavior [36].  

Figure 1 is a graphical illustration of an FCM. As shown in 
this figure, an FCM consists of nodes (Ci, Cj,…) representing a 
concept and edges (wij) representing a causal relationship 
between concepts. Each concept is a dimensionless, abstract 
variable that represents a state variable of the real system in 
question. The value of a concept can be determined by 
transforming a real value into an abstract value in the interval 
[0,1].  Therefore, modeling and simulating a system using 
FCMs has a qualitative nature. At time t, the state of an FCM is 
defined by the vector At of the values of the concepts (At =[C1, 

…, Cn]]  [0,1]), or in other words, a point in the fuzzy n-

dimensional state space. An edge wij ( [-1,1]) defines causal 

flows Ci  Cj between the concepts. With the graphical 
representation, it becomes clear which concept influences other 
concepts, and the degree of the influence. Therefore, the FCM 
approach permits thoughts and suggestions to be 
collected/aggregated in the construction of the graph by adding 
or deleting an interconnection or a concept.  

 

Fig. 1. A Fuzzy Cognitive Map Model 

Experts’ knowledge about the key principles/factors 
regarding the behavior of the system under investigation is 
critical in constructing FCMs. This knowledge determines the 
structure and the interconnections of the network. Since the 
concepts and interconnections can be defined in a fuzzy way, 
experts can use linguistic variables in order to describe the state 
and the inter-relationships of the concepts, and then the 
weights of the causal interconnections among concepts are 
determined by defuzzification [37]. 

Behind the graphical representation of the FCM, there is 
the mathematical model. The causal interconnections of an 
FCM can be expressed by an n × n matrix W, which contains 
all of the n

2
 rules or pathways in the causal web between the n 

concepts in the FCM. The state of an FCM can be expressed by 
a 1 × n vector A. Then, the dynamics of an FCM are dictated 
by these matrices. 

The value for each concept is calculated at every time step 
by the following rule [38][39]:  

   
     ∑   

         
     

   
   

             (1) 

where    is the value of concept    at time t;   
   is the value 

of concept    at time t-1;    is the interconnection from 

concept    to concept   , and f is a threshold function.  

The unipolar sigmoid function is the most widely used 

threshold function in FCMs, and λ ( > 0) determines the 

steepness of the continuous function f. The sigmoid function 

ensures that the calculated value of each concept will belong 

to the interval [0,1]. 

     
 

                    (2) 

In a vector algebra form, (1) can be rewritten as, 

                                (3) 

The new state vector    is computed by multiplying the 
state vector at time t-1 by the edge weight matrix W. The new 
state vector holds the new values for the concepts after the 
interaction among concepts in the FCM. Values of concepts are 
continuously updated by this equation until the FCM reaches 
an equilibrium point or a limit cycle. 

An FCM represents human knowledge about the dynamic 
behavior of a complex system. In other words, an FCM is a 
model about a system’s dynamic behavior in term of concepts 
and interrelationships among the concepts. Once constructed, 
FCMs can be used to qualitatively simulate the behavior of a 
system and perform the what-if analysis. Due to its 
effectiveness in representing a complex system’s behavior, and 
the ease of use [40], FCMs have been applied to a wide range 
of areas, including business and management, education, 
environmental science, engineering, and medicine [41].   

IV. DEVELOPMENT OF FCMS FOR CONSTRUCTION LABOR 

PRODUCTIVITY  

In order to demonstrate the effectiveness and practicality 

of FCMs for assessing the impacts of productivity factors on 

labor productivity, an exercise was conducted. In this exercise, 

three postdoctoral fellows in the domain of construction 

engineering and management at the University of Alberta 

acted as experts. The three postdoctoral fellows have each 

spent close to a decade in construction research, often in close 

collaboration on industry projects. The goal of this FCM was 

to model the general labor productivity phenomena in the 

construction industry. 

Knowledge acquisition was performed in a sequential 

process: (1) the identification of the concepts, and (2) the 

identification of the influence weight between concepts. To 

avoid missing principal concepts in the FCM—which has been 

identified as one of the most serious problems in knowledge 

acquisition for developing FCMs [40], the three experts had a 

focus group session in which they listed the principal concepts 

to be included in the FCM for construction labor productivity. 

As a result, twelve concepts were identified, as shown in 

Table 1. As mentioned previously, each concept in FCMs is a 

dimensionless, abstract variable, and it is characterized by a 



value between 0 and 1. For example, ‘Labor productivity level’ 

represents the level of labor productivity between the highest 

and the lowest level of labor productivity observed and 

perceived in construction projects.      

TABLE I.  CONCEPTS IN THE FCM FOR CONSTRUCTION LABOR 

PRODUCTIVITY 

Concepts Description 

Labor Productivity Level Efficiency of task performance 

Fatigue Exhaustion from work 

Morale Feeling positive about work 

Quality of Supervision Supervisor-worker interaction 

Adverse Work Environment 
E.g., temperature, humidity, 

precipitation, noise 

Competency of Workers Workers’ skill level and expertise 

Overtime 
Time spent outside regular working 

hours 

Rework 
Repetition of work due to errors in the 
previous work  

Excessive Work Pressure 
E.g., schedule pressure, cost-pressure, 

excessive workload 

Interruptions 

E.g., interruptions by 

material/equipment unavailability or 

safety problems 

Work Complexity Difficulty of tasks 

Quality of Organizational 
Management 

E.g., site layout, efficiency of schedule 

 

Then, each of the three experts provided their linguistic 

evaluations on the causal influence between the concepts on a 

9-point scale, based on their own knowledge: Positive very 

strong (µpvs), Positive strong (µps), Positive moderate (µpm), 

Positive weak (µpw), Neutral (µz), Negative weak (µnw), 

Negative moderate (µnm), Negative strong (µns), Negative very 

strong (µnvs). Fig. 2 shows the membership functions used for 

each linguistic response.  

 

Fig. 2. Membership functions for the linguistic variable “influence” 

 Next, the linguistic inputs were aggregated using the 

fuzzy logic algorithm, SUM. For this, a Java-based FCM 

analysis software tool, FCM Analyst v1.0, developed by 

Margaritis et al. in 2002 [42], was used. This software tool has 

capabilities for creating an FCM, such as creating concept 

nodes and interconnections between concept nodes, 

manipulating the concepts/weights matrices, and running 

simulations to show the behavior of the FCM model [42]. 

Additionally, the software tool allows users to enter both crisp 

values and fuzzy values—if it is a fuzzy value, the 

membership functions can be selected from triangular, 

Gaussian, and trapezoid functions, and aggregates the fuzzy 

values when multiple fuzzy values are entered—using either 

SUM or MAX method, and automatically produces the 

influence weights based on the fuzzy inputs using the 

defuzzification method of Center of Area or Bisector. Fig. 3 

shows an illustration of how each individual expert’s input is 

entered, and the multiple inputs are automatically aggregated 

and defuzzified in the software tool.     

 

Fig. 3. Illustration of entering fuzzy inputs and automatic aggregation in FCM 
Analyst v1.0  

The crisp values resulting from the defuzzification process 

represent the strength (i.e., weight) of causal influence 

between concepts. These values are expressed in a matrix 

form, where an entry wij of the matrix represents the causal 

influence from Concept i to Concept j (i.e., weight matrix W). 

The weight matrix W determined in this exercise is as below.          

 



V. RESULTS AND DISCUSSION  

As a next step, what-if experiments with the FCM were 
conducted for demonstration purposes. Specifically, two 
scenarios were tested using the FCM model. 

(1) Scenario 1: An extreme weather event occurs, and the 
overall worker skill level is lower than the standard, while 
other conditions are normal. This condition state is represented 
by:  

A0 =[0.5,0.5,0.5,0.5,1.0,0.2,0.5,0.5,0.5,0.5,0.5,0.5].     

(2) Scenario 2: A sudden increase in work pressure 
develops wherein the required work is highly complex, and the 
quality of supervision is weak, while other conditions are 
normal. This condition state is represented by:  

 A0 =[0.5,0.5,0.5,0.2,0.5,0.5,0.5,0.5,1.0,0.5,1.0,0.5]     

In both scenarios, the values of the concepts stopped 
changing approximately after the 3rd iteration, and were 
therefore deemed to reach an equilibrium. Figs. 4 and 5 show 
the simulation results for the two scenarios. As shown in these 
figures, simulation results demonstrated that the FCM’s 
behavior is interpretable; when a construction site is under 
adverse influences, such as extreme weather and low skill level 
(i.e., Scenario 1), or high level of work pressure and work 
complexity (i.e., Scenario 2), labor productivity will be 
significantly reduced, while undesirable situations such as 
rework and overtime will increase. The results of these 
scenarios will encourage future thought experiments among 
construction managers to identify ways to mitigate the adverse 
impacts of one or more factors. For example, one can 
experiment with the FCM to see to what extent the adverse 
impact can be mitigated by managerial efforts such as 
improved quality of supervision and/or reduced overtime and 
interruptions, using simulations. 

This exercise demonstrated the potential usefulness of 
FCMs for assessing the impact of productivity factors and 
predicting the levels of labor productivity in the field. Firstly, 
the exercise showed that FCMs can be a useful means to obtain 
and formalize the existing knowledge about labor productivity 
factors and to use it for project planning and controlling in 
future projects (i.e., evolutionary progress of knowledge of 
labor productivity in the field). As noted by Taber (1991), 
perhaps the greatest strength of the FCM approach is ease of 
use [40]. Experts can make their knowledge explicit by listing 
the concepts and constructing the causal interconnections 
between the concepts, which usually requires much less effort 
than rule-based approaches. Furthermore, the FCM allows 
experts to input their knowledge using linguistic variables, 
which are used in their daily routines, and thereby are intuitive. 
Also, the FCM allows multiple experts to collaboratively 
contribute to an FCM, which enhances the confidence in using 
the FCM, and the scope of FCMs can be extended. Secondly, 
once constructed, FCMs can be used as a simulation model to 
conduct what-if experiments, and this can be done very 
efficiently, as demonstrated in the examples presented 
previously.   

However, this exercise also demonstrated the requirements 
that have to be met to ensure the effectiveness and usefulness 

of the approach. Firstly, there is an issue of defining the 
concepts included in FCMs clearly enough to facilitate the 
effective communication of the represented knowledge. This is 
especially important when multiple experts collaboratively 
construct an FCM, and/or when FCMs are to be used by users 
other than the developers of the FCM. Therefore, great caution 
has to be exercised in the knowledge acquisition process, and if 
a data collection tool is used to elicit knowledge from experts, 
the tool has to be validated before use.  

Another important issue is how to combine the FCMs 
developed by multiple experts—representing multiple experts’ 
knowledge base—to construct one FCM that represents the 
collectively held knowledge base. Several researchers have 
paid significant attention to this issue [39][40]. These 
researchers suggested that when multiple FCMs are combined, 
credibility weights can be used to differentiate the level of 
expertise of each individual expert. The methods suggested by 
these researchers are based on the notion that credibility can be 
objectively derived from the level of consensus among experts 
and the distance between experts’ suggestions in the FCMs. An 
experiment with randomly constructed FCMs demonstrated the 
effectiveness of the approach for distinguishing the “real 
knowledge” from the noise [40]. Although this method was not 
tested in our exercise due to the limited number of experts in 
this exercise, it would be strongly recommended to use this 
kind of method when more than three experts are involved in 
constructing an FCM.  

Last but not least, the importance of having a specific scope 
for the FCM modeling has been recognized in the exercise. The 
reason is apparent: the causal relationship between two 
concepts—e.g., overtime and rework—may depend upon the 
specific context of the project type, of the region, or of the 
background culture. Therefore, the scope of an FCM modeling 
effort has to be clarified at the beginning, and the most suitable 
knowledge sources (i.e., domain experts) have to be 
identified—“A knowledge based reflects its sources.”[40].     

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, several different previous efforts to 

computationally model construction labor productivity have 

been reviewed, and based on the limitations observed in the 

previous approaches, the FCM has been proposed as an 

alternative. To demonstrate the effectiveness of FCMs for 

assessing the impacts of productivity factors and predicting 

the pattern of labor productivity in the field, an exercise has 

been presented. From the results of this exercise, it has been 

argued that FCMs can be a useful means of modeling the 

complex relationship between labor productivity factors, can 

be used for predicting labor productivity levels for a given 

condition, and also can be used for conducting experiments to 

find ways to improve labor productivity. FCMs essentially 

serve as a means by which industry practitioners’ experiential 

knowledge is made explicit, retained, and utilized for 

managing future projects. 

This paper has limitations that can be addressed in future 

research. Since the main objective of this paper is to 

demonstrate the effectiveness of FCMs as a tool for modeling 

construction labor productivity by showing an example, a 



simplistic approach was taken in the exercise with respect to 

the knowledge acquisition and the fuzzy logic processing. For 

example, simple assumed membership functions were used. 

More sophisticated methods to obtain membership functions 

for fuzzy variables are available in the literature, and these 

methods will need to be applied in the future. In addition, the 

sensitivity of the results to changes in the fuzzy operators was 

not tested in this research. This is another area this research 

will explore in the future. Additionally, the development of 

project type-specific FCMs for labor productivity will need to 

be pursued in the future. 
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Fig. 4. The value of the concepts at the equilibrium in the simulation (Scenario 1) 

 

 

Fig. 5. The value of the concepts at the equilibrium in the simulation (Scenario 2) 
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