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ABSTRACT: The catalytic reforming of naphta is one of the major refinery processes, designed to increase the octane
number of naphta or to produce aromatics. This paper presents a soft computing method for catalytic reforming units
performance monitoring. The method is based on Fuzzy Cognitive Maps, which are fuzzy digraph of fuzzy sets,
connected by edges. Edge values represent the causal relationship among the concept nodes. As for the problem of how
to determine the degree of causal relationship, a differential Hebbian learning developed by improving self-organizated
learning of neural networks is proposed. A naphta reforming kinetic model is developed for abnormal operation
conditions simulation.
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INTRODUCTION

Fuzzy cognitive map (FCM) is an oriented graph showing a causal relationship between different factors, wherein the
causal relationship is expressed by either the positive or negative sign for knowledge expressions. FCM expresses the
degree of this relationship. Beside a digital version of FCM proposed by Zhang (1988), Taber (1987) et al., proposed a
method of infering the expert weights. Gotoh (1989) used such a method for supporting a plant control system. Pelaez
and Bowles (1994) used FCM in Failure Modes Effects Analysis of causes and effects for device failure modes. FCM
are employed in QUANTA project to establish an European model of business performance and efectiveness criteria,
which complete existing quality models. Perusich and McNeese(1997) used FCM for data abstraction and synthesis in
decision making. Kosko and Dickerson (1994) have described undersea virtual world by means of FCM as a dynamical
system. This work used FCM as a monitoring tool for a naphta catalytic reforming unit.

NAPHTA REFORMING

Catalytic reforming converts low-octane virgin and cracked naphtas into high octane gasoline blendstocks. A number of
reactions take place during reforming over a dual function catalyst, the predominant reactions are:  dehydrogenation of
naphtenes into aromatics, cyclization of paraffins, paraffin isomerization and hydrocracking of paraffins. Due to coke
deposit the catalyst is regenerated at the end of an operation run. The hydrogen rich gas produced during catalyst
reforming is an important byproduct.
The unit consists of three or four adiabatically operated reactors with intermediate heating. After the last bed the
reformate is cooled and flashed. The reactors operate at temperatures between 460ºC and 540ºC, total pressure between
4 and 40 bar and molar H2 / naphta ratios between 3 and 8. The flash drum operates at 20-40ºC.
Catalytic reforming performance is controlled by a wide number of interdependant operating variables (Pistorius, 1985),
which makes process modelling a must for proper unit operation and performance monitoring. Process modeling of
catalytic reforming can be carried out using correlation models or kinetic models (Turpin, 1992).
Reforming is modelled as regressions of observed data. These equations predict properties useful in the design,
operation or evaluation of the unit.The development of correlation models is usually done by individual oil refiners
based on their operating experience.Correlations do not give information about the relationship between the operating
variables, and, as the catalyst losses activity the coefficient of the equations has to be recalculated. Usually the
performance of the unit is evaluated according to a base case.
Kinetic models can easily handle interdependent and forward/reverse reactions, and are excellent tools for predicting
individual components yield; they are based on a reaction network, and match the heat and mass balance of the unit
integrating the differential kinetic equations of the naphta compounds over the reactors. A proper kinetic model needs
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many differential equations and has to group the different hydrocarbon species into lumps for paraffins, napthenes and
aromatics of different carbon number; this fact leads to a complicated mathematical model.

FUZZY COGNITIVE MAPS IMPLEMENTATION

Fuzzy cognitive maps (FCM) are derived by expanding the cognitive maps proposed by Axelrod (1976). FCM are soft
computing tools which combine elements of fuzzy logic and neural networks (Mohr, 1997). As defined by
Juliano(1996), an FCM: M = ( CM, EM) over the finite universe X is a fuzzy graph that is a 2-tuple where:
- CM ∈ (0, 1)X is a fuzzy concept space of X,
- EM is a fuzzy multirelation, that is a finite sequence (e1, e2,....,eM) of relations on CM ∈ (0, 1)X.
Kosko(1986) defines FCM as a dynamical system that relates fuzzy sets and rules. An FCM has the topology of a
directed fuzzy graph with cycles or feedback. It is a set of nodes and edges. The concept nodes Ci are fuzzy sets or even
fuzzy systems. The edges eij define rules or causal flows Ci ⇒  Cj between the concept nodes. The value of a node
reflects the degree to which the concept is active in the system at a particular time. A high numerical value indicates
that the concept is strongly present. A negative or zero value - implementations vary - indicates that the concept is not
currently active or relevant  to the conceptual domain.Two conceptual nodes without a direct link are independent.
A simple FCM showing the relationship among the concepts, Research Octane Number (RON), Reactor Inlet
Temperature (RIT) and coke over the catalyst, appears in Figure 1. As the RIT increases the RON increases too, a
positive edge among them, but the cok also increases, influencing negatively, and requires higher RIT for the same
RON.
Comparing with the tree-structured inference knowledge expression, employed in conventional Expert Systems, FCM
are advantageous in respect of higher process rate attainable by its parallel processing capability, easy adaptability to
the inference containing feedback, and easy system unification by employing matrix expression(Kahaner, 1990).
FCMs allow users to compare their mental model with the real world, and because of their fuzzy logic elements,
extremely forgiving of uncertain information and they are a simple and clear way to represent causal relationships, as
process units operators does.
FCM dynamics depends on the dynamics of the concept nodes and causal edges. The edges eij are constant weights and
the nodes change in time. The state of the map is defined as:

C t+1 = F ( Ct E)
where:
Ct is a state vector, C = ( C1, C2, ...., Cn), with the values of each node of the FCM.
E is the adjacency matrix; an FCM with n nodes has n2, edges, which forms a matrix where an entry in the (i, j) element
denotes an edge between nodes, i, and, j. If two nodes are independent its edge is zero.
F is the threshold function, we can maintain stability by normalizing the state value. Many threshold functions are
available for this normalization; for the purpose of this work, we make the following assumptions:
- Edge values are on the range (-1, 1).
- The selected threshold function, the logistic signal function, is a continuous function and provides true fuzzy
conceptual node states. the function is:

Fi (Xi) = 1 / ( 1 + e-cXi
 )

where Xi = ( Ct E ).
At large values of the constant, c, the logistic function approaches discrete threshold functions. We have chosen, c = 5,
as a trade-off which favors the center of the range.
- Input and output values are normalized to a (0, 1) interval. This is done to avoid threshold function saturation. The
transformation is done in two steps; first each data in the data set is recalculated by means of:

x’ = x - X / σ
where X is the mean value, and σ is the standard desviation of the data set. Then x’ values are normalized to a (0, 1)
interval due to a linear transformation.

UNSUPERVISED LEARNING

The similarity of FCMs to neural networks permits unsupervised learning of causal relationships (Kosko, 1997). The
differential Hebbian learning law correlates concept changes or velocities. Given a discrete change in a concept value
∆Ci at time, t, and edge strenght eij ( t ),  between that conceptual node and the jth node in the FCM,

eij (t +1) =  eij (t) + ct { ∆Ci∆Cj -eij (t) }   if  ∆Ci ≠ 0
 eij (t +1) =  eij (t)                                     if  ∆Ci = 0
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If the concept values does not change, the edge weight is unchanged. The constant,ct  , is a learning coefficiente which
decreases in time, the value of the coefficient is given by

ct (t) = 0.1 { 1 - t / 1.1N }
where N is a constant controlling the rate of decrease, we have chosen a value of 5 for this constant. This procedure
permits train the FCM with real world data, until the value of the edges adjust the data.

NAPHTA REFORMING FCM

Given qualitative information about a domain, e.g. operation experience of a particular reforming unit, it is desirable to
infer an FCM. The implementation could vary depending on which is the object of the FCM. We have developed a
model involving the main reforming operation variables was developed:
- Reactor inlet temperatures; RIT - Reactor pressure; P
- Space velocity; LHSV - Research octane number; RON
- H2/ naphta ratio; HHC - Product ( reformate, gas) yields; C5+, H2.
- Feed characteristics; naphtene plus twice aromatics, N+2A
Each of this variables is a node in the FCM, it’s value ranges into the operation values and has been normalized in a (0
,1) interval; the FCM is shown in Figure 2.
The adjancency matrix E, states the causal relationship into an operation period, each pair (i, j), from the matrix,
represents the causal interaction among two variables; as shown in the following table:

* RIT LHSV N+2A HHC P RON C5+ H2
RIT 0 0 0 0 0 + - -

LHSV + 0 0 0 0 - + -
N+2A - 0 0 0 0 + + +
HHC 0 0 0 0 0 - - -

P 0 0 0 + 0 - - -
RON 0 0 0 0 0 0 - -
C5+ 0 0 0 0 0 0 0 +
H2 0 0 0 + 0 0 0 0

 Model causal relationships may change over time as a result of catalyst deactivation or feed contaminant upset. In this
case, it is advisable to periodically infer an FCM and compare the adjacency matrix to detect such changes. The value
of the edges can be infered from the unit operation data by means of unsupervised learning..

FCM TRAINING

The training procedure for the reforming FCM has been developed in two ways:
-Employing published operation data (Little, 1983).The data covers a naphta reforming run between regenerations and
show the effect of progressive deactivation on unit performance.The run has been divided in several data sets and each
set is represented by an adjacency matrix where we can detect causal variations on unit performance.The frequency of
FCM training is given by the accuracy of the real data with the calculated ones.The sum square error, R, which
represents the error between the predicted and targeted values is employed to evaluate the ability of the network.
- Employing a reforming kinetic model. One of the objects of this work is obtain a method which allows abnormal
operation detection in a naphta reforming unit. This conditions are catalyst deactivation, low or high chloride level over
the catalyst, poisoned catalyst, etc....; published operational data of this upsets are difficult to obtain; this has lead us to
develop a kinetic model of the naphta reforming, as a modelling tool for that situations.

NAPHTA REFORMING KINETIC MODEL

As suggested by Henningsen et al (1970)., a general model of the reforming process is outlined in
the following reaction network. The reaction rates are represented by simple first order kinetics in
partial pressure of the hydrocarbons, we assume the pressure drop throught the reactors to be unimportant to make our
asumption consistent. Naphta components are lumped into the main components: Cracked products, isoparaffins, n-
paraffins, 5-ring naphtenes, 6-ring naphtenes and aromaticas. Hydrogen production is calculated stoichiometrically. Gas
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composition is calculated from a flash calculation according to Marin et al.(1983),. The proposed reaction model forms
a set of differential equations that describes the concentration and temperature profiles in a reforming reactor system:

dX /dw  = Σ α Kn Pi

where X represents a naphta component, w is catalyst weight, Kn is the kinetic constant for reaction n , α is the
stochiometric coefficient for each network reaction and Pi is the partial pressure of component i.

Kn = k exp (- E/RT) k = πx CA AF
AF is a catalyst activity factor, CA is the acid level of the catalyst and πx is a pressure factor. E is the activation energy

dT / dw = Σ KnPi (-∆Hi ) / ΣFiCpi

T is the reactor temperature, ∆Hi is the heat of reaction, Cp  is the specific heat and Fi is the molar flow of specie i.
Differential equations system was solved by means of “Gear” method.
The reaction network, the values for the Arrhenius dependency and the heat of reaction are shown in the table.These
values has been obtained from Hennigsen et al.(1970), Marin and Froment(1982), Taskar and Riggs (1997), and
Kugelman(1976). The type of catalytic active center is also shown. The naphta components are identified by: C, ACP,
ACH, NP, IP, AR; corresponding to: cracked products, 5-ring naphtenes, 6-ring naphtenes, n-paraffins, isoparaffins and
aromatics.

REACTION Frequency Factor Activation Active Center Heat of Reaction
Cal/mol Cal/mol

NP →→→→ C 1,76 E13 55000 Acid -12000
ACH →→→→ NP 3,23 E10 45000 Acid/Metallic -7300
NP→→→→ ACH 1,077 E10 45000 Acid/Metallic 7300
ACP →→→→NP 2,40 E9 45000 Acid/Metallic -14400

NP →→→→ ACPC 1,08 E10 45000 Acid/Metallic 14400
IP→→→→ ACH 1,08 E10 45000 Acid/Metallic 9100
ACH →→→→ IP 3,23 E11 45000 Acid/Metallic -9100

IP→→→→ NP 3,25 E8 40000 Acid 1900
NP →→→→ IP 3,24 E9 40000 Acid -1900

IP →→→→ ACP 1,08 E10 45000 Acid/Metallic 16200
ACP→→→→ IP 3,24 E10 45000 Acid/Metallic -16200

ACH→→→→ACP 1,61 E10 40000 Acid 7100
ACP→→→→ ACH 1,61 E9 40000 Acid -7100
ACH→→→→ AR 7,24 E8 30000 Metallic 49900

Inclusion of the AF and AC factors allows the simulation of deactivated catalyst . Catalyst deactivated behaviour is
modelled including AF factor into the kinetic equations. AF is a value between (0, 1) that is lower as the catalyst is
more deactivated.
As pointed out by Parera et al.(1988), the metallic function suffers a decrease in the beginning of the unit run, during
the lineout period, and then is stabilized till the end of the run. Only the acid function could vary due to unit upsets, AC
factor variation allows this feature. AC value also varies into (0, 1); where 0 means a 0,6% chloride and 1 is a 1,3 %
chloride over the catalyst.
Once we have obtained reforming data from abnormal conditions, the question of how to measure this situation is done.
Adjacency matrix are calculated for operational data sets and for deactivated condictions.Edge’s values from the data
sets and deactivated data are compared and the goodnes of fit among them is measured employing sum square error
function. Closer results to deactivated adjacency matrix implies a less active catalyst.

RESULTS

In Figure 3 some of the operational data are displayed, the data were selected from the middle of the cycle, where
deactivation of the catalyst has a low rate. Also naphta components transformation, according the reaction network, into
to the reaction system is shown.
Training the proposed FCM with the operational data, and following the outlined procedure, the adjacency matrix is
obtained for two data set, the data represents a period of sixty correlative days. The matrixs are shown in Figure 4,
correlative matrixs are compared; nº1 and nº2 matrix are similar, a slight increase, 0.36 to 0.42, in the N+2A⇒RON
egde could indicate a better quality of the treated charges.
The nº3 matrix shows the deactivation matrix obtained from the kinetic model with a high deactivation coefficient; and
the same operational data; changes in the LHSV⇒RON edge, -0.28 to -0.39; also in the RIT⇒RON edge, 0.72 to 0.56;
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this changes are a signal of catalyst deactivation, where the influence of RIT increase is lower than before.The N+2A⇒
RON edge, 0.36 to 0.01, show that quality of the charge has a low influence on the RON. FCM fitting goodness
between data set nº1, nº2 and the ideal FCMs for deactivated catalyst is shown. From the results; 0,02 to 0,03; we can
conclude that Data Set nº2 matchs better deactivated matrix, it  represents a more deactivated catalyst performance than
Data Set nº1.

A more comprenhensive reforming FCM is shown in Figure 5; the model includes a “Cycle Length” node where we can
analyze the effect of the operation conditions on the run. Each process unit has it´s own "bottleneck" points, which
influence the global performance; the FCM proposed does not represent any particular unit, and each operator model
could vary, including or avoiding the proposed nodes.

CONCLUSIONS

FCMs are soft computing tools that can be used as cognitive model of decision making process for data synthesis and
abstraction.The map is constructed from the cause/effect reasoning of the decision maker about the problem they are
addressing.A key advantage of FCMs is that attributes with different metrics can be seamlessly incorporated and
compared.
A naphta reforming monitoring method based on FCM is proposed; the model enables unit troubleshooting and can
represent operators thinking in a flexible way .FCM can also be trained using an unsupervised learning algorithm.The
comparation among the adjacency matrixs obtained from training show causal changes in the unit performance.
A naphta kinetic model has been developed for abnormal operation conditions simulation; ideal structures are compared
to operational data set by means of a fitting measurement procedure.
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Figura 1.RON cause/effect FCM

Figure 2.Naphta Reforming FCM
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Figure 3

Operational Data
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Figure 4 Adjacency Matrix Analysis

DATA SET nº1
LHSV RIT N+2A C5+ RON H/HC Pres. %H2

LHSV 0 0.12 0 0.37 -0.28 0 0 0
RIT 0 0 0 -0.63 0.72 0 0 -0.26

N+2A 0 -0.09 0 0.22 0.36 0 0 0.27
C5+ 0 0 0 0 0 0 0 0.72
RON 0 0 0 0.19 0 0 0 -0.22
H/HC 0 0 0 -0.13 -0.65 0 0 -0.53
Pres. 0 0 0 -1 -0.46 +0.76 0 -0.42
%H2 0 0 0 0 0 0.26 0 0

DATA SET nº2
LHSV RIT N+2A C5+ RON H/HC Pres. %H2

LHSV 0 0.12 0 0.36 -0.26 0 0 0
RIT 0 0 0 -0.64 0.74 0 0 -0.27

N+2A 0 -0.09 0 0.19 0.42 0 0 0.28
C5+ 0 0 0 0 0 0 0 0.70
RON 0 0 0 0.16 0 0 0 -0.24
H/HC 0 0 0 -0.13 -0.68 0 0 -0.53
Pres. 0 0 0 -1 -0.41 0.67 0 -0.43
%H2 0 0 0 0 0 0.14 0 0

DEACTIVATED CATALYST
LHSV RIT N+2A C5+ RON H/HC Pres. %H2

LHSV 0 0.12 0 0.4 -0.39 0 0 0
RIT 0 0 0 -0.60 0.56 0 0 -0.29

N+2A 0 -0.09 0 0.29 0.01 0 0 0.32
C5+ 0 0 0 0 0 0 0 0.67
RON 0 0 0 0.29 0 0 0 -0.24
H/HC 0 0 0 -0.19 -0.46 0 0 -0.52
Pres. 0 0 0 -0.91 -0.45 +0.27 0 -0.39
%H2 0 0 0 0 0 0.09 0 0
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DEACTIVATION MEASUREMENT
Edge Data Set 1 Data Set 2 Deactivated (V1-Vd)2 (V2-Vd)2

Edges values Edges values Edges values
LHSV-RIT 0.12 0.12 0.12 0.00 0.00
LHSH-C5+ 0.37 0.36 0.40 0.00 0.00
LHSV-RON -0.28 -0.26 -0.39 0.01 0.02

RIT-C5+ -0.63 -0.64 -0.60 0.00 0.00
RIT-RON 0.72 0.74 0.56 0.03 0.03

RIT-H2 -0.26 -0.27 -0.29 0.00 0.00
N+2A-RIT 0.09 -0.09 -0.09 0.03 0.00
N+2A-C5+ 0.22 0.19 0.29 0.00 0.01
N+2A-RON 0.36 0.42 0.01 0.12 0.17

N+2A-H2 0.27 0.28 0.32 0.00 0.00
C5+-H2 0.72 0.70 0.67 0.00 0.00

RON-C5+ 0.19 0.16 0.29 0.01 0.02
RON-H2 -0.22 -0.24 -0.24 0.00 0.00

HHC-C5+ -0.13 -0.13 -0.19 0.00 0.00
HHC-RON -0.65 -0.68 -0.46 0.04 0.05

HHC-H2 -0.53 -0.53 -0.52 0.00 0.00
P-C5+ -1.00 -1.00 -0.91 0.01 0.01
P-RON -0.46 -0.41 -0.45 0.00 0.00
P-HHC 0.76 0.67 0.27 0.24 0.16
P-H2 -0.42 -0.43 -0.39 0.00 0.00

H2-HHC 0.26 0.14 0.09 0.03 0.00
Mean Value 0.03 0.02

Figura 5. Complex Naphta Reforming FCM
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