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Abstract Fuzzy Cognitive Maps (FCMs) are a soft computing technique that fol-
lows an approach similar to human reasoning and human decision-making process,
considering them a valuable modeling and simulation methodology. FCMs can suc-
cessfully represent knowledge and experience, introducing concepts for the essential
elements and through the use of cause and effect relationships among the concepts
Medical Decision Systems are complex systems consisting of irrelevant and relevant
subsystems and elements, taking into consideration many factors that may be com-
plementary, contradictory, and competitive; these factors influence each other and
determine the overall diagnosis with a different degree. Thus, FCMs are suitable
to model Medical Decision Support Systems and the appropriate FCM structures
are developed as well as corresponding examples from two medical disciplines, i.e.
speech and language pathology and obstetrics, are described.

1 Introduction

Fuzzy Cognitive Maps (FCMs) are a modeling and simulation methodology based
on an abstract conceptual representation of any system. In fact, they are a com-
putational intelligence modeling and inference methodology suitable for modeling
complex processes and systems that are systems consisted of a great number of
highly related and interconnected elements and subsystems. FCMs can successfully
represent knowledge and experience, introducing concepts for the essential elements
and through the use of cause and effect relationships among the concepts. They are
used to develop models of aggregated behavior and inferring models that govern the
components and interaction from large amount, possibly incomplete and uncertain
data (Kosko 1992; Jang et al. 1997; Stylios and Groumpos 2000).

Medical Decision Systems have to consider a high amount of data and infor-
mation from interdisciplinary sources (patient’s records and information, doctors’
physical examination and evaluation, laboratory tests, imaging tests etc) and, in ad-
dition to this, medical information may be vague, missing or not available. Further-
more the Medical Diagnosis procedure is a complex one, taking into consideration
a variety of inputs in order to infer the final diagnosis. Medical Decision Systems
are complex systems consisting of irrelevant and relevant subsystems and elements,
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taking into consideration many factors that may be complementary, contradictory,
and competitive; these factors influence each other and determine the overall diag-
nosis with a different degree. It is apparent that Medical Decision Support Systems
require a modeling tool that can handle all these challenges and at the same time to
be able to infer a decision. An Advanced Medical Decision Support System must
be capable of extracting causal knowledge from the appropriate medical domain,
building a causal knowledge base, and making inference with it. FCM is as a major
vehicle of causal knowledge representation and inference (Lee and Kim 1998).

Kosko (1986) first introduced expanded cognitive maps in the engineering area
to describe the cause and effect between concepts. This primitive FCM used crisp
values {-1, 0, 1} to describe causality and used concepts and dis-concepts in or-
der to describe positive or negative concepts. The same period a first attempt to
develop a generic system FCM for decision analysis proposed the POOL2 where
both negative and positive assertions are weighted and kept separately based on the
negative-positive-neutral (NPN) interval [-1,1] (Zhang et al. 1989), (Zhang et al.
1992).

FCMs attracted the interest of many researchers from different areas. FCMs were
used to represent knowledge (Taber 1991), to model complex dynamical systems,
such as social and psychological processes and organizational behavior (Craiger
et al. 1996), and as an advanced artificial intelligence approach for engineering
applications, (Jain 1997). FCMs were used for fault detection (Pelaez and Bowles
1996), and modelling process control and supervision of distributed systems (Stylios
et al. 1999; Stylios and Groumpos 2004;). Other research efforts introduced FCMs
to analyze urban areas (Xirogiannis et al. 2004), to represent the management of
relationships among organizational members in airline service (Kang and Lee 2004)
and to modeling software development project (Stach and Kurgan 2004; Stach et al.
2004). FCMs have been used for web-mining inference amplification (Lee et al.
2002) (Kakolyris et al. 2005). Finally, FCMs have been used successfully in the
medical diagnosis and decision area; specifically, they have been used to model the
complex process of radiotherapy (Papageorgiou et al. 2003), for differential diag-
nosis of specific language impairment (Georgopoulos et al. 2003) and for diagnosis
and characterization for tumor grade (Papageorgiou et al. 2006).

An FCM is an interconnected network of concepts. Concepts represent variables,
states, events, trends, inputs and outputs, which are essential to model a system. The
connection edges between concepts are directed and they indicate the direction of
causal relationships while each weighted edge includes information on the type and
the degree of the relationship between the interconnected concepts. Each connection
is represented by a weight which has been inferred through a method based on
fuzzy rules that describes the influence of one concept to another. This influence
can be positive (a promoting effect) or negative (an inhibitory effect). The FCM
development method is based on Fuzzy rules that can be either proposed by human
experts and/or derived by knowledge extraction methods (Stylios et al. 1999).

This chapter describes FCM structures suitable for Medical Decision Support
Systems as well as corresponding examples from medical disciplines. First, the
Competitive FCM and its applicability in differential diagnosis of two language
disorders is presented. Next a distributed m-FCM is described and an example for
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the differential diagnosis of a speech disorder is discussed. Finally, a hierarchical
structure for FCMs is presented and the usage of this hierarchical approach in an
obstetrics decision support problem supporting the obstetricians on how to proceed
during labor is analyzed.

2 Fuzzy Cognitive Maps

FCMs are a soft computing technique that follows an approach similar to human
reasoning and the human decision-making process. Soft computing methodologies
have been investigated and proposed for the description and modeling of complex
systems. An FCM looks like a cognitive map, it consists of nodes (concepts) that
illustrate the different aspects of the system’s behavior. These nodes (concepts) in-
teract with each other showing the dynamics of the model. In the case of system
modeling, the FCM is developed by human experts who operate/supervise/know
the system and its behavior under different circumstances in such a way that the
accumulated experience and knowledge are integrated in a causal relationship be-
tween factors/characteristics/components of the process or system modeled (Stylios
and Groumpos 2004).

Fuzzy Cognitive Maps can be constructed either by actual experts or based on
transforming expert knowledge from the literature. It is a knowledge-based method-
ology that utilizes the knowledge and experience of experts. It is accepted that the
perceptions of experts create a subjective rather than objective model of the system.
The main concern is to determine and describe which elements constitute the model
and what elements influence other elements as well as the degree of this influence.
There is an inference mechanism that describes the relations among elements as
fuzzy causal relationships. Different values of influence are recommended and ac-
cepted; this is the main strength of this method. FCMs are ideal for knowledge and
conceptual representation of complex systems in a soft computing way where the
concepts of the system and their relationships are mainly fuzzy and not precisely
estimated.

Experts design and develop the fuzzy graph structure of the system, thus the FCM
describes the perception of experts about the system. Experts determine the struc-
ture and the interconnections of the network using fuzzy conditional statements.
Experts’ concern is to describe whether one concept influences another. Cause and
effect relations among concepts are the basis of expectations and this is important
in every system trying to model and replicate brain-like intelligence. Experts use
linguistic variables in order to describe the relationship among concepts, and then
all the linguistic variables are combined and so the weights of the causal intercon-
nections among concepts are concluded. The simplest FCMs act as asymmetrical
networks of threshold or continuous concepts and converge to an equilibrium point
or limit cycles. At this level, they differ from Neural Networks in the way they
are developed as they are based on extracting knowledge from experts. FCMs have
non-linear structure of their concepts and differ in their global feedback dynamics
(Papageorgiou et al. 2004).
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Given two events that are represented by two concepts A and B, in FCM terms,
the main questions that have to be answered are:

i) Does event A cause B or vice versa?
ii) What is the strength of the causal relationship?

Causality plays a key role in any knowledge-based system. The issue of how
to understand and interpret the existing cause and effect relations is central to any
effort to design systems that have some human like intelligence. The main prob-
lems concerning causality in that context are the extraction and elicitation of causal
knowledge, its representation and its use. In the general approach, causal informa-
tion emerges from statistical data and information, by looking at data that occur
simultaneously, but it is clear that the co occurrence of data, although most likely
correlated, does not always mean that the data are causally linked.

2.1 Mathematical Representation of Fuzzy Cognitive Maps

The graphical illustration of an FCM is a signed directed graph with feedback, con-
sisting of nodes and weighted arcs. Nodes of the graph stand for the concepts that
are used to describe the behavior of the system and they are connected by signed and
weighted arcs representing the causal relationships that exist between the concepts
(Fig. 1).

Each concept is characterized by a number Ai that represents its value and it
results from the transformation of the fuzzy real value of the system’s variable, for
which this concept stands, in the interval [0,1]. Between concepts, there are three
possible types of causal relationships that express the type of influence from one
concept to the others. The weights of the arcs between concept Ci and concept C j

could be positive (Wij > 0) which means that an increase in the value of concept
Ci leads to the increase of the value of concept C j , and a decrease in the value of
concept Ci leads to the decrease of the value of concept C j . Or there is negative
causality (Wij < 0) which means that an increase in the value of concept Ci leads
to the decrease of the value of concept C j and vice versa.

The value Ai of concept Ci expresses a degree, which is related to its corre-
sponding physical value. Ateach simulation step, the value Ai of a concept Ci is

Fig. 1 The Fuzzy Cognitive
Map model
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calculated by computing the influence of other concepts C j ’s on the specific concept
Ci following the calculation rule:

Ai
(k+1) = f

⎛
⎜⎜⎝Ai

(k) +
N∑

j �=i
j=1

A j
(k) ·w j i

⎞
⎟⎟⎠ (1)

where A(k+1)
i is the value of concept Ci at simulation step k + 1, A(k)j is the value

of concept C j at simulation step k, w j i is the weight of the interconnection from
concept C j to concept Ci and f is the sigmoid threshold function:

f = 1

1 + e−λx
(2)

where λ > 0 is a parameter that determines its steepness. In this particular approach,
the value λ = 1 has been used. This function is selected since the values Ai of the
concepts, lie within [0, 1].

2.2 Method to Construct Fuzzy Cognitive Maps

The development and construction method of FCMs has great importance to suf-
ficiently model any system. The proposed method is dependent on a group of ex-
perts who operate, monitor, supervise the system. This methodology extracts the
knowledge from the experts and exploits their experience of the system’s model and
behavior (Stylios and Groumpos 2000).

The group of experts determines the number and kind of concepts that comprise
the FCM. An expert from his/her experience knows the main factors that describe
the behavior of the system; each of these factors is represented by one concept of the
FCM. Experts know which elements of the systems influence other elements; for the
corresponding concepts they determine the negative or positive effect of a concept
on the others, with a fuzzy degree of causation. In this way, an expert transforms
his/her knowledge in a dynamic weighted graph, the FCM. Experts describe the
existing relationship between the concepts and thus, justify their suggestions. Each
expert determines the influence of one concept on another as “negative” or “posi-
tive” and then evaluates the degree of influence using a linguistic variable, such as
“strong influence”, “medium influence”, “weak influence”, etc.

More specifically, the causal interrelationships among concepts are declared us-
ing the variable Influence which is interpreted as a linguistic variable taking values
in the universe U=[−1, 1]. Its term set T(influence) is suggested to comprise nine
variables. Using nine linguistic variables, an expert can describe in detail the in-
fluence of one concept on another and can discern between different degrees of
influence. The nine variables used here are: T(influence)={negatively very strong,
negatively strong, negatively medium, negatively weak, zero, positively weak,
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Fig. 2 Membership functions of the linguistic variable Influence

positively medium, positively strong and positively very strong}. The corresponding
membership functions for these terms are shown in Fig. 2 and they are μnvs, μns ,

μnm , μnw,μz, μpw,μpm , μps and μpvs .
Thus, every expert describes each interconnection with a fuzzy linguistic variable

from the set, which correspond to the relationship between the two concepts and
determines the grade of causality between the two concepts. Then, all the proposed
linguistic variables suggested by experts, are aggregated using the SUM method and
an overall linguistic weight is produced, which with the defuzzification method of
Center Of Gravity (COG) (Lin & Lee 1996), is transformed to a numerical weight
W ji , belonging to the interval [−1, 1]. A detailed description of the development of
FCM model is given in (Stylios and Groumpos 2004).

This FCM development approach utilizes the knowledge and experience of ex-
perts asking them to describe the existing causal relationship using Fuzzy rules.
Since a knowledge base reflects its sources, it is critical to identify suitable
knowledge sources, i.e. domain experts taking into account perceived expertise
level. Each expert draws an FCM and these are easily combined, leading to the
combined FCM being potentially stronger than an individual FCM because the in-
formation is derived from a multiplicity of sources, making point errors less likely
(Stylios et al. 1999).

3 Medical Decision Support Systems Based
on Fuzzy Cognitive Maps

When medical experts are called upon to make a decision they take into considera-
tion a variety of factors (concepts) giving each one a different degree of importance
(weight). The description, characteristics and information of the factors they use
may be complementary, similar, conflicting, vague, or even incomplete (Zeleznikow
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and Nolan 2001). Medical experts have a conceptual model in mind by which they
process these factors and their degrees of importance, making comparisons, inte-
grating the available information, and differentiating their importance, thus, finally
reaching a decision out of a number of alternative potential decisions. A well known
approach for designing a medical decision support system involves the process of
mapping experts’ knowledge concerning the decision into a computer program’s
knowledge base. One can create a representation of the experts’ knowledge using
causal concept maps, which are developed by considering experts as the creators of
the “map” that explicitly represents their expert knowledge drawn out as a diagram.
In essence, this is an integrated interactive, graphic diagram of each expert’s mental
model of the procedure to reach a decision. Concepts of the map are factors that
are usually considered to reach a decision, as well as the potential decisions. In
the graphical form of a cognitive map the concepts are the nodes. The “causal”
component of these maps refers to the cause-effect relationships that hold between
factors involved in the decision and the possible decisions and between different
the factors themselves. The cause-effect relationships are connections between the
nodes and are depicted in the graphical form as signed directed edges from one node
(the causing concept) to another node (the affected concept). Causal knowledge gen-
erally involves many interacting concepts that make them difficult to deal with, and
for which analytical techniques are inadequate (Park and Kim 1995). A cognitive
map is a technique adequate for dealing with interacting concepts (Chaib-draa and
Desharnais 1998).

The type of cognitive maps proposed here for developing the medical decision
support systems are Fuzzy Cognitive Maps. Where the values of the nodes them-
selves and the weightings of the connections are expressed using a fuzzy (linguistic
value), such as those described in the previous section. This is an appropriate mod-
eling technique for the medical decision support system since the weighting in a
human reasoning decision process almost never carries an exact numerical value.

The area of Medical Diagnosis and Medical Decision Support is characterized
by complexity requiring the investigation of new advanced methods for model-
ing and development of sophisticated systems. Medical Decision Support Systems
(MDSSs) have attracted the interest of many researchers and still considerable ef-
forts are under way. Especially for MDSS, FCMs have been successfully applied
(Georgopoulos et al. 2003; Papageorgiou et al. 2003; Georgopoulos and Stylios
2005).

4 Competitive FCM for Medical Diagnosis

A specific type of MDSS for differential Diagnosis has been proposed where
a new structure, the Competitive Fuzzy Cognitive Map (CFCM) is presented
(Georgopoulos et al. 2003). The CFCM introduced the distinction of two main kinds
of concepts: decision-concepts and factor-concepts. Figure 3 illustrates an example
CFCM model which is used to perform medical decision/diagnosis, and includes
both types of concepts of the FCM and the causal relations among them. All the
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Fig. 3 A conceptual model for Medical Diagnosis

concepts can interact with each other and determine the value of diagnosis concepts
that interest us thus indicating the final diagnosis.

In the CFCM model, each decision concept represents a single decision/diagnosis,
which means that the decision concepts must be mutually exclusive because the
MDSS intention is to infer always only one diagnosis. This is the case of most
medical applications, where, according to symptoms, medical professionals have to
conclude to only one diagnosis and then must determine, accordingly, the treatment.
It is well known that the medical diagnosis procedure is a complex process that has
to take under consideration a variety of interrelated factors, measurements and func-
tions. This is the case of any real world diagnosis problem, where many different
factors are taken into consideration. In carrying out any diagnosis procedure, some
of these factors are complementary, others are similar and others conflicting, and
most importantly, factors influence other factors.

The factor-concepts can be considered as inputs to the MDSS such as patient
data, observed symptoms, patient records, experimental and laboratory tests etc,
which can be dynamically updated based on the system interaction, whereas the
decision-concepts are considered as outputs where their estimated values outline
the possible diagnosis for the patient. The factor-concepts can be interrelated and
they partially influence the diagnosis. For such a situation, FCM are suitable as their
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strength is their ability to describe systems and handle situations where there are
feedback relationships and relationships between the factor concepts. Such inter-
connections are shown in Fig. 3 where the “competitive” interconnections between
the diagnosis concepts are also illustrated.

4.1 CFCM for Dyslexia and Specific Language Impairment

Dyslexia and Specific Language Impairment (SLI) are frequent developmental dis-
orders that may have a serious impact on an individual’s educational and psychoso-
cial life. Both are considered as important public health problems since they affect
the lives of many individuals. Prevalence studies report percentages between 3%
and 15% for dyslexia and 3% to 10% for SLI.

In general terms, developmental dyslexia is identified if a child has poor liter-
acy skills despite adequate intelligence and opportunities to learn. SLI is diagnosed
when oral language lags behind other areas of development for no apparent reason.
Although, these two developmental disorders have separate and distinct definitions,
they share many similar symptoms and characteristics that can make it difficult for
clinicians to differentiate between them.

Specifically, in several studies that have investigated the reading skills of chil-
dren with SLI, literacy problems (high incidence of reading difficulties) have been
documented at an early age of these children. Similarly, it has also been found that
many dyslexic children show a history of language impairment.

In the current differential diagnosis model there are two diagnosis concepts,
i.e. the two disorders that are studied: Concept 1 Dyslexia and Concept 2 Specific
Language Impairment (SLI). Two types of factors are the factor-concepts that are
considered as measurements that determine the result of the diagnosis in this model
and they are:

• Concept 3 Reduced Lexical Abilities
• Concept 4 Decreased MLU
• Concept 5 Problems in Syntax
• Concept 6 Problems in Grammatical Morphology
• Concept 7 Impaired or Limited Phonological development
• Concept 8 Impaired Use of Pragmatics
• Concept 9 Reading Difficulties
• Concept 10 Problems in Writing and Spelling
• Concept 11 Reduced Ability of Verbal Language Comprehension
• Concept 12 Difference between Verbal and Nonverbal IQ
• Concept 13 Heredity
• Concept 14 Impaired Sociability
• Concept 15 Impaired Mobility
• Concept 16 Attention Distraction
• Concept 17 Reduced Arithmetic Ability
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Fig. 4 Fuzzy Cognitive Map Differential Diagnosis of Dyslexia and SLI

The connections between the concepts are shown in Fig. 4 by arcs. However, due
to limited space the sign and weights of the connections are not shown in Fig. 4, but
can be determined from Table 1 (Malandraki and Georgopoulos 2006).

Four case studies from the literature are examined here, two on Dyslexia (Psych-
corp 2005; Pierson 1999) and two on SLI (Van der Lely 1997; McGregor and Appel
2002), as experimental clinical cases that were used to run the differential diagnosis
model. Three of the cases were school-age children and one was a preschool child.

Table 1 Weights between Factor and Disorder concepts

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 -1
C2 −1
C3 + M-H + VVH +L +L +L +L
C4 + L-M +VH
C5 + M-H + VVH +L +L
C6 + M-H + VVH +L +L
C7 +VVH + H +L +L +L
C8 NONE ∗ +M-H
C9 +VVH +M-H +L +L +L +L
C10 +VVH +M +L +L
C11 + L +M
C12 +VVH +VVH
C13 +VH +M-H
C14 +M +M-H
C15 CD +M +L +L
C16 +M-H +M
C17 CD +M-H

∗No consistent and clear relationship was reported in the literature regarding the pragmatic aspects
of language of children with dyslexia



Fuzzy Cognitive Maps Structure for Medical Decision Support Systems 161

Details on the history and the assessment results of these cases can be found in
Psychcorp 2005, Pierson, 1999, Van der Lely 1997 and McGregor and Appel 2002.

In Table 2 the factors used by the model in the diagnosis of each case are pre-
sented. In addition, the degree of occurrence of each factor in each case study is
denoted with similar qualitative degrees of very-very high, very-high, high, medium,
low, very low, and 0. The designation of weight “NR” in Table 2 indicates that
the factor is not reported in the particular case and a value of zero is used in the
computational model.

Table 2 Initial Factor Concept Fuzzy Values for Four Cases

Factor-Concepts Case 1 Case 2 Case 3 Case 4

Reduced Lexical
Abilities

Very very high Very very high Medium Very very high

Decreased MLU NR Very very high NR NR

Problems in Syntax Very very high High Medium Very high

Problems in
Grammatical
Morphology

Very high Very high Medium NR

Impaired or
Limited
Phonological
development

0 Low Very very high Very very high

Impaired Use of
Pragmatics

Low Very very high 0 0

Reading Difficulties 0 NR Very very high Very very high

Difficulties in writing
and Spelling

0 NR Very very high Very very high

Reduced Ability of
Verbal Language
Comprehension

0 Very high High High

Difference between
Verbal and
Nonverbal IQ

High Very very high 0 Very high

Heredity High 0 NR NR

Impaired Sociability - Medium 0 Medium 0

Impaired Mobility 0 0 Medium to high NR

Attention Distraction 0 0 Very very high NR

Reduced Arithmetic
Ability

0 NR Medium NR
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Fig. 5 Output nodes (disorder concepts) of differential diagnosis FCM for Dyslexia and SLI for
four known cases

Results showed that for all four cases, even though some of the information was
incomplete, the outcome given by the model agreed with the published diagnosis.
That is in all four cases, the correct diagnosis was concluded: SLI, SLI, Dyslexia,
and Dyslexia, respectively (Fig. 5). In the two cases of Dyslexia the largest-final
diagnosis, even though correct, differed by a relatively small amount from the other
diagnosis (SLI) which points out the difficulty in differential diagnoses of the two
disorders.

5 Distributed m-FCM for Medical Diagnosis

For the case of a large complex system a common known approach is the decompo-
sition into subsystems, which is a well known technique that has been used exten-
sively on conventional approaches (Mesarovic et al. 1970), (Siljak 1979). But this
decomposition is not easily applicable when subsystems have common elements
that prohibit the simplified approach of summing up the individual components
behavior. We follow the same direction in using FCMs to model complex medi-
cal decision support systems. With the proposed perspective for the modeling and
analysis of complex systems, each component of the infrastructure constitutes a part
of the intricate web that forms the overall infrastructure (Stylios 2002).

The case where multiple infrastructures are connected as “systems of systems”
is considered. A Fuzzy Cognitive Map models each subsystem and the complex
system is modeled with the interacting Fuzzy Cognitive Maps. FCMs communicate
with each other as they operate in a common environment, receiving inputs from
other FCMs and transmitting outputs to them. The linkage between two FCMs has
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the meaning that one state-concept of one FCM influences or is correlated to the
state-concept of the other. This distributed multiple m-FCM is shown in Fig. 6.
FCMs are connected at multiple points through a wide variety of mechanisms, rep-
resenting by bi-directional relationship existing between states of any pair of FCMs,
that is, FCMk depends on FCMl through some links, and probably FCMl depends
on FCMk through other links. There are multiple connections among FCMs such
as feedback and feed forward paths, and intricate and branching topologies. The
connections create an intricate web, depending on the weights that characterize the
linkages. Interdependencies among FCMs increase the overall complexity of the
“system to systems”.

Figure 6 illustrates an combined Distributed Fuzzy Cognitive Map, which ag-
gregates five FCM models for the five subsystems of the complex system. Among
the subsystems and thus, among the FCM models, there are interdependencies that
are illustrated as interconnections between concepts belonging to different FCMs,
where each FCM can be easily modeled (Stylios and Groumpos 2004).

5.1 Distributed m-FCM for Differential Diagnosis of Dysarthria
and Apraxia of Speech

Dysarthria is the term to describe a group of disorders of oral communication re-
sulting from disturbances in muscle control over the speech production mechanism
due to damage to the central or peripheral nervous system (Darley et al. 1969a,
1969b). Dysarthrias are associated with certain neurologic and very debilitating dis-
orders, such as Parkinson’s disease, Huntington’s disease, Multiple Sclerosis,ALS

Fig. 6 The Distributed m-FCM model
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(Lou Gehrig’s Disease) Disease, Cerebral Palsy, Brain Tumors, Stroke, Certain
Types of Brain Surgery, etc. Neurological impairment in the form of paralysis,
weakness, or lack of coordination of the muscles that support speech production, can
result in different forms of dysarthria. Darley et al. (Darley et al. 1969a, 1969b) iden-
tified seven forms of dysarthria: spastic, flaccid, ataxic, hypokinetic, hyperkinetic
chorea, hyperkinetic dystonia, and mixed dysarthrias. The most common types of
mixed dysarthrias can be: flaccid-spastic, ataxic-spastic, hypokinetic-spastic, ataxic-
flaccid-spastic, and hyperkinetic-hypokinetic.

Apraxia of speech is defined as “a neurogenic speech disorder resulting from im-
pairment of the capacity to program sensorimotor commands for the positioning and
movement of muscles for the volitional production of speech. It can occur without
significant weakness or neuromuscular slowness, and in the absence of disturbances
of conscious thought or language” (Duffy 1995). Although apraxia of speech is
controversial, most definitions of the disorder refer to impairment in programming,
planning, or sequencing the movements of speech.

The differentiation between the dysarthria types can be a challenging task for
a speech and language pathologist (SLP), since many speech and oral motor char-
acteristics of the dysarthrias are overlapping. Additionally, despite the fact that the
distinction between AOS (Apraxia of Speech) and dysarthrias is usually an easier
process, differentiation between AOS and ataxic dysarthria or the establishment of a
co-occurrence of both AOS and a dysarthria type can be challenging as well (Duffy
1995) . One of the most widely used and accepted systems for the differential diag-
nosis of the dysarthria types is the DAB system or the Darley, Aronson and Brown
(Darley et al. 1969a, 1969b) system which has some difficulties associated with its
use since there are too many parameters to remember, overlapping symptoms etc.

Characteristics of the specific type of dysarthria is important in treatment design,
since clinicians working with patients with dysarthria must make a variety of deci-
sions including: what aspects of the disorder will be responsive to treatment, what
type of intervention and how much intervention is needed and when to undertake
intervention, etc.

For the differential diagnosis of dysarthia an m-FCM system is developed, it is
consisted of 89 factors. These factors are divided: 31 concepts represent oral-motor
characteristics and 58 the speech characteristics (See (Duffy 1995) for a complete
set of the factors used). But some of these factors can be grouped together since
they represent separate assessment procedures, thus certain FCM subsystems can
be developed and so the most suitable approach is the distributed m-FCM diagnosis
model. For example, “voice quality assessment” can include nasality of speech,
hoarseness, breathiness, voice tremor, strained voice, voice breaks, diplophonia.
A fuzzy cognitive map subsystem with these factors can provide a value for the
concept voice quality in the FCM of Fig. 7. Similarly, the concept “voice pitch” is
represented by another FCM subsystem with concepts such as low pitch, high pitch,
pitch breaks, and monopitch. Thus, the distributed m-FCM model for the Differen-
tial Diagnosis System of Dysarthria and Apraxia of Speech, shown in Fig. 7 is a
hierarchical one where the results of subsystem FCMs used for various assessments
are fed into the supervisor “upper FCM”. The connection between the output con-
cepts of the lower FCMs to the output concepts of the upper ones can have values of
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Fig. 7 Diagram of Differential Diagnosis Hierarchical System of Dysarthria and Apraxia of
Speech

low (L), medium (M), high (H), near zero (0) etc. Table 3 illustrates an example of
some of the weights between factors and diagnoses since it is not possible to show
the whole table with the 89 factors and their connection to each of the 7 possible
diagnoses would be quite complex. It is mentioned that the diagnosis m-FCM here
is not a CFCM because there is not co-occurrence of more than one dysarthria, as
well as dysarthria and apraxia. This can be observed in Table 4 where there is a
comparison of diagnosis provided by a speech and language pathologist (SLP) and
the Dysarthria-Apraxia distributed m-FCM DSS for four patient cases.

Table 3 Examples Of Fuzzy Values Of Weights Between Factor Concepts And Diagnosis Concept

Factor Flaccid
Dys.

Spastic
Dys.

Ataxic
Dys.

Hypokinetic
Dys.

Hyperkinetic
Dys.

Apraxia of
Speech

Dysphagia M M 0 M M 0
Hyperactive gag 0 H 0 0 0 0
Voice quality M to H M to H L to M M to H M to H 0
Distorted vowels 0 0 H 0 H M
Irregular AMRs 0 0 H 0 H 0
. . .. . . .. . . .. . . .. . . .. . . .. . . ..
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Table 4 Comparison of Diagnosis Provided by SLP and Dysarthria-Apraxia FCM DSS

Initial Diagnosis of
Case by SLP

Output Values of Differential Diagnostic System
Resulting Diagnosis

Flaccid
Dys.

Spastic
Dys.

Ataxic
Dys.

Hypok.
Dys.

Hyperk.
Dys.

Apraxia of Speech

Case 1 Ataxic Dys. 0.5622 0.8081 0.9170 0.5000 0.8355 0.6225
Case 2 Flaccid Dys. 0.9284 0.6900 0.5156 0.6514 0.5312 0.5312
Case 3 AOS 0.5467 0.7432 0.8936 0.7186 0.8727 0.9975
Case 4 Mixed Dys. 0.5101 0.9272 0.9487 0.6934 0.8222 0.5248

7 Hierarchical Structure for Medical Decision Support System

A knowledge based methodology is more suited to accomplish complex tasks when
the nature of the tasks, systems, problems and solutions is not well defined or not
known beforehand. In medical applications there are situations involving a signif-
icant number of variable factors such as changing characteristics, unexpected dis-
turbances, different combinations of fault and alarm situations, where the approach
of knowledge based system has certain advantages and flexibility which make such
method particularly attractive and suitable for complex systems.

Medical Decision Support systems may have a large number of operating rules
and constraints requiring complex logic methods. Knowledge based systems have
considerable potential for successful applications requiring synthetic and abstract
logic, such as decision making, diagnosis, alarm management.

A hierarchical structure is proposed where the m-FCM can be used to model the
supervisor, which is the Medical Decision Support Systems (Fig. 8). The m-FCM
consists of concepts representing each one of the FCM modeling various discipline
sources (patient’s records and information, doctors’ physical examination and evalu-
ation, laboratory tests, imaging tests etc). In addition there are other concepts repre-
senting issues for emergency behavior, estimation and overall decision and etc. The
m-FCM is an integrated, aggregated and abstract model of the complex system and
it represents the relationships among the subsystems and the procedure for inferring
the final decision by evaluating all the information from them.

Consequently, the m-FCM system has a generic purpose, it receives information
from all the subsystems in order to accomplish a task, it makes decisions and it
can plan strategically. This m-FCM uses a more abstract representation, general
knowledge and adaptation heuristics.

7.1 Two-level Structure for Decision Support During Labor

During the crucial period of labor, obstetricians evaluate the whole situation, they
take into consideration a variety of factors, they interpret and evaluate the FHR
signal and they continuously reconsider regarding the procedure of the delivery.
Obstetricians have to determine whether they will proceed with a Caesarian section
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Fig. 8 The hierarchical structure with the m-FCM for Medical Decision Support Systems

or a natural delivery based on the physical measurements, and the intepretation of
Fetal Heart Rate (FHR) and other essential indications and measurements.

Cardiotocography was introduced into obstetrics practice and it has been widely
used for antepartum and intrapartum fetal surveillance. Cardiotocogram (CTG) con-
sists of two distinct signals, i.e. the recording of instantaneous Fetal Heart Rate
(FHR) and Uterine Activity (UA), which are two biosignals. FHR variability is
believed to reflect the interactions between the sympathetic nervous system (SNS)
and the parasympathetic nervous system (PSNS) of the fetus. Considerable research
efforts have been made to process, evaluate and categorise FHR either as suspecious,
or pathological or normal. There have been proposed integrated methods based on
Support Vector Machines, Wavelets and other computational intelligence techniques
to interpet the FHR (Georgoulas et al., 2006a; 2006b).

Here, the development of a Fuzzy Cognitive Map to model the way by which
the obstetrician makes a decision for a normal delivery or a caesarean section is
investigated. This is an online procedure where the obstetrician evaluates whether
either the woman or the fetus are at serious risk and thus, he/she has to intervene,
stopping the physiological delivery and perform a caesarean section or to continue
with natural delivery.
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The main parameters that the obstetrician evaluates are:

a) Interpretation of CTG

Cardiotocogram (CTG) has great importance and it is an essential main factor
in the decision system and it is represented in the FCM as a concept for FHR and
a concept for uterine contractions UA. The interpretation and classification of the
FHR is essential; various advanced techniques have been proposed to classify FHR
based on Computational Intelligence Techniques such as Wavelets and Support Vec-
tor Machines (Georgoulas et al. 2006b). The FHR is classified as normal, suspicious
or pathological.

b) Bishop score

The Bishop score describes the potential and condition of the woman to deliver
naturally. Having a cervical dilatation less than 3 and a pathological FHR means
that the physician does not expect this woman to have a normal labor.

c) Uterine contractions

Uterine contractions (UCs) are the second parameter that obstetrician takes into
consideration. The Obstetrician evaluates UCs’ intensity and frequency and whether
UCs are automatically or induced by the medicine oxytocine. The decelerations of
the FHR are evaluated in conjuction with the uterine contractions. Obstetricians
adjust the pharmaceutical dose of oxytocine or even to stop it when there are pro-
longed, severe or repetitive decelerations as a first action before thinking to perform
a caesarean section.

d) Presence of meconium

The presence of meconium is a physical measurement. It is an indication of stress
to the fetus and it leads many times to abnormal FHR

e) Duration of labor

Duration of labor is also a critical factor, as it is known that labor is a continuous
stressful situation for the fetus. We can reduce the duration of the labor adjusting
the pharmaceutical dose of oxytocine when contractions of the uterine are not satis-
factory or there is no improvement in the Bishop score taking into account that the
FHR monitoring is normal.

f) Oxytocine

This is the quantity of the medicine Oxytocine, that the pregnant woman has
received.
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In case of a suspicious FHR, obstetricians have to stop the oxytocine, wait for
20 minutes and if the FHR is strongly pathological, they continue with other ex-
aminations, testing the pH of fetal head. Because fetal scalp blood sampling for pH
and blood gas assessment is an invasive technique, its use is not widespread and
obstetricians usually prefer in the case of a pathological FHR to perform a Cae-
sarean section. This is the critical point where the clinician needs an expert system
to help him to distinguish between physiological stress and pathological distress
and to decide whether he can wait for a normal labor or must immediately perform
a Caesarean section.

FHR evaluation is a main concern during labor but another main concern for
obstetricians is the Bishop score. The Bishop score describes the physiological find-
ings from the fetus and the mother and it describes the labor in five stages. The
Bishop score represents another main concept on the Fuzzy Cognitive Map.

The wide use of oxytocine during labor interferes with the Bishop score and
the uterine contractions, although in women with hypertension during pregnancy or
labor, oxytocine is eliminated. It is also clear, though, that we adjust the pharmaceu-
tical dose (oxytocine) to the uterine contractions.

The duration of labor is also a critical point to the experts, as it is known that labor
is a continuous state of stress to the fetus. As the time go by, obstetricians expect
that the Bishop score is improved by the contractions of the uterine or the use of
the oxytocine, otherwise they cannot wait especially when the FHR is a suspicious
one and obstetricians have to perform a Caesarian section in order not to put fetus
at risk.

Another factor that is taking under consideration is the presence of Meconium.
When the outcome of the FHR is pathological, the presence of Meconium is highly
considered in the decision of proceed to a Caesarian section. Thus another factor-
concept of the Fuzzy Cognitive Map is the presence and quantity of Meconium.

Experienced obstetricians take into consideration all these factors during labor.
Obstetricians exploiting their clinical experience developed the following Fuzzy
Cognitive Map that is depicted on Fig. 9. Their knowledge on managing the la-
bor was utilized and representing in the concepts of the FCM and the weighted
interconnections among them.

The FCM model consists of 9 concepts:

Concept 1 Decision for Normal Delivery
Concept 2 Decision for Caesarian section
Concept 3 Fetus Heard Rate (FHR)
Concept 4 Presence of Meconium
Concept 5 Time duration of labor
Concept 6 Bishop score
Concept 7 Oxytocine
Concept 8 Contractions of the uterine
Concept 9 Hypertension

The relationships among concepts are represented by the corresponding weights.
So the influence from concept Ci towards concept C j is presented by the weight Wij .
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Fig. 9 Fuzzy Cognitive Map model for decision during labor

Experienced obstetricians have estimated the degree of influence from one concept
to another and it is presented in Table 5. Linguistic values of interconnections are
suggested by experts and are transformed in numerical weights.

At each step, values of concepts are calculated according to the influence from
interconnected concepts. Some concepts can have only external input such as the
concept C3 (FHR), which stand for the evaluation and classification of FHR, which
is performed at the lower level by the Support Vector Machine (Georgoulas et al.
2006a). The interactions among concepts change values of concepts. New values
of some concepts may require some action from the obstetrician; as an example, a
new value for oxytocine concept means descrease or increase of the pharmaceutical
action to the woman. When the system reaches the steady state, the value of the
concept for Natural delivery and value of the concept for Caesarian section have to

Table 5 Relationships among concepts representing by fuzzy values in obstetrics example

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 - - - - - - - - -
C2 - - - - - - - - -
C3 very high

(normal)
very
high
(pathological)

- - - high - - -

C4 low high - - High - - - -
C5 high

(<8h)
high (>8h) - medium - medium - - -

C6 medium high - - medium - medium - -
C7 - - - - - medium - medium medium
C8 - - - - - - medium - -
C9 - - - - - - low - -
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Fig. 10 The two-level structure for Decision Support during labour

be mutually exclusive and only one suggestion will be the outcome of the system.
Thus, the FCM is the upper level is a CFCM, as shown in Fig. 10.

It is apparent that labor is a complex situation where the obstetrician has to
consider a variety of factors and to make an on line decision on how to proceed
with the delivery. It is a crucial decision, for the health of both the fetus and the
mother. On the other hand, it is extremely hard to make decisions. Thus a two-level
structure is proposed, where at the lower level there are either simple sensors or
more advanced systems such as the FHR classification system based on Support
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Vector Machines. Information from the lower level is transformed in suitable form
through the interface and this information is transmitted to the FCM on the upper
level. This supervisor FCM will infer a final suggestion to the obstetrician on how
to proceed with the labor.

7 Conclusion

This chapter describes three novel types of Fuzzy Cognitive Map (FCM) struc-
tures suitable for Medical Decision Support Systems. The three structures are: a)
the Competitive FCM, suitable when a single out of different possible diagnoses
must be reached, b) a distributed m-FCM as complex medical decision support sys-
tem where a large number of interacting factors are involved, and c) a hierarchical
structure where the m-FCM receives information from all the subsystems in order
to accomplish the task of making decisions. For each structure a corresponding
example of the FCM is described performing medical decision support. The real
examples presented here, are successful applications of the proposed methodologies
and structures in the fields of speech pathology, language pathology, and obstetrics.
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