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Abstract. Fuzzy Cognitive Map (FCM) is a soft computing technique
for modeling systems. It combines synergistically the theories of neural
networks and fuzzy logic. The methodology of developing FCMs is
easily adaptable but relies on human experience and knowledge, and
thus FCMs exhibit weaknesses and dependence on human experts. The
critical dependence on the expert's opinion and knowledge, and the
potential convergence to undesired steady states are deficiencies of
FCMs. In order to overcome these deficiencies and improve the
efficiency and robustness of FCM a possible solution is the utilization
of learning methods. This research work proposes the utilization of the
unsupervised Hebbian algorithm to nonlinear units for training FCMs.
Using the proposed learning procedure, the FCM modifies its fuzzy
causal web as causal patterns change and as experts update their causal
knowledge.

Keywords: Unsupervised learning, Nonlinear Hebbian learning, fuzzy
cognitive maps, neural networks, Hebbian rule.

1 Introduction

FCMs were proposed by Kosko to represent the causal relationship between concepts
and analyze inference patterns [1,2]. FCMs represent knowledge in a symbolic
manner and relate states, variables, events, outputs and inputs in a cause and effect
approach. Comparing FCMs to either expert system or neural networks, they have
several desirable qualities such as: FCM is relatively easy to represent structured
knowledge, and the inference is computed by numeric matrix operation. FCMs are
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appropriate to explicit the knowledge, which has been accumulated for years
observing the operation and behavior of a complex system. Fuzzy Cognitive Maps
have already been applied in many scientific areas, such as medicine, manufacturing,
decision support systems, political science [3,4,5,6,7,8].

Till today, very few research efforts have been made to investigate and propose a
learning algorithm suitable for FCMs [9,10]. This research work proposes a learning
procedure based on the nonlinear Hebbian learning rule to improve the FCM
structure. The introduction of FCM training eliminates the deficiencies in the usage of
FCM and enhances the dynamical behavior and flexibility of the FCM model. A
criterion function similar to that of the Hebbian rule for linear units is used and the
proposed learning algorithm is used to train the FCM model of a process chemical
control problem proving the efficiency of the algorithm.

The extension of the Hebbian learning rule suggesting nonlinear units drew the
attention of research community [11,12,13] and it was applied in many problems
[12,14]. There were showed that the use of units with nonlinear activation functions,
which employ Hebbian learning, might lead to robust principal component analysis
and also a nonlinear Hebbian learning rule by minimizing a given criterion function
was proposed [15]. Furthermore, for a better understanding of the implementation of
nonlinear units by exploring the statistical characteristics of the criterion function, i.e.
how the operation of the nonlinear activation is being optimized and interpreted using
a probability integral transformation you can refer to [16,17].

The outline of this paper follows. Section 2 describes the FCM modeling
methodology, how a FCM is developed and how it models a system. Section 3
discusses nonlinear Hebbian learning algorithm. Section 4 introduces the Hebbian
Learning Algorithm to nonlinear units for FCM and it presents the mathematical
justification of the algorithm for FCMs and a methodology to implement this
algorithm. In section 5, the proposed algorithm is implemented to train the FCM
model of a process control problem and section 6 concludes the paper and discusses
the usefulness of the new training methodology for FCMs.

2 Fuzzy Cognitive Maps Background and Description

Fuzzy cognitive maps have their roots in graph theory. Euler formulated the first
graph theory in 1736 [18] and later on the directed graphs (digraphs) was used for
studying structures of empirical world [19]. Signed digraphs were used to represent
the assertions of information [20] and the term “cognitive map” described the graphed
causal relationships among variables. The term “fuzzy cognitive map” was used for
first time by Kosko [1] to describe a cognitive map model with two significant
characteristics: (a) Causal relationships between nodes are fuzzified and (b) The
system has dynamical involving feedback, where the effect of change in one node
affects other nodes, which in turn can affect the node initiating the change.

The FCM structure is similar to a recurrent artificial neural network, where
concepts are represented by neurons and causal relationships by weighted links
connecting the neurons.

Concepts reflect attributes, characteristics, qualities and senses of the system.
Interconnections among concepts of FCM signify the cause and effect relationship
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that a concept has on the others. These weighted interconnections represent the
direction and degree with which concepts influence the value of the interconnected
concepts. Figure 1 illustrates the graphical representation of a Fuzzy Cognitive Map.

The interconnection strength between two nodes C; and C; is W, with
w taking on any value in the range —1 to 1.

There are three possible types of causal relationships among concepts:

> w, > 0 which indicates positive causality between concepts C ' and C;. That
is, the increase (decrease) in the value of C j leads to the increase (decrease) on
the value of C;.

> W i < 0 which indicates negative causality between concepts C ' and C;. That
is, the increase (decrease) in the value of C j leads to the decrease (increase) on
the value of C;.

> ow,; = 0 which indicates no relationship between C j and Gj.

The directional influences are presented as all-or-none relationships, so the FCMs
provide qualitative as well as quantitative information about these relationships [9].

Generally, the value of each concept is calculated, computing the influence of other
concepts to the specific concept, [5], by applying the following calculation rule:

N
(k+1) _ () (k)
4, = f4, +ZAj W)
J#i
M
where Ai(kﬂ) is the value of concept C; at time k +1, Aﬁk) is the value of concept
C; at time k, w ;i 1s the weight of the interconnection between concept C ' and

concept C; and f is the sigmoid threshold function.

Fig.1. A simple Fuzzy Cognitive Map
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The methodology for developing FCMs is based on a group of experts who are
asked to define concepts and describe relationships among concepts and use IF-THEN
rules to justify their cause and effect suggestions among concepts and infer a
linguistic weight for each interconnection [8]. Every expert describes each
interconnection with a fuzzy rule; the inference of the rule is a linguistic variable,
which describes the relationship between the two concepts according to everyone
expert and determines the grade of causality between the two concepts.

Then the inferred fuzzy weights that experts suggested, are aggregated and an
overall linguistic weight is produced, which with the defuzzification method of Center

of Area (CoA) [21,22], is transformed to a numerical weight w i belonging to the

interval [-1, 1] and representing the overall suggestion of experts. Thus an initial
initial

matrix W = [Wﬁ], ij=1,...,N, with w, =0, i=1,..,N, is obtained.

The most significant weaknesses of the FCMs are their dependence on the expert's
opinion and the uncontrollable convergence to undesired states. Learning procedures
is a mean to increase the efficiency and robustness of FCMs, by modifying the FCM
weight matrix.

3 Nonlinear Extension of Hebbian Rule

A weight-learning rule requires the definition and calculation of a criterion function
(error function) and examining when the criterion function reaches a minimum error
that corresponds to a set of weights of NN. When the error is zero or conveniently
small then a steady state for the NN is reached; the weights of NN that correspond to
steady-state define the learning process and the NN model [23].

According to the well-known Hebb's learning law, during the training session, the
neural network receives as input many different excitations, or input patterns, and it
arbitrarily organizes the patterns into categories. Hebb suggested the biological
synaptic efficacies change in proportion to the correlation between the firing of the
pre-and post-synaptic neuron [22,24]. Given random pre-synaptic input patterns X,

weight vector w, and output y = w'x , the criterion function J maximized by Hebb's
rule may be written as:

_ 2
J=E{y"} 2)

An additional constraint such as ”W” =1 is necessary to stabilize the learning rule
derived from eq. (2). A stochastic approximation solution based on (1) leads to the
single neuron Hebbian rule [11]:

iji = nkyi(xj - Wjiyi) 3)

where 7], is the learning rate at iteration k.

An extension of (3) to nonlinear units proposed with various possible nonlinear
activation functions and their criterion functions [12]. Considering the case where the
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output of the linear unit is transformed using a nonlinear activation function (usually a
sigmoid type function) with the criterion function in eq. (2). The following
optimization problem is solving adjusting the nonlinear units' weights adaptively:

maximize J = E{z’}

subject to: |w] =1

“4)

where z = f(y),and f isa sigmoid function.

It is difficult to determine a closed form solution of eq. (4); therefore we employ a
stochastic approximation approach, which leads to the following nonlinear Hebbian
learning rule (the derivation is given in the [17])

dz
Awy =1, z——(x; =W;:3;)
R 5)

The learning rule in eq. (5) is one of the three possible cases of nonlinear Hebbian
rules discussed in Oja et al. [12,13]. If Z is a linear function of ', say z =y, then

the learning rule is reduced to the simple Hebbian rule for a linear unit.

For the case of the Hebbian learning rule in a linear unit, the objective function in
eq. (2) has an obvious interpretation, i.e., projection of the input patterns in the
direction of maximum variance, or maximum output value of neuron. On the other
hand the same criterion function applied to nonlinear units, may lead to results
radically different from those produced by linear units. Note that both linear and
nonlinear learning rules are seeking a set of weight parameters such that the outputs
of the unit have the largest variance. The nonlinear unit constraints the output to

remain within a bounded range, e.g., z=1/(1+ exp(—y)) limits the output within

[0,1]. The restriction of the nonlinear unit outputs significantly distinguishes
nonlinear units from their linear counterparts and affects the mechanism of variance
maximization.

4 Learning in FCMs

FCM learning involves updating the strengths of causal links so that FCM converge in
a desired region. An advanced learning strategy is to modify FCMs by fine-tuning its
initial causal link or edge strengths through training algorithms similar to that in
artificial neural networks.

There are just a few FCM learning algorithms [9,10], which are based on artificial
neural networks training. Kosko proposed the Differential Hebbian, a form of
unsupervised learning, but without mathematical formulation and implementation in
real problems [9]. There is no guarantee that DHL will encode the sequence into the
FCM and till today no concrete procedures exist for applying DHL in FCMs. Another
algorithm is named Adaptive Random for FCMs based on the definition of Random
Neural Networks [10]. Recently, a different approach has been proposed for FCM
learning based on evolutionary computation [25], where evolution strategies have
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been used for the computation of the desired system's configuration. This technique is
exactly the same used in neural networks training; it doesn't take into consideration
the initial structure and experts' knowledge for the FCM model, but uses data sets
determining input and output concepts in order to define the cause-effect relationships
satisfied the fitness function. The calculated weights appear large deviations from the
actual FCM weights and in real problems they have not the accepted physical
magnitude. So, a formal methodology and general learning algorithm suitable for
FCM learning and for practical applications is still needed.

4.1 The Proposed Approach Based on Nonlinear Hebbian Learning (NHL)

The proposed learning algorithm is based on the premise that all the concepts in FCM
model are triggering at each iteration step and change their values. During this

triggering process the weight w i of the causal interconnection of the related
concepts is updated and the modified weight w ﬁ( ) is derived for iteration step k .

The value Ai(kﬂ) of concept C;, at iteration k + 1, is calculated, computing the

influence of interconnected concepts with values A ; to the specific concept C; due

(

. . B . . .
to modified weights W, ) at iteration k , through the following equation:

N
k+1 k k (k)
Ai( )=f(Ai()+Z‘AJ(‘).Wji )
jil
/! Q)

Furthermore, some of concepts are defined as output concepts (OCs). These
concepts stand for the factors and characteristics of the system that interest us, and we
want to estimate their values, which represent the final state of the system. The
distinction of FCM concepts as inputs or outputs is determined by the group of
experts for each specific problem. Any of the concepts of the FCM model may be
inputs or outputs. However, experts select the output concepts and they consider the
rest as initial stimulators of the system. The learning algorithm that extracts hidden
and valuable knowledge of experts can increase the effectiveness of FCMs and their
implementation in real problems.

Taking the advantage of the general nonlinear Hebbian-type learning rule for NN,
[12], we introduce the mathematical formalism incorporating this learning rule for
FCMs, a learning rate parameter and the determination of input and output concepts.
This algorithm relates the values of concepts and values of weights in the FCM
model.

The proposed rule has the general mathematical form:

iji =77kAj (Ai _Ajwji) 7
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where the coefficient 77, is a very small positive scalar factor called learning
parameter. The coefficient has determined using experimental trial and error method
that optimizes the final solution.

L . K . . .
This simple rule states that if Ai( ) is the value of concept C; at iteration k , and

A ;s the value of the triggering concept C Vi which triggers the concept C;, the

corresponding weight w + from concept C ' towards the concept C; is increased

proportional to their product multiplied with the learning rate parameter minus the

weight decay at iteration step k .
The training weight algorithm takes the following form:

(k) _ (k-1) (k) (k-1)
W =Wy +77kAj(Ai _Ajwji )

®
At every simulation step the value of each concept of FCM is updated, using the
equation (6) where the value of weight w ].i(k) is calculated with equation (8).

Also, we introduce two criteria functions for the proposed algorithm. One criterion
is the maximization of the objective function J, which has been defined by Hebb's
rule in equation (4). The objective function J has been proposed for the NHL,
examining the desired values of output concepts (OCs), which are the values of the
activation concepts we are interested about. The J is defined as:

!
J=Y(0C,))’ 9)
i=1

where [ is the number of OCs.
The second criterion is the minimization of the variation of two subsequent values
of OCs, represented in equation:

oc -ocC|<e (10)

These criteria determine when the iterative process of the learning algorithm
terminates. The term e is a tolerance level keeping the variation of values of OC(s)

as low as possible and it is proposed equal to e = 0.001.

Through this process and when the termination conditions are met, the final weight

updated

matrix W is derived.

4.2  The Proposed Learning Algorithmic Process

The schematic representation of the proposed NHL algorithm is given in Figure 2.
Considering an n-node FCM-model, the execution phase of the proposed algorithm is
consisted of the following steps:
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Step 1: Read input state A" and initial weight matrix w'
Step 2: Repeat for each iteration step k&
2.1: Calculate A, according to equation (6)

2.2: Update w ii(k) according to equation (8)

2.3: Calculate the two criterion functions
Step 3: Until the termination conditions are met.

updated

Step 4: Return the final weights w and concept values in convergence region.

All the FCM concepts are triggering at the same iteration step and their values are
updated due to this triggering process.

5 Implementation to a Process Control Problem

In this section the proposed Nonlinear Hebbian Learning (NHL) is implemented to
modify the FCM model of a simple process control problem [8].

Initial values
Ao, Wo

Nonlinear
HL

A W
}

|Calculation of criteria |

crmination
Criteria

I no fulfilled

I fulfidled

Convergence in the desired region
of concepts values

Fig. 2. Schematic representation of NHL training algorithm
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Vi ¥y

¥y

mauger
Fig. 3. The illustration for simple process example

At this process problem there is one tank and three valves that influence the
amount of liquid in the tank; figure 3 shows an illustration of the system. Valve 1 and
valve 2 empty two different kinds of liquid into tankl and during the mixing of the
two liquids a chemical reaction takes place into the tank. A sensor measures the
specific gravity of the produced liquid into tank. When value of specific gravity is in
the range between (G, ) and (G

produced in tank. Moreover, there is a limit on the height of liquid in tank, which
cannot exceed an upper limit (H__ ) and a lower limit (H

), this means that the desired liquid has been

min

max 4in ) - So the control target

is to keep these variables in the following range of values:

0.74<G<0.80

0.68<H<0.70
A FCM model for this system is developed and depicted on figure 4. Three experts
constructed the FCM, they jointly determined the concepts of the FCM and then each
expert drawn the interconnections among concepts and assigned fuzzy weight for
each interconnection [5].
The FCM is consisted of five concepts:

Concept 1 — the amount of the liquid that Tank 1 contains is depended on the
operational state of Valves 1, 2 and 3;

Concept 2 — the state of Valve 1 (it may be closed, open or partially opened);

Concept 3 - the state of Valve 2 (it may be closed, open or partially opened);

Concept 4 - the state of Valve 3 (it may be closed, open or partially opened);

Concept 5 —the specific gravity of the liquid into the tank.

For this specific control problem, experts have determined the initial values of
concepts and weights, and which concepts are the desired output concepts (OCs). For

this problem the desired output concepts are the concepts Cand Cs.
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Fig. 4. The FCM model of the chemical process

Experts suggested the appropriate initial weights of the FCM model that are shown
in the following weight matrix:

0 -04 -025 0 0.3
0.36 0 0 0 0

wiiel =1 0.45 0 0 0 0
-09 0 0 0 0

0 0.6 0 0.3 0

Now the NHL algorithm can be applied to train the FCM and modify the weights.
The training process starts by applying the initial values of concepts A(;%t =[0.4

0.708 0.612 0.717 0.3] and weights w i The suggested value of learning rate 77,

at equation (8), after trial and error experiments, is determined as 0.01. Notably, at
each iteration step, all weights are updated using the equation (6).

The algorithmic procedure continues, until the synchronously satisfaction of the
two termination criteria are met. The result of training the FCM is a new connection
weight matrix W that maximizes the objective function J and satisfy synchronously
the second criterion. This algorithm iteratively updates the connection weights based
on the equation (8), and equation (6) calculates the activation values of concepts
based on the described asynchronous updating mode.

The convergent state is reached, after 16 recursive cycles, and it is A =[0.692
0.738 0.676 0.747 0.743]. The updated weight matrix after 16 cycles, is:

0 —0.207 —-0.112 0.064 0.264]
0.298 0 0.061 0.069 0.067
wPded —| 0356 0.062 0 0.063 0.061

-0.516 0.070 0.063 0 0.068
| 0.064 0.468 0.060  0.268 0
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Value of node

1 2 3 4 5 6 7 8 9
Number of repetition

Fig. 5. Variation values of concepts for 9 simulation steps

These new values for weights describe new relationships among the concepts of
FCM. It is noticeable that the initial zero weights no more exist, and new
interconnections with new weights have been assigned, only diagonal values remain
equal to zero. This means that all concepts affect the related concepts, and the
weighed arcs show the degree of this relation.

5.1 Evaluation of the Modified Weight Matrix

0
random >

Let's make now a testing using a random initial vector A and with the

previously derived weight matrix, w**““? as initial. The randomly produced initial
values are
A(:andom =[0.1 0.45 0.37 0.04 0.01]. Applying the NHL algorithm, it stops after 9

simulation steps and the derived concept vector is 4

A

random *

0.693 0.738 0.676 0.747 0.744], as shown in Fig. 5. This new state vector

random :[
has the same values as the previous state vector A , driving the FCM in the same
convergence-desired region.

Also, we have tested this FCM model for 1000 test cases with random initial

updated

values of concepts, using the weight matrix W and we end up at the same result

for concepts values. So, if we use the FCM model of the process control problem with
the modified values of weights for any initial values of concepts this model is driving
in the desired region of concept values.

The NHL rule, which represented with equation (8), is suitable for updating the
weights of FCMs with the same manner as in neural networks. Here the output
concept is the one that have been fired by its interconnected concepts and it is initially
defined for each specific problem. This output concept is the learning rate signal in
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the unsupervised learning procedure and due to the feedback process fires
sequentially the other concepts and updates their cause-effect interconnections of
FCM through the previous described Hebbian-type learning rule.

6 Conclusions and Future Directions

In this paper, the unsupervised learning method (NHL) based on nonlinear Hebbian-
type learning rule is introduced to adapt the cause-effect relationships among concepts
of FCM and to eliminate the deficiencies that appear in operation of FCMs. In this
way, we take into account the dynamic characteristics of the learning process and the
environment.

The unsupervised Hebbian rule is introduced to train the FCM and accompanied
with the good knowledge of a given system or process can contribute towards the
establishment of FCM as a robust technique. Also a formal methodology suitable for
practical application has been developed and desired convergence regions for FCM
process control have been produced.

In future work, further developments of the learning algorithm will be examined
and the implementation of this learning approach on more complex problems will be
investigated.
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