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Since the fetus is not available for direct observations, only indirect information can guide the
obstetrician in charge. Electronic Fetal Monitoring (EFM) is widely used for assessing fetal well
being. EFM involves detection of the Fetal Heart Rate (FHR) signal and the Uterine Activity (UA)
signal. The most serious fetal incident is the hypoxic injury leading to cerebral palsy or even death,
which is a condition that must be predicted and avoided. This research work proposes a new
integrated method for feature extraction and classification of the FHR signal able to associate FHR
with umbilical artery pH values at delivery. The proposed method introduces the use of the Discrete
Wavelet Transform (DWT) to extract time-scale dependent features of the FHR signal and the use
of Support Vector Machines (SVMs) for the categorization. The proposed methodology is tested on
a data set of intrapartum recordings were the FHR categories are associated with umbilical artery
pH values, This proposed approach achieved high overall classification performance proving its
ments.
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1. Introduction

Fetal Heart Rate (FHR) is the main indicator of fetal condition and, therefore, it is an
indispensable means for both antepartum and intrapartum fetal surveillance. The FHR
signal is obtained mainly through cardiotocography, also called Electronic Fetal
Monitoring (EFM). EFM has become rapidly popular at least in North America and
Western Europe, since fetal monitors became commercially available in the late 1960s
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and early 1970s, as a result of the general belief that technology can resolve clinical
problems.' In everyday clinical practice, FHR is displayed graphically on a printout and
is manually interpreted by the clinician in charge depending on its visual aspect. More
specifically the interpretation is performed following the guidelines given by the
International Federation of Obstetrics and Gynaecology® (FIGO) and the National
Institute of Health.” The major attractiveness for using EFM is the reassurance
experienced by the obstetrician concerning the fetal condition as long as the FHR tracing
is normal.

The instantaneous FHR (beats/min) during the intrapartum period, and after the
rupture of the membranes, can be derived/acquired from the fetal electrocardiogram via
scalp electrodes.* Even though there exist other non-invasive methods,’ the use of scalp
electrodes gives more reliable recordings.’ The beat-to-beat variation of FHR reflects the
time varying influence of the fetus’ autonomic nervous system and its components®
(sympathetic, parasympathetic branch) and, thus, it is an indicator of fetal well-being.
Especially during the crucial period of labor, EFM is used as the main screening method
of fetal acid base balance.”

Before the baby delivery, the exchange of oxygen and carbon dioxide by the fetus
takes place within the placenta. If a pathological change occurs in either the maternal or
fetal components of the placenta, this will interfere with placental-fetal gas exchange,
causing fetal asphyxia or oxygen deficiency, with major health problems for the baby. If
prolonged and/or profound, asphyxia can lead to fetal hypoxia, a condition in which
blood supply to tissues is reduced. The redistribution of blood flow to oxygen-sensitive
organs, such as the brain and heart, enables the fetus to survive short periods of oxygen
deficiency. However, cerebral palsy or fetal death may occur if fetal hypoxia is sustained
for prolonged periods. Asphyxia can lead to an accumulation of carbon dioxide in the
blood and tissues resulting in fetal acidosis, a condition characterized by an increase in
acidity reflected by a decrease in fetus’ blood pH. Due to the fact that cerebral palsy is
often diagnosed several years after birth, the objective of inspecting FHR patterns is not
to detect which babies will have cerebral palsy, but to detect those that are at significant
high risk so as to warn the obstetrician and allow intervention before there is irreversible
damage. Thus, it is of great importance to be able to associate FHR traces with umbilical
artery pH values.

The significance of FHR interpretation many researchers to investigate FHR signal
processing. The Dublin randomized trial has revealed an increase in operative vaginal
deliveries in patients monitored using EFM during the intrapartum period.® In addition,
studies of FHR reliability have shown significant inter-observer and intra-observer
variation in tracing interpretation.9 This inconsistency in interpretation and the increase
of false positive diagnoses guided the introduction of computerized systems for the
analysis and interpretation of FHR. New approaches for FHR processing are based on
the technological advances in computers, along with new signal processing methods.
These types of methods and systems range from simple feature extraction'®'’ to
sophisticated classification programs.’®* Some approaches have shown promising
results but none has achieved broad acceptance and there is still room for improvement.
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The goal of finding prognosis methods to deliver healthy babies with minimal
intervention to the mother will remain a challenge for some time.

Since the FHR signal conveys much more information than what is usually
interpreted by doctors,”® in this research work we investigate new methods based on
advanced signal processing and innovative feature extraction methods that will provide
indices of fetal condition. We propose for the first time an integrated method to
discriminate fetuses suspicious of developing metabolic acidosis, using Discrete Wavelet
Transform (DWT) for the extraction of time-scale features and Support Vector Machines
(SVMs) for the classification task.

Wavelets are a novel tool, different from the traditional Fourier analysis in the way
they localize information in the time-frequency plane. In particular, they are capable of
trading one type of resolution for the other, which makes them especially suitable for the
analysis of non-stationary signals. As a result, they have been employed in many
applications in biomedical signal processing.”® ¥ The most appealing feature of wavelets
is that they can decompose a signal into a number of scales, each scale representing a
particular “‘coarseness” of the signal under study.30 They have already been used
successfully for the analysis of the inter-beat intervals of adult hearts.*" 32 There have
also been some initial attempts to use wavelets for the analysis of FHR during the second
stage of labor.”® ** Most of these approaches, however, do not use any of the time
domain information included in the wavelet coefficients and presume that the signal
under investigation is stationary.

SVMs have recently been developed in the framework of statistical learning theory™*
and have proved highly successful in a number of applications both for nonlinear
regression and pattern classification.” ** SVMs have the ability to generalize well on
unknown data without requiring problem-domain knowledge, which makes them very
appealing for pattern recognition involving difficult real life problems.*> ¥ 3 ’

This paper is structured as follows: In section 2 a brief mathematical introduction is
given including the background of DWT and SVMs. Section 3 presents the proposed
integrated method for FHR signal preprocessing (noise-artifact removal, segmentation)
and then the FHR feature extraction and classification. Section 4 discusses the
experimental results of applying the proposed methodology to a data set. Finally section
5 concludes the paper, comparing the proposed methods with other approaches and
suggesting future directions.

2. Mathematical Background

2.1. Wavelets

Similar to most physiological signals, FHR is a non-stationary signal, where the main
non-stationarities are the baseline and the acceleration/deceleration events.”> Therefore,
traditional Fourier analysis is not suitable for this particular type of signal, unless it is
restricted to sufficient short segments. On the other hand, wavelets are a relatively new
very powerful mathematical tool for signal processing that have been successfully used
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in a number of biomedical applications.”® * In plain language, a wavelet is a short-term
duration wave.

The wavelet transform of a time signal is an expansion of the signal in terms of a
family of functions, which are localized in both time and frequency domains and are
generated from a single function called the mother wavelet (t), by “dilation” and by
“translation”.

1 t—b
l)=—— —_— 1
ll/a,b() \/Zl/’( 2 j, ()
where a€ R*,be R. For most practical applications on measured data, the wavelet
dilation and translation parameters a, b are restricted only to discrete values leading to
Eq. (2).
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For practical purposes, the simplest and most efficient discretization comes by
choosing ap =2 and by =1 (dyadic grid arrangement or dyadic lattice).

1 t—n2"™
l//m,n (t)“_zﬁw 2—m

where (m,n)e Z?. The translation parameter determines the location of the wavelet in
the time domain, while the dilation parameter determines its location in the frequency
domain as well as the scale or extent of the time frequency localization.

Any signal may be decomposed into its contributions in different regions of the time-
frequency domain (time-scale) by projecting it onto the corresponding basis functions.
Therefore, for a continuous signal, the wavelet coefficients, the time-scale representation
of a continuous signalx(t), are given by the dyadic wavelet transform, resulting in
wavelets coefficients.

=2"”/21//(2”’"t—n), 3

Ty = | x ()W (t)dt “)
which measures the “similarity” between the signal and the basis function. If the discrete
dyadic grid wavelets are chosen to be orthogonal, the information stored in a wavelet
coefficient T, , is not repeated elsewhere. Therefore, the information represented at a
certain scale m is disjoint from the information at all other scales. Smaller scales
correspond to higher frequency components (speaking in Fourier terms). Moreover, each
wavelet coefficient encompasses information not only concerning the scale but also the
time (window) that “produced” this information.

For a discrete signal x[i{], i=0,...,M -1 and for a real wavelet the coefficients are
given by Eq. (5).
M-1

T =272 % xlilw (27"i=n). 5)
i=0

Obviously, different mother wavelets give birth to different classes of wavelets, and
hence the behavior of the decomposed signal can be quite different. However, according
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to Thuner® in their work involving the analysis of heartbeat intervals, the obtained
results were similar when experimenting with different types of mother wavelets. In this
work, we experimented with a variety of mother wavelets in order to identify the best
one for each of the specific implementations.

The wavelets that we employed were proposed by Daubechies® and they have the
appealing property of having compact support and the wavelet transform can be
computed with finite impulse response conjugate mirror filters using a fast filter bank
algorithm. We experimented using Daubechies, Symmlets and Coiflets families, with
different number of vanishing moments. Wavelets with p vanishing moments can
suppress parts of signals, which are polynomials up to degree p-1. Daubechies
wavelets have a support of minimum size for any given number p of vanishing moments.
Symmlets are also wavelets of minimum support, for any given number p of vanishing
moments, but they are more symmetric compared to Daubechies. Coiflets, which are also
nearly symmetrical, do not have minimum support but their scaling and wavelet function
have the same number of vanishing moments. In Fig. 1 a mother wavelet for each one of
the three families is depicted.

For more information, the interested reader can refer to one of the excellent books
that can be found in the literature.* *°
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Fig. 1. Three mother wavelets with two vanishing moments.

2.2. Support Vector Machines

Support Vector Machines (SVMs) are a new family of learning machines,* which have
been successfully used for a variety of pattern classification tasks.*® The main idea
behind SVMs, when dealing with a pattern classification problem, is to find an “optimal”
hyperplane as the solution to the learning problem. By the term “optimal”, it is suggested
that for a separable classification task, the hyperplane (w,b) with the maximum margin
or distance from the closest data points belonging to the different classes is selected.
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Formally speaking, having a set of points that each belongs to one of two classes, for
a binary classification or dichotomization problem, i.e. a training set {x,- s y,-} ,i=1,..,n,
where each point x; is a d -dimensional vector, and y; € {~1,1} is a label that specifies
to which one of the classes the point x; belongs, and if the two classes are linearly
separable, then there exists at least one hyperplane (w b) which can perfectly separate
the positive from the negative examples. The hyperplane that maximizes the margin of
separation is the one for which the Euclidian norm of the weight vector ”w” is minimum
and at the same time satisfies the constraints of Eq. (6).

yi(w'xi +8)-120 Vi, ©)

This is a classical quadratic optimization problem with inequality constraints that can
be solved using Lagrange multipliers. However, in real life problems the different
classes are not linearly separable. Therefore, two actions usually need to be performed:

¢ nonlinear mapping of the input space into a potential much higher feature space,
¢ construction of an optimal hyperplane, allowing for some misclassifications.

The nonlinear mapping is performed because according to Cover’s theorem*":

“A complex pattern-classification problem cast in a high-dimensional space is more
likely to be linearly separable than in a low-dimensional space”.

Therefore,  for every,  vector X; we  calculate a vector
o(x)= [(b] (x).02 (x),..9¢ (x)% corresponding to a nonlinear mapping from R to the
higher dimensional space R/ {f >d).

The optimal hyperplane is found as the solution to the minimization problem of Eq.

.

n
Minimize é—wTw +CY &, 7
i=1

subjectto y; (w' @(x;)+b)>1-§ and & >0 Vi, (8)
1 1

where the &; are called slack variables that measure the deviation of a data point from
the ideal condition of pattern separability, and C is a positive user specified parameter
that penalizes margin errors, i.e. patterns that lie within the margin as well as those that
are on the wrong side of the decision surface.
The solution for this optimization problem of Eq. (7), subject to the constraints Eq.
(8), is given by the solution of the primal Lagrangian Eq. (9).
n n
L,(w.b,Ea.B)= “W W+C25l 2. Bigi - Zlai ()’i (WT‘P(xi)*'b)‘Hé:i), ©)
j=

i=1 i=1

which, in turn, leads to the dual maximization problem of the dual Lagrangian Eq. (10).

Ly (a)= Za,-— 2 aiajyiy; (o7 (x:)o(x;)) (10)

=1
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subject to the constraints of Eq (11).
n
Y a;y;=0and 0<q; <C Vi. (11
—

The solution of the above optimization problem leads to the “optimal” discriminating
function of Eq (12).

£(x)= sign[ 21 ey (0" (x,-)(p(x))+b]. (12)

The points for which a; >0 are called Support Vectors and they are usually a small
portion of the original data set.

The inner product in the feature space can be written in the form of Eq (13).

(pT(xi)(p(xj)=K(x,~,xj), (13)
where K is called the inner-product kernel. A kernel function is a function in input
space and, therefore, we do not explicitly perform the nonlinear mapping (p() . Instead
of calculating the inner product in a feature space (pT (xi)(p Xx; ), one can indirectly
calculate it using the kernel function K (xi,x j ) Therefore, by selecting an appropriate
symmetric positive semi-definite kernel function, it is not necessary to know what the
actual mapping is.* Different kernels produce different learning machines and different
discriminating hypersurfaces.

The above formulation of SVM is inappropriate in case of imbalanced distributions
and a different approach is needed. This is a very common situation when dealing with
medical data and the SVM algorithm has to be adapted. The proposed approach is to use
different regularization (also addressed as penalty) parameters C*and C”so as to
penalize more heavily the undesired type of error, and/or the errors related to the class
with the smallest population.“‘ # Therefore, for this case, the optimization problem is
modified as shown by Eq. (14).

n n
Minimize%wrwﬁ-C' > &+CT Y &, (14)
iy;=-1 iy, =+1
subject to y; (wT<p(x,-)+b)z1—§,. and &0 Vi. (15)

Choosing higher penalty value for the class with the smallest population (which in
most cases happens to be the class that needs to be correctly identified) results in a bias
for larger multipliers a; for that class. This induces a decision boundary, which is more
distant from that class.
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3. New Integrated FHR Feature Extraction and Classification Methodology

The proposed overall procedure for processing Fetal Heart Rate (FHR) signal, feature
extraction using DWT and classification using SVM is depicted in Fig. 2. The novelty
and core of the proposed method is the feature extraction stage using wavelet analysis
(third block) as well as the classification stage employing SVMs. Wavelets are
introduced for the transformation of FHR into wavelet coefficients (using different
mother wavelets), different sets of which are tested using different configurations of the
SVM classifier. This proposed procedure is the outcome of an extensive investigation in
the field of FHR processing.

et & s Dat Feature SYM
Artifact & nolse o :lr extraction C}k i
remaoval segmentation using DWT assifier
L N J LN F
i r
FHR signal Preprocessing

Fig. 2. The block diagram of the proposed methodology.

3.1. Artifact and noise removal

FHR is a very noisy signal with a lot of spiky artifacts and even periods of missing data
due to the movement of the baby and the stress induced during the labor.

original signal
200 T v v T v v
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Fig. 3. a) Initially acquired FHR signal, b) signal after the removal of artifacts.
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This kind of noise cannot be eliminated in the source and it is always present in any
cardiotocographic record. It is reported that missing data in fetal heartbeats records can
amount to about 20-40% of total data.®® Therefore, the first stage in the proposed
methodology involves the implementation of an algorithm to eliminate this kind of noise
from the FHR signal (Fig. 3), which was first proposed by Bernardes.**

3.2. Data segmentation

The proposed method investigates whether FHR traces can be used to foresee the level
of the umbilical artery pH at delivery. Even thought metabolic acidosis is not a sudden
state into which the fetus falls, FHR recordings corresponding to the final minutes before
the delivery can more reliably be correlated with pH measurements. Thus, in this work
we focused on the last 5-10 minutes of the recordings, those that are closer to delivery
and we applied the proposed method to segments with time duration of 5 and 10
minutes. These segments were taken as close as possible to the end of the recording. It
must be mentioned that in some of the recordings the final 1-2 minutes had to be
excluded because the FHR signal was totally obscured by noise.

3.3. Feature extraction stage via wavelet transform

The third stage of the proposed methodology consists of two actions performed on the
FHR signal: (a) transformation of FHR into a set of wavelet coefficients and (b) feature
extraction based on those coefficients. The FHR signal for the corresponding time
segment is transformed using discrete wavelet transform up to scale m=5 using Eq. (5)
(Fig. 4). As mentioned in section 2.1, different mother wavelets have been tested
(Daubechies, Symmlets and Coiflets) leading to different representations.

FHR
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Fig. 4. The initial FHR signal on the upper part and its decomposition to wavelet coefficients for scales
m=1,2345.
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The feature extraction part operates on the wavelet coefficients at different scales.
Wavelets have the ability to represent deterministic features using a small number of
relatively large coefficients, while stochastic processes contribute to all the coefficients
and are approximately decorrelated. If a wavelet decomposition results in a few large
coefficients, then those coefficients can represent the whole signal, neglecting the rest of
the coefficients, with a low error. As a result, these coefficients can give valuable
information for classification.*’ Therefore, what is needed is to find a function to
describe the concentration of coefficients. The most common measure is the Shannon
entropy. Shannon entropy for a discrete distribution p;, i =12,..,N is given by Eq.
(16).

N N
S ==Y p;log(p;) with lei =1 and p;log(p;)=0.if p; =0. (16)

i=1 i=
The maximum entropy possible from a distribution occurs when the information is
evenly spread across the signal. The more clustered the distribution, the lower the
entropy. In the case of a signal the minimum entropy occurs when all the information is
contained in a single location. Therefore the Shannon entropy is a measure of impurity
within a set of instances and it can be extended to the normalized wavelet coefficient
energies to find those sets of coefficients that contain the most information. Fig. 5
illustrates three cases of signals with maximum, intermediate and minimum entropy. The
signal that has only one value different from the other nine, is the most “impure” signal
and has the minimum entropy, while the signal that has all its values equal to 0.1 is the

one with the maximum entropy.
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Fig. 5. Three cases of signals representing maximum, intermediate and minimum entropy.
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3.3.1. Feature sets selection

An important stage is the selection of the most suitable feature set and for this reason we
examined four feature sets for two different signal durations 5 and 10 minutes in order to
test these sets and determine the most suitable.

Feature set I:

For scales m=2 to m=4 we measured the absolute value of the wavelet coefficients for
each one of the three scales and we used the coefficient with the highest absolute value,
along with its index (providing information about its occurrence) as features to be fed to
the SVM classifier. For example, at scale m:

Jm1 = sign (Tm,n ) max (le'"D for n=1,..,N,,, a7
where N, is the number of wavelet coefficients at scale m and:

fm2 =argmax(|Tm,,,l) for n=1,...,N,,. (18)
n

Thus, for each FHR segment, the feature set includes six features:
Fsetl: { fa1. fa2: 3o 3o fapo fap b

Feature set 2:
Moving one scale “up”, we repeated the aforementioned procedure using the scales m=2
to m=5, which leads to a new set of eight features:

Fset2: { f2y17f2,27f3,17f3,27f4,1?f4,27f5,1’f5,2 }

Feature set 3:

For scales m=2 to m=4 we introduced a sliding window and for the normalized energies
of the wavelet coefficients inside this window, we calculated the Shannon entropy
seeking for the location of the window that minimizes that quantity (Fig. 6). The
minimum calculated entropy, along with the location of the window for which this
happens -the centre of the window- are selected as features that we introduced to
characterize each scale. The length of the window was adapted according to the number
of coefficients at each scale —it was reduced by a factor of two as we were moving from
scale m 10 scale m+1. The normalization of the energies was performed with respect to
the coefficients at that specific scale. For example, at scale m we calculated:

=

2

j=0 % $ 2
2 (Tm,i+ j) 'Eo (Tm,i+j)

J= 7=

S(i)=-

i

o
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where W, is the length of the sliding window at scale m.

f3 =min(S(i)) for i=1,.., Ny Wy, +1, (20)

and f,, 4 =argmin (S (i))—1+V—V2ﬁfor n=1..N,. 1)

i

Thus, for each FHR segment we calculated a total of six features:
Fset3: { f23.f24-f33: f3.4 fa3: faa }

Feature set 4:
Again moving one scale “up” we repeated the procedure described in the selection of
feature set 3 using the scales m=2 to m=35, leading to a feature vector with eight features:
Fsetd: { f23.f2,4:F33: F3.4- fa3s Faarfs3: Fsa }-

The coefficients from scale m=1 were excluded from this feature extraction stage
because they corresponded to the high frequency components and, thus, they were
considered as representations of the “noise” content of the signal.

calouation of entropy

sliding
window

coefficients
at scale m

\-* foeation

Fig. 6. Feature extraction using a sliding window for finding window with the minimum entropy.

3.4. Classification stage

The classification stage involves the employment of a SVM and follows the feature
extraction stage. It is well known that in the case of SVMs, the classification depends on
how the inner-product kernel is generated; so different learning machines can be
constructed with quite different nonlinear decision surfaces.*® *! In this work, we propose
the use of RBF kernels for SVMs because they proved to give better results.*® Fig. 7,



Feature Extraction and Classification of Fetal Heart Rate 423

illustrates a SVM, where the hidden layer has as many nodes as the number of support
vectors found during the training process. For the RBF kernel, each one of the support
vectors is the centre of the Gaussian bump:

1
K(x,x;)= exp[—zg—2 |x-x; "2 ], (22)
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Fig. 7. A graphical representation of a Support Vector Machine Classifier.

The imbalanced nature of the problem made even more difficult the classification
stage and prompted us to adopt the modified SVM scheme with the two penalty
parameters C* and C~. It has been reported‘”'49 and proved through our exhaustive
experimentation that the ratio C*/C~ should be set to the inverse of the corresponding
cardinalities of the classes. Therefore, keeping their ratio C*/C~ constantly equal to three
and using different values for the values C* and C~, we experimented with different
values of the width parameter ¢ . This was performed in a systematic manner (a simple
grid search) covering a variety of values for both the two adjustable parameters.
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4. Experimental Tests and Results

The proposed methodology (Fig. 2) was implemented and applied to a data set consisting
of 80 signals, which had been acquired using scalp electrodes. The data set involved
fetuses that had either umbilical artery pH less than 7.1 (20 cases) or higher than 7.2 (60
cases). Newborns with umbilical artery pH in the range (7.1, 7.2) were not included in
the data set. Signals that belonged to fetuses with umbilical artery blood pH less than 7.1
corresponded to the group of cases that were “at risk”. Fetuses with umbilical arterial
blood pH higher than 7.2, formed the “normal” group. It must be mentioned that
different thresholds settings can be found in the literature.®

All FHR records had been acquired during the final stage of labor and, in fact, as
close as possible to delivery. This means that the data sets were free of time-bias and
hopefully a direct association can be made between the segment of the signal used and
the newborn’s blood pH. The recordings had durations ranging from 20 minutes to more
than 1 hour.

Because of the quite small number of labeled data, in order to test the performance of
our methodology, we employed 10-fold cross-validation.*’ We divided the 80 cases into
10 (non-overlapping) subsets; each one consisting of six examples from the “normal”
and two from the “at risk” group. The SVM classifier was trained using all subsets
except for one, and the validation error was assessed by testing the subset left out. We
repeated this procedure 10 times, each time using a different subset for testing and we
averaged the performance over the 10 experiments. In order to compare the efficiency of
the proposed method, we also tested three conventional classifiers: the Nearest Neighbor
(NNC), the Linear (I.C) and the Quadratic (QC) classifiers using the same four feature
sets for the two different time duration segments (5 and 10 minutes).

Following the medical terminology, we refer to the babies with umbilical artery pH
value less than 7.1 as the positive cases (the cases that are “‘at risk”) and the babies with
pH higher than 7.2 as the negative cases (the cases that are not “at risk” -the “normal”

group).

Predicted | Predicted
Negative Positive

Actual TN FP

Negative

Actual FN TP

Peositive

Fig. 8. Confusion Matrix.



Feature Extraction and Classification of Fetal Heart Rate 425

The performance of a classification process can be described by a confusion matrix,
like the one illustrated in Fig. 8. In the confusion matrix (Fig. 8), TN is the number of
negative examples correctly classified (True Negatives), FP is the number of negative
examples incorrectly classified as positive (False Positives), FN is the number of positive
examples incorrectly classified as negative (False Negatives) and TP is the number of
positive examples correctly classified (True Positives).

In problems with imbalanced data, accuracy a =(TP+TN)/(TP+FP+TN+FN) is
probably not the best measure to evaluate performance. A more appropriate metric,
proposed by Kubat,”' is the geometric mean:

g=vVa'-a (23)

where a* =TP/(TP+ FN ) is the accuracy observed separately on positive examples
(also known with the term sensitivity) and a~ =TN / (FP +TN ) is the accuracy observed
separately on negative examples (also known with the term specificity).

When the feature sets Fset!/ and Fset2 were used, extracted from 5 minute time
segments, didn’t yield satisfactory results. Both the conventional classifiers and the SVM
achieved low performance, as shown on Table 1 and Table 2. The high accuracy of the
quadratic classifier is superficial since it manages only to classify correctly the cases
with the high pH. On the other hand, as in all experiments the SVM classifier manages to
have a balanced performance.

Table 1. Classification results for Fset] extracted from 5 minute segments.

NNC LC QC SVM
a 725 76.25 82.5 72.5
2 40 5 50 80
a« 83.33 100 93.33 70
8 57.73 22.36 68.3 74.83

Table 2. Classification results for Fser2 extracted from 5 minute segments.

NNC LC QC SVM
a 67.5 76.25 73.75 75
at 30 10 86.67 70
a 80 98.33 35 76.67
4 48.99 '31.36 55.08 73.26

It is apparent from Table 3 and Table 4 that Fset3 and Fser4 extracted from 5 minute
time segments gave better results. Both the conventional classifiers and the SVM have
the ability to satisfactory identify the normal cases for feature sets Fset2 and Fset3.
Additionally, the SVM clearly outperforms the conventional classifiers concerning the
classification of the “at risk” cases. Daubecies wavelets with 11 vanishing moments
seem to be the best choice for the analyzing wavelet for these particular feature sets,
even though high performance has also been achieved with Symmlets and Coiflets.
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Table 3. Classification results for Fset3 extracted from 5 minute segments.

NNC LC QC SVM
a 725 83.75 63.75 86.25
ot 40 45 40 70

o 83.33 96.67 71.67 91.67
8 59.44 65.96 53.54 80.1

Table 4. Classification results for Fser4 extracted from 5 minute segments.

NNC LC QC SVM
a 82.5 82.5 85 88.75
2 55 55 60 75

o 91.67 91.67 93.33 93.33
g 71 71 74.8 83.67

The next set of experiments examined the four feature sets extracted from 10 minute
segments. As in the case of 5 minute segments, Fset! and Fset2 didn’t yield satisfactory
results. In fact the results were quite similar for both time segments.

Table 5. Classification results for Fset! extracted from 10 minute segments.

NNC LC QC SVM
a 725 76.25 65 70
a’ 50 5 30 80
a 80 100 76.67 66.67
8 63.25 22.36 47.96 73.03

Table 6. Classification results for Fser2 extracted from 10 minute segments.

NNC 1C QC SVM
a 75 76.25 71.25 67.5
a 45 10 40 85

« 85 98.33 81.67 61.67
8 61.85 31.36 57.16 724

Table 7. Classification results for Fset3 extracted from 10 minute segments.

NNC LC QC SVM
a 78.75 715 75 80.25
a’ 50 40 35 70
a 88.33 90 88.33 85

8 66.46 60 55.6 77.14
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Table 8. Classification results for Fset4 extracted from 10 minute segments.

NNC LC QC SVM
a 81.25 82.5 82.5 88.75
o 55 55 45 70
0 90 91.67 95 95
g 70.36 71 65.38 81.55

It is shown in Table 7 and Table 8 that Fser3 and Fset4 for 10 minute segments
perform very well. This was also the case of the 5 minute segments. The additional
information, when coefficients from scale m=5 are included, improves the performance,
not only of the SVM classifier but also of the conventional classifiers.

Comparing and examining the results presented in Tables 1-8, it has to be mentioned
that if someone looks only the overall accuracy then he would mistakenly conclude that
the employed conventional classifiers perform in a similar manner compared to the SVM
classifier. However, this is not the case. A more reliable comparison of the different
classification methods has to involve the investigation of the 5™ row of the tables, which
depicts the geometric mean for each classifier. Under this prism, the SVM classifier in
every case outperforms the conventional classifiers.

As it can be concluded from Tables 1, 2, 5 and 6, the isolated coefficients (Fset] and
Fser2) didn’t yield satisfactory results. However, it must be mentioned that isolated
coefficients were examined because this application of the wavelet transform has been
used successfully in EEG analysis’' and driven by that we decided to experiment with
these coefficients too. It seems that the underlying physiology of the FHR signal cannot
be represented by this oversimplified approach. On the other hand, the features (Fser3
and Fset4) based on the entropy measure seem to be able to reflect fetal condition in
terms of the umbilical artery pH value in a much more accurate way. This is justified in
Tables 3, 4, 7 and 8 by the high performance of all classification approaches involved.

Moreover, the inclusion of features from scale m=5 improves the performance.
Therefore, the best feature set for the particular problem of the association of FHR with
umbilical artery pH is Fset4.

5. Conclusions

In this work, a novel integrated and automated methodology was proposed and used for
the first time for the feature extraction and classification of FHR signal. The novelties of
this methodology are: the introduction of wavelets to extract time scale dependent
features, the extensive examination and selection of feature sets and, the use of SVM for
the classification task. The overall procedure proved that the use of time-scale dependent
features yields high classification performance for both classes (“at risk” and “normal”).
The results are more satisfactory compared to other previous works involving the same
data set, where features extracted from time and frequency domain, along with
morphological features were used.*s
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Due to the special design of this methodology, no direct comparison can be made
with other approaches.” * Chung and his group”? achieved accuracy of 77% (sensitivity
of 87.5% and specificity of 75%) using a pH value equal to 7.15 as the borderline
between normal and abnormal cases. In one of our experiments and for 5 minute
segments and Fser4 (extracted using Daubechies wavelets with 11 vanishing moments)
we had accuracy of 83.8% (sensitivity of 80% and specificity of 85%). That can be
regarded as comparable to the results reported in? (these results were not tabulated in
Table 4 since the geometric mean (82.46%) was not the best achieved). Concerning the
work of Salamalekis®™, where a threshold of pH equal to 7.10 is used, higher sensitivity
(100%) but lower specificity (86.2%) compared to our results (sensitivity of 75%,
specificity of 93.3%) is reported. What is also interesting is that their results were
achieved using Daubechies wavelets with 10 vanishing moments, which is close to the
wavelets that gave the best results in our case. Due to the fact that apart from the FHR
signal, measurements of functional oxygen saturation of fetal arterial blood were used in
that work, no direct comparison can be made.

According to the National Institute of Health® one research recommendation is to
investigate the correlation of FHR patterns with immediate outcome measures of
asphyxia, such as blood gases and acid-base state (in particular acidosis). Starting from
this point, we proposed and examined a method to associate FHR features to low
umbilical pH value, which can be regarded as a meaningful clinical outcome.
Furthermore, someone could argue regarding the choice of the threshold for the pH
value, that this perhaps should be lower for the “at risk’’ set, but since there is no
consensus concerning that, we chose a threshold for the “at risk” group on the limit of
normality.® The limit chosen to characterize the “at risk” cases is lower than those used
in Refs. 22 and 52 where it was chosen equal to 7.15.

The proposed methodology is automated, which means that no intervention or input
from the obstetricians is required. However, if we want to put this method into service,
we have to test it for a large number of cases, through rigorous validation and
verification to ascertain the stability and generalization of the proposed method. At this
point we are only able to state that the results are very promising. It also needs to be
mentioned that there are no commercially available computer systems that make
interpretations concerning the period of labor.® Another outcome that we demonstrated
in this work is that the final minutes of labor are correlated with the umbilical artery pH
of the newborn, something which was viewed with skepticism in the early 90s.>*

In conclusion, we must mention that the presented methodology seems to perform
very well in our experiments, but some of its aspects need to be addressed in the future.
In this research work, we used a predefined time segment in order to apply our
methodology for the discrimination between the two classes and we did not investigate
whether we can find the “line” at which the fetus is moving from a normal state to a
“risky” one. However the onset of a situation that could compromise the fetus is of
paramount importance for clinical practice and towards this direction we will focus on in
future work. Furthermore, in this work we didn’t incorporate in our analysis the
information conveyed by the signal reflecting the Uterine Activity (UA), which is also
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provided my cardiotocographs. In future research we are going to develop a

cO
as

mputerized system —part of it will be a module for the FHR analysis-, which will serve
a complementary tool in University Hospital, Obstetrics and Gynecology department.
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