

Evolutionary Approaches to the Linear Machine Layout Problem

Salman Mohagheghi*, George Georgoulas**, Chrystostomos Stylios***, Peter Groumpos****


*ABB Inc1, US Corporate Research Center, Raleigh, NC 27606 USA (salman.m@ieee.org)
**Dept. of Computer Applications in Finance and Management, TEI of Ionian Islands, Lefkas, Greece (georgoul@teiion.gr)

*** Dept. of Informatics and Communications Technology, TEI of Epirus, Kostakioi, Artas, Greece (stylios@teiep.gr)
****Lab. of Automation and Robotics, Dept. of Electrical and Computer Eng. Patras, Greece (groumpos@ece.upatras.gr)

Abstract: Flexible Manufacturing Systems (FMSs) cope with multi-product, usually small sized
production. In this research work we investigate the use of evolutionary methods to solve the linear or
single-row layout problem, which is the most commonly implemented layout in FMSs. Three different
approaches, based on Ant Colony Optimization, Genetic Algorithms and Particle Swarm Optimization
are tested. The experimental results show that a near optimal solution can be found for all three methods,
exploiting only a small portion of the feasible solution space, pinpointing once more the merit of using
evolutionary algorithms to tackle difficult combinatorial problems.

Keywords: Flexible Manufacturing Systems, Ant Colony Optimization, Genetic Algorithms, Particle
Swarm Optimization.



1

During this work S. Mohagheghi was with the Georgia Institute of Technology, Atlanta, GA, USA.

1. INTRODUCTION

Flexible Manufacturing System (FMS) is a system in which a
set of machines and a flexible material-handling system -
usually automated guided vehicles and granty robots- are
integrated using a central computer. FMS is different from
the classical machining systems due to higher degree of
automation and smaller number of machines. (Kusiak, 1990).

But the FMS layout design is even more crucial than in
conventional manufacturing. While a variety of methods that
implement complex networks and layouts are available, the
linear or single-row layout is the most commonly
implemented layout due to its simplicity. Different criteria
have been used in order to select the “optimal” arrangement
of a number of machines in a linear production line. All of
them result in a combinatorial optimization problem.

Two classes of algorithms are available for the solution of
combinatorial optimization problems: exact and approximate
algorithms. Exact algorithms try to find the truly optimal
solutions. Despite their recent success, for many NP-hard
problems, their applicability is often limited to rather small
instances. Approximate algorithms trade optimality for
efficiency. Their main advantage is that, in practice, they
often find reasonably good solutions in a very short time.
Algorithms of this type are loosely called heuristics.

In this research work, we propose the use of evolutionary
algorithms, which are part of the larger class of heuristic
methods, to solve the linear machine layout problem. Three
different members of the evolutionary family, namely the Ant
Colony Optimization (ACO), the Genetic Algorithms (GAs)

and the Particle Swarm Optimization (PSO) are tested
achieving very promising results.

The rest of this paper is organized as follows: Section 2
presents the formulation of the Linear Machine Layout
problem. In Section 3 the necessary material for each one of
the three approaches is briefly summarized. In Section 4, the
application results of these evolutionary algorithms to a
specific setup are presented and Section 5 concludes the
paper with some comments and remarks for future research.

2. LINEAR MACHINE LAYOUT PROBLEM

There are many shapes of linear layouts, such as straight line,
circular loop, U-shape and serpentine line (Haragu and
Kusiak, 1998) (Figure 1). The configuration of the production
line depends heavily on the material-handling system. Apart
from its configuration, the production line is characterized by
the flow of material as unidirectional or bidirectional. In the
latter, four different types of flow movement can occur
(Figure 2) (Ponnambalam and Ramkumar, 2001): a)
Repeated operations, b) In-sequence operations, c) Bypassing
operations and d) Backtracking operations.

The most desirable flow is the in-sequence operation due to
its unidirectional movement. Backward flow is the least
desirable since it causes additional costs and complicates the
flow more than the forenamed flow movements. The ideal
scenario would include only in-sequence moves. In practice,
however, bypassing and backtracking of jobs as they pass
down the line is inevitable. The designer of a single-row
layout has to find the optimal arrangement of machines for
such a production line. The optimality depends on the criteria
and the restrictions that are posed. There are four criteria,

Preprints of the 13th IFAC Symposium on
Information Control Problems in
Manufacturing, Moscow, Russia, June 3 - 5,
2009

Th-C1.3

1228

which a designer could take into account (Ponnambalam and
Ramkumar, 2001): a) minimization of the number of
backtracking movements, b) minimization of total
backtracking flow distance, c) maximization of in-sequence
movements, and d) minimization of the flow distance.
Obviously different criteria/objectives will lead to different
optimal settings.

Fig.1. Alternative configurations of single-row layouts

Carrie (1975) was the first to study the linear layout problem
and several approaches have been proposed since then
(Aneke and Carrie, 1986; Lee, 1991; Kouvelis and Chiang,
1992; Sarker et al., 1994; You-Dong, 1997; Ponnambalam
and Ramkumar, 2001). In this paper, we investigate the
solution to the “minimal backward-flow” model, i.e.
minimization of total backtracking flow distance, which is
presented in more detail in the following section.

Fig.2. Four different flow movements in a linear layout

2.1 Minimal backward-flow model.


This model is developed by trying to minimize the total
amount of backward flows for a production cell, as it is
indicated by its name. For this model, we make the following
assumptions (Sarker et al. 1994): a) Just one machine of each
type is allowed in the line (no duplications of machines are
allowed), b) The cost of material flows is proportional to the
number of parts and the distance of flows, and c) Each
machine is considered as a point and the distance between
machines is “1” (unit distance).

The distance between the initial input point of parts and the
first machine is also considered equal to 1. In Figure 3 the
adopted conventions are depicted. Therefore, the problem can
be described as follows:

Having M machines and n items of parts to be produced and
for each item a corresponding demand jd (j = 1, 2,. . .n),

place the machines in such an order so as to minimize the
backward flows. As aforementioned, the quantity that has to
be minimized is the total number of backtracking steps. Thus,

for this problem, following the notation of (Sarker, et al.,
1994), we seek to minimize:

1 1

M M

ij ij
j i

TB r b
 

   R B (1)

where M is the number of machines, ij M M
r


   R is the

requirement matrix, ij M M
b


   B is the backtrack matrix, ijr

is the number of total moves from machine i immediately to
machine j and ijb is the number of backtrack steps from

machine i to machine j and () defines element by element
multiplication. For a more rigorous analysis the interested
reader can refer to (Sarker, et al., 1994).

Fig. 3. Linear machine layout.

For example, suppose that we have 3 machines and we want
to produce 2 items (10 parts of the 1st item and 15 parts of the
2nd item). In order to produce those parts, we have to use the
3 machines in the following order:

Item 1 1-2-3-2-3-1 (10 parts)
Item 2 3-2-1-3-2-3-1-2 (15 parts)
and the machine layout is 1-2-3.

In order to calculate the total cost, we construct the matrices
R, B we multiply them in an element by element manner and
we sum them according to equation 1.

1 2 3

1 0 0 0

2 1 0 0

3 2 1 0

To

From
 

  
 
  

B

1 2 3

1 0 25 15

2 15 0 35

3 25 40 0

To

From
 

  
 
  

R



Therefore the total backtracking cost
is: 1 15 2 25 1 40 105TB        .

It is obvious that the requirement matrix remains constant,
whereas the backtrack matrix changes according to the
arrangement of the machines. This function is both complex
and difficult to estimate before all the machines are in place.

3. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms have been successfully used to
tackle difficult real-life problems. Almost all of them are
based on the use of a population of candidate solutions which
are given different names depending on the specific

1229

algorithm (i.e. chromosomes, particles, ants, etc) and a
number of mechanisms that allow the individual solutions to
exchange information trying to guide the search towards
more promising regions. The oldest and most prominent
member of the evolutionary family is the GA paradigm
proposed by Holland (Holland 1975). While the GA is
loosely based on the genetics the other two paradigms
investigated in this paper are based on the complex behaviour
emerging from the interaction of single individuals of social
species. Therefore the ACO was inspired by the behaviour of
real ants (Dorigo et al., 1991) and the PSO by flight of birds
in a flock (Kennedy and Eberhart, 1995; Eberhart and
Kennedy, 1995).

3.1 Ant Colony Optimization (ACO)

Ant algorithms were introduced in early 1990’s (Dorigo et
al., 1991) and they were combined with a multi-agent
approach for difficult combinatorial optimization problems.

ACO is a stochastic search method based on the indirect
communication of a colony of artificial ants, mediated by
artificial pheromone trails. The pheromone trails in ACO
serve as distributed numerical information used by the ants to
probabilistically construct solutions for the specific problem.
The modification of the pheromone trails by the ants during
the algorithm’s execution in order to reflect their search
experience along with an evaporation mechanism is one of
the two mechanisms helping the ants to find promising areas
in the search space. The other one involves the use of
heuristic information to grade the available states that the ant
can move during each time step.

The employment of the ACO algorithm for this particular
problem is performed by considering that the artificial ants
are moving from one machine to another building a path,
which is a candidate solution for this problem. That is,
starting from a machine, the ant proceeds by selecting the
machine to be put next in the layout. The selection of the next
machine has to be done based on a trade-off between the
pheromone (τ), which is deposited on the arcs connecting the
current machine with the other machines and a heuristic (n)
function, which measures locally the quality of the machine
that can be added to the current partial solution.

Adopting the Ant Colony System (ACS) approach (Dorigo
and Gambardella, 1997) we construct a candidate solution
using the following “tour” formulation.

3.1.1 “Tour” construction

When the k-th ant is located at machine i, it chooses to move
to machine j, according to the so-called pseudorandom
proportional rule, given by:

  0

0

max [()] [()] ,

,

k
i

iu iuu J
t t if q q

j
J if q q

  


   


(2)

where 0q is a parameter that it is selected by the user in the

interval [0,1], and J is a machine that has not been used so far
and is selected with probability:

[()] [()]
() ,

[()] [()]
k
i

k kiJ iJ
iJ i

il il
l J

t t
p t if J J

t t

 

 

 
 




 

 (3)

Among the other candidates, k
iJ denotes the tabu list

(forbidden list), which contains all the machines that have
been so far used including the current machine i , ij is a

heuristic value that is available a priori, ij is the pheromone

trail, α and β are two parameters, which determine the relative
influence of the pheromone trail and the heuristic information.
In other words, with probability 0q the ant makes the best

possible move as indicated by the learned pheromone trails
and the heuristic information (in this case, the ant is exploiting
the learned knowledge), while with probability (1- 0q), it

performs a biased exploration of the arcs. Tuning the
parameter 0q allows modulation of the degree of exploration

and the choice of whether to concentrate the search of the
system around the best-so-far solution or to explore other
tours. As it is obvious the choice depends heavily on the
quantities ()ij t and ()ij t .


3.1.2 Pheromone

The quantity ()ij t corresponds to the directional “arc”

connecting machine i to machine j. This quantity changes
after the completion of any search for all ants. At the first
step of the algorithm all pheromone trails are initiated to a
value 0 . For a detailed representation of the pheromone

settings as well as the mechanisms employed to modify the
pheromone trails see (Papadimitrou et al., 2006).

3.1.3 Heuristic information (Visibility)

The heuristic function (which some times is referred as
visibility, taking its name from its original use in the context
of the Travelling Salesman Problem (TSP)) is a quantity,
which in our problem (a static problem) doesn’t change over
iterations (“iteration-invariant”).,Therefore a more proper
notation is: 1/ij ijd  , where ijd in the original

implementation of the TSP simply denotes the distance
between town i and j. In our case, ijd corresponds to a

“local” cost in accordance with the total cost function that has
to be minimized. This means that ijd measures the immediate

cost that we have to pay by placing machine j after machine i.
This is calculated by summing all the backflows created by
this arrangement within a unity distance, i.e. by restricting
our search to only adjacent steps in the production phase. In
other words, ijd is equal to the element jir of the

requirement matrix.

1230

3.2 Genetic Algorithms (GA)

The idea behind GAs is to emulate what nature does; in other
words, GAs try to model genetic recombination, mutation
and selection. They are a class of general purpose search
methods balancing exploration and exploitation of the search
space. They exploit the use of a population of chromosomes
(candidate solutions) and an evolution process running on the
population pushing them to search through the solution space
in an effective manner. A GA has the following five
components (Michalewicz 1996): a) A genetic representation
for potential solutions to the problem,, b) A way to create an
initial population of potential solutions, c) An evaluation
function that plays the role of the environment, rating
solutions in terms of their “fitness”, d) Genetic operators that
alter the composition of children (usually crossover and
mutation), and e) Values for various parameters that the
genetic algorithm uses.

GAs were initially developed to solve real valued problems
using binary representation. Thus, the genetic operators
(crossover and mutation) were explicitly tailored for binary
strings and later revised to account for real valued
representations. However when dealing with permutation
problems, both the representation and the genetic operators
need to be selected with extra caution (Michalewicz, 1996).

For the problem at hand, in analogy to the TSP the most
natural representation is the “path representation”. For
example two candidate solutions for a 9-machine problem
would be represented as

(1 2 3 4 5 6 7 8 9)

(4 5 2 1 8 7 6 9 3)

It is obvious that the standard crossover and mutation
operators cannot be applied since we have to make sure that
each “location” is represented only once in each
chromosome. Different crossover operations have been
proposed as well as different mutation operations that
guarantee that feasible offsprings will be created
(Michalewicz, 1996).

For this work we employed the cycle crossover CX
(Michalewicz, 1996). The cycle crossover preserves the
absolute position of the elements (cities, machines, etc.) in
the parent sequence and this might be beneficial since in our
case – unlike the TSP – the absolute position does matter. For
the 2 chromosomes listed above the CX would start at the left
and choose the first machine from the first parent to produce
the first offspring (o1)

o1: (1 x x x x x x x)

Since we want every machine to be taken from one of its
parents the next machine to be considered is machine 4 (just
bellow the selected machine 1) leading to

o1: (1 x x 4 x x x x)

This, in turn, implies machine 8 (cited bellow machine 4)

o1: (1 x x 4 x x 8 x)

Following this rule we select machines 3 and 2

o1: (1 2 3 4 x x 8 x)

The selection of machine 2 means that we should choose
machine 1 from the first string which is not possible since
machine 1 has already been selected as the first machine.
Thus we have completed a cycle. The remaining of the
positions are filled from the second string (parent):

o1: (1 2 3 4 7 6 9 8 5)

Similarly

o2: (4 1 2 8 5 6 7 3 9)

Following the same sequence of thoughts the mutation
operator also has to be redefined. In our case, we randomly
select a chromosome and exchange the integers between 2
randomly selected places.

3.3 Particle Swarm Optimization (PSO)

PSO is a population based stochastic optimization technique
developed by Kennedy and Eberhart (Kennedy and Eberhart,
1995; Eberhart and Kennedy, 1995) inspired by the social
behavior of animals such as flocking or fish schooling. Since
its introduction, PSO has found many applications in solving
optimization problems in real number spaces (Valle et al.
2008).

A potential solution to a minimization (or maximization)
problem is represented by a particle having coordinates xid

and rate of change vid in the D-dimensional space. In its
original formulation, the updates of the particles are
accomplished according to the following equations:

1 1 2 2(1) () [()] [()]id id id id nd idv t v t n r p x t n r p x t      (4)

(1) () (1)
id id id

x t x t v t    (5)

where vid(t) is the current velocity of the ith particle, xid(t) is
the current position of the ith particle, pid is the particle’s
locations at which the best fitness has been achieved so far
and pnd is the best particle among the neighbours at which the
best fitness has been achieved so far; r1 and r2 are two
independently generated random numbers -uniformly
distributed in [0, 1]- and n1, n2 are learning factors. Since its
introduction variations of the above formulation have been
proposed (Valle et al. 2008), improving the performance of
the continuous version of the PSO.

Apart from the well known continuous PSO, there is also a
discrete binary version of the PSO algorithm (Kennedy and
Eberhart, 1997). In the binary version, the formula for the
velocity remains unchanged, except for the fact that the
particle positions pnd, pid, xid(t) can only take binary values.
So the probability of an individual to take a value of 1 can be
modeled as (Valle et al. 2008):

),),1(),1(()1(ndidididid pptvtxfxP  (6)

1231

In this model, the probability that the ith individual chooses 1
for the dth bit in the string, is a function of the previous state
of the bit and the velocity which is the measure of the
individual’s tendency to choose 1 or 0. The probability
above also implicitly depends on pid and pnd. Mathematically,
vid determines a threshold in the probability function, and
therefore should be bounded in the range of [0,1]. This
threshold can be modeled using the sigmoid function:

))(exp(1

1
))((

tv
tvS

id
id 

 (7)

Using (7), the state of the dth position in the string for the ith

individual at time t can be expressed as:

if  )(tvS idid  then 1)(txid , else 0)(txid (8)

Where ξid is a random number with a uniform distribution in
the range of [0,1]. This procedure is repeatedly iterated over
each dimension and for all individuals, testing if the current
value xid results in a better evaluation than pid, in which case
its value will be stored as the best individual state.

Clearly, the sociocognitive concepts of particle swarm are
included in the function for vid (according to (4)), which
indicates that the tendency of each individual towards success
is adjusted according to its own experience as well as that of
its neighborhood. In all equations, some considerations have
to be made in order to adjust the limits of the parameters.

In a more general case, when integer solutions (not
necessarily 0 or 1) are needed, the optimal solution can be
determined by rounding off the real optimum values to the
nearest integer. Basic PSO equations, developed for a real
number space, are used to determine the new position for
each particle. Once xi(t)

n is determined, its value in the dth

dimension is rounded to the nearest integer value using the
following equation:

 



)()(

1:,)()(

tandtx

ndtxt

idid

idid
(9)

The results presented by some researchers using integer PSO
indicate that the performance of the method is not affected
when the real values of the particles are truncated (Valle et
al. 2008). Moreover, integer PSO has a high success rate in
solving integer programming problems even when other
methods, such as Branch and Bound, fail.

4. RESULTS

In order to test the utility of the evolutionary methods, we
examine a well known FMS problem, where all the involved
quantities are generated randomly and are summarized in the
following Table 1.

For this setup the optimal arrangement of the machines is: 7,
8, 3, 2, 6, 9, 5, 1, 4 with a total number of backtracking steps
equal to 2923 (total cost). The total number of possible
solutions is 9!= 362880. On the other hand, the worst case
scenario would be to arrange the machines in the following
order 2, 1, 4, 7, 5, 6, 9, 8, 3 with a total cost of 4980.

Table 1: Eight Processes, with their corresponding routes
and demands

Process
#

Route information # of
parts

1 [1 6 8 9 3 5 7 4 3 8 6 8 2 3] 8
2 [2 6 1 8 9 5 2 1 6 2 9 5 6 8 4 3 4] 22
3 [8 7 3 4 1 8 5 6 2 3 1] 33
4 [3 4 6 9 2 1 7 2 8 1] 12
5 [8 7 3 1 4 1 5 6 2 9 3 1] 14
6 [9 8 7 2 3 4 5 1 5 7 6 2 3 1] 23
7 [3 7 9 4 9 2 5 1 7 8 2 8 6 3 2] 39
8 [3 7 2 4 6 2 9 1 9 5 8 3 4] 28

4.1. Ant Colony

Our “colony” consisted of 9 ants (equal to the number of the
machines following the approach to solve the TSP) and in
each experiment the algorithm was let to run for 1000
iterations. Because the algorithm is stochastic in nature, we
repeated the experiments 10 times and calculated the average
performance. Figure 4 depicts the evolution of the best
solution for each one of the 10 trials along with their average.

Fig. 4. The evolutions of bsC for 10 different runs of the
experiment. The thick line corresponds to the average of
those 10 trials, while the dashed line on the bottom marks the
global best value.

The average cost achieved was 2932 and the algorithm 4
times out of 10 also found the global optimal solution (2923).

4.2. GA

In order to have an equal number of function evaluations the
GA consisted of 9 chromosomes and was let to run for 1000
generations. The experimental setup was also executed 10
times end the results are depicted in Figure 4. The average
cost achieved was 2928 and the algorithm 9 times out of 10
found the global optimal solution.

Fig. 5. The evolutions of bsC for 10 different runs of the
experiment. The thick line corresponds to the average of
those 10 trials.

1232

4.3. PSO

The particle swarm implementation consisted of 50 particles
since the original trials with 9 particles didn’t perform
satisfactory. Each particle has a length of 9, with each entry
indicating the position of each machine in the overall layout.
In order to prevent deriving the same location for different
machines, particles with one or more pairs of equal entries
are highly penalized. Similar to the previous cases, the PSO
was tested 10 times and each time it let to run for 1000
iterations. One out of ten times the algorithm converged to
the global minimum of 2923, with the average of the 10 runs
being 3008. Figure 6 illustrates the total cost for the various
runs of the PSO algorithm.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

4

Number of Iterations

To
ta

l C
os

t

Fig. 6. The evolutions of bsC for 10 different runs of the
experiment. The thick line corresponds to the average of
those 10 trials.

5. CONCLUSIONS

In this work, we investigated the solution of a simplified
linear layout problem based on evolutionary approaches. The
results are encouraging indicating that heuristic approaches
can be used for the design of modern manufacturing systems,
and with further investigation could be probably used for
more complicated problems (general machinery layout
problems). It was shown, that by exploring only a small
number of candidate solutions, we were able to find a good
(near-optimal) solution without even optimising the
parameter settings of the algorithm.

Among the three algorithms employed, the GA performed the
best, slightly outperforming the ACO approach. The PSO
method didn’t perform as good (however without failing to
find near-optimal solutions) probably due to the nature of the
problem which is not a simple permutation problem since
the choice of the first positioned machine is also important. In
future work the authors will also examine, validate and
compare the performance of some PSO variants and
structures, for instance experimenting with different
neighborhood structures for defining the global optimum
(Valle et al. 2008).

To summarize, it is apparent that these previously applied
evolutionary optimization methodologies seem to be viable
solutions for linear layout problem. But further
experimentation is needed before reaching a conclusion about
the superiority of one method over the others and its
applicability for general purposes.





REFERENCES

Aneke, N. A. G., and Carrie, A. S. (1986). A design
technique for the layout of Multi-product flow lines.
International Journal of Production Research, volume
24, pp. 471-481.

Carrie, A. S. (1975). Layout of Multi-product lines.
International Journal of Production Research, volume
13, pp. 541-575.

Dorigo, M. and Gambardella, L. M. (1997). Ant colonies for
the traveling salesman problem. Biosystems, volume 43,
no 2, pp. 73-81.

Dorigo, M., Maniezzo, V. and Colorni A. (1991). Positive
feedback as a search strategy. Technical report 91-016,
Dipartimento di Electronica, Politecnico di Milano,
Milan.

Heragu, S. S. and A. Kusiak (1998). Machine layout problem
in flexible manufacturing systems. Operations Research,
volume 36, no 2, pp. 258-268

Holland, J. H. (1975), Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor, MI.

Kennedy, J., and Eberhart, R. C. (1995), Particle swarm
optimization, Proceedings of the IEEE International
Conference on Neural Networks, Piscataway, NJ, pp
1942-1948.

Kennedy, J. and Eberhart, R. C. (1997), A discrete binary
version of the particle swarm algorithm, Proceedings of
the Conference on Systems, Man, and Cybernetics,
Piscataway, NJ, pp 4104-4109

Kouvelis, P. and Chiang, W. C. (1992). A simulated
annealing procedure for single row layout problems in
flexible manufacturing systems. Int. J. Prod. Res.
volume 30, no 4, pp 717-732.

Kusiak A. (1990) Intelligent manufacturing systems.
Englewood Cliffs, NJ. Prentice-Hall.

Michalewicz, Z (1996). Genetic Algorithms+Data
structures=Evolution Programs. 3rd edition, Springer,
Berline.

Ponnambalam, S. G. and Ramkumar V. (2001). A genetic
Algorithm for the Design of a Single-Row Layout in
Automated Manufacturing Systems. Int J. Adv. Manuf.
Technol., volume 18, pp. 512-519.

Papadimitriou A., Georgoulas, G., Stylios, C. and Groumpos,
P., (2006), Ant colony algorithm for optimal
arrangement of linear machine layout, Proceedings of 1st
IFAC Workshop on Applications of Large Scale
Industrial Systems (ALSIS´06).

Sarker, B. R., Wilhelm, W. E. and Hogg, G. L. (1994).
Backtracking and its Amoebic Properties in One-
dimensional Machine Location Problems. J. Opl Res.
Soc., volume 45, no 9, pp 1024-1039.

You-Dong, W. (1997). A linear programming approach to
linear machine layout problem. The Journal of Industrial
Mathematics Society, volume 47, no 2, pp. 59-69.

Valle Y., Venayagamoorty, G. K., Mohagheghi, S.,
Hernandez-Mejia J. C., and Harley, R. G. (2008).
“Particle Swarm Optimization- Basic Concepts, Variants
and Applications in Power Systems,” IEEE Transactions
on Evolutionary Computation, vol. 12, no. 2, pp. 171-
195.

1233

