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Abstract: Flexible Manufacturing Systems (FMSs) cope with multi-product, usually small sized 
production. In this research work we investigate the use of evolutionary methods to solve the linear or 
single-row layout problem, which is the most commonly implemented layout in FMSs. Three different 
approaches, based on Ant Colony Optimization, Genetic Algorithms and Particle Swarm Optimization 
are tested. The experimental results show that a near optimal solution can be found for all three methods, 
exploiting only a small portion of the feasible solution space, pinpointing once more the merit of using 
evolutionary algorithms to tackle difficult combinatorial problems.
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1. INTRODUCTION

Flexible Manufacturing System (FMS) is a system in which a 
set of machines and a flexible material-handling system -
usually automated guided vehicles and granty robots- are 
integrated using a central computer. FMS is different from 
the classical machining systems due to higher degree of 
automation and smaller number of machines. (Kusiak, 1990).

But the FMS layout design is even more crucial than in 
conventional manufacturing. While a variety of methods that 
implement complex networks and layouts are available, the 
linear or single-row layout is the most commonly 
implemented layout due to its simplicity. Different criteria 
have been used in order to select the “optimal” arrangement 
of a number of machines in a linear production line. All of 
them result in a combinatorial optimization problem.

Two classes of algorithms are available for the solution of 
combinatorial optimization problems: exact and approximate 
algorithms. Exact algorithms try to find the truly optimal 
solutions. Despite their recent success, for many NP-hard 
problems, their applicability is often limited to rather small 
instances. Approximate algorithms trade optimality for 
efficiency. Their main advantage is that, in practice, they 
often find reasonably good solutions in a very short time. 
Algorithms of this type are loosely called heuristics.

In this research work, we propose the use of evolutionary 
algorithms, which are part of the larger class of heuristic 
methods, to solve the linear machine layout problem. Three 
different members of the evolutionary family, namely the Ant 
Colony Optimization (ACO), the Genetic Algorithms (GAs) 

and the Particle Swarm Optimization (PSO) are tested 
achieving very promising results.  

The rest of this paper is organized as follows: Section 2 
presents the formulation of the Linear Machine Layout 
problem. In Section 3 the necessary material for each one of 
the three approaches is briefly summarized. In Section 4, the 
application results of these evolutionary algorithms to a 
specific setup are presented and Section 5 concludes the 
paper with some comments and remarks for future research.   

2. LINEAR MACHINE LAYOUT PROBLEM

There are many shapes of linear layouts, such as straight line, 
circular loop, U-shape and serpentine line (Haragu and 
Kusiak, 1998) (Figure 1). The configuration of the production 
line depends heavily on the material-handling system. Apart 
from its configuration, the production line is characterized by 
the flow of material as unidirectional or bidirectional. In the 
latter, four different types of flow movement can occur
(Figure 2) (Ponnambalam and Ramkumar, 2001): a) 
Repeated operations, b) In-sequence operations, c) Bypassing
operations and d) Backtracking operations.

The most desirable flow is the in-sequence operation due to 
its unidirectional movement. Backward flow is the least 
desirable since it causes additional costs and complicates the 
flow more than the forenamed flow movements. The ideal 
scenario would include only in-sequence moves. In practice, 
however, bypassing and backtracking of jobs as they pass 
down the line is inevitable. The designer of a single-row 
layout has to find the optimal arrangement of machines for
such a production line. The optimality depends on the criteria 
and the restrictions that are posed. There are four criteria, 
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which a designer could take into account (Ponnambalam and 
Ramkumar, 2001): a) minimization of the number of 
backtracking movements, b) minimization of total 
backtracking flow distance, c) maximization of in-sequence 
movements, and d) minimization of the flow distance. 
Obviously different criteria/objectives will lead to different 
optimal settings.

Fig.1. Alternative configurations of single-row layouts

Carrie (1975) was the first to study the linear layout problem 
and several approaches have been proposed since then 
(Aneke and Carrie, 1986; Lee, 1991; Kouvelis and Chiang, 
1992; Sarker et al., 1994; You-Dong, 1997; Ponnambalam 
and Ramkumar, 2001). In this paper, we investigate the 
solution to the “minimal backward-flow” model, i.e. 
minimization of total backtracking flow distance, which is 
presented in more detail in the following section.

Fig.2. Four different flow movements in a linear layout 

2.1 Minimal backward-flow model.


This model is developed by trying to minimize the total 
amount of backward flows for a production cell, as it is 
indicated by its name. For this model, we make the following 
assumptions (Sarker et al. 1994): a) Just one machine of each 
type is allowed in the line (no duplications of machines are 
allowed), b) The cost of material flows is proportional to the 
number of parts and the distance of flows, and c) Each 
machine is considered as a point and the distance between 
machines is “1” (unit distance).

The distance between the initial input point of parts and the 
first machine is also considered equal to 1. In Figure 3 the 
adopted conventions are depicted. Therefore, the problem can 
be described as follows:

Having M machines and n items of parts to be produced and 
for each item a corresponding demand jd (j = 1, 2,. . .n),

place the machines in such an order so as to minimize the 
backward flows. As aforementioned, the quantity that has to 
be minimized is the total number of backtracking steps. Thus, 

for this problem, following the notation of (Sarker, et al., 
1994), we seek to minimize:

1 1

M M

ij ij
j i

TB r b
 

   R B (1)

where M is the number of machines, ij M M
r


   R is the 

requirement matrix, ij M M
b


   B is the backtrack matrix, ijr

is the number of total moves from machine i immediately to 
machine j and ijb is the number of backtrack steps from 

machine i to machine j and (  ) defines element by element 
multiplication. For a more rigorous analysis the interested 
reader can refer to (Sarker, et al., 1994).

Fig. 3. Linear machine layout.

For example, suppose that we have 3 machines and we want 
to produce 2 items (10 parts of the 1st item and 15 parts of the 
2nd item). In order to produce those parts, we have to use the
3 machines in the following order:

Item 1 1-2-3-2-3-1         (10 parts)
Item 2 3-2-1-3-2-3-1-2 (15 parts)
and the machine layout is 1-2-3. 

In order to calculate the total cost, we construct the matrices 
R, B we multiply them in an element by element manner and 
we sum them according to equation 1. 

1 2 3

1 0 0 0

2 1 0 0

3 2 1 0

To

From
 

  
 
  

B

1 2 3

1 0 25 15

2 15 0 35

3 25 40 0

To

From
 

  
 
  

R



Therefore the total backtracking cost 
is: 1 15 2 25 1 40 105TB        . 

It is obvious that the requirement matrix remains constant, 
whereas the backtrack matrix changes according to the 
arrangement of the machines. This function is both complex 
and difficult to estimate before all the machines are in place. 

3. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms have been successfully used to 
tackle difficult real-life problems. Almost all of them are 
based on the use of a population of candidate solutions which 
are given different names depending on the specific 
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algorithm (i.e. chromosomes, particles, ants, etc) and a 
number of mechanisms that allow the individual solutions to 
exchange information trying to guide the search towards 
more promising regions. The oldest and most prominent 
member of the evolutionary family is the GA paradigm
proposed by Holland (Holland 1975). While the GA is 
loosely based on the genetics the other two paradigms 
investigated in this paper are based on the complex behaviour 
emerging from the interaction of single individuals of social 
species. Therefore the ACO was inspired by the behaviour of 
real ants (Dorigo et al., 1991) and the PSO by flight of birds 
in a flock (Kennedy and Eberhart, 1995; Eberhart and 
Kennedy, 1995).   

3.1 Ant Colony Optimization (ACO)

Ant algorithms were introduced in early 1990’s (Dorigo et 
al., 1991) and they were combined with a multi-agent 
approach for difficult combinatorial optimization problems.

ACO is a stochastic search method based on the indirect 
communication of a colony of artificial ants, mediated by 
artificial pheromone trails. The pheromone trails in ACO 
serve as distributed numerical information used by the ants to 
probabilistically construct solutions for the specific problem. 
The modification of the pheromone trails by the ants during 
the algorithm’s execution in order to reflect their search 
experience along with an evaporation mechanism is one of 
the two mechanisms helping the ants to find promising areas 
in the search space. The other one involves the use of 
heuristic information to grade the available states that the ant 
can move during each time step.

The employment of the ACO algorithm for this particular 
problem is performed by considering that the artificial ants 
are moving from one machine to another building a path, 
which is a candidate solution for this problem. That is, 
starting from a machine, the ant proceeds by selecting the 
machine to be put next in the layout. The selection of the next 
machine has to be done based on a trade-off between the 
pheromone (τ), which is deposited on the arcs connecting the 
current machine with the other machines and a heuristic (n) 
function, which measures locally the quality of the machine 
that can be added to the current partial solution. 

Adopting the Ant Colony System (ACS) approach (Dorigo 
and Gambardella, 1997) we construct a candidate solution 
using the following “tour” formulation.

3.1.1 “Tour” construction 

When the k-th ant is located at machine i, it chooses to move 
to machine j, according to the so-called pseudorandom
proportional rule, given by:

  0

0

max [ ( )] [ ( )] ,

,

k
i

iu iuu J
t t if q q

j
J if q q

  


   


(2)

where 0q is a parameter that it is selected by the user in the 

interval [0,1], and J is a machine that has not been used so far 
and is selected with probability:

[ ( )] [ ( )]
( ) ,

[ ( )] [ ( )]
k
i

k kiJ iJ
iJ i

il il
l J

t t
p t if J J

t t

 

 

 
 




 

   (3)

Among the other candidates, k
iJ denotes the tabu list

(forbidden list), which contains all the machines that have 
been so far used including the current machine i , ij is a 

heuristic value that is available a priori, ij is the pheromone 

trail, α and β are two parameters, which determine the relative 
influence of the pheromone trail and the heuristic information. 
In other words, with probability 0q the ant makes the best 

possible move as indicated by the learned pheromone trails 
and the heuristic information (in this case, the ant is exploiting 
the learned knowledge), while with probability (1- 0q ), it 

performs a biased exploration of the arcs. Tuning the 
parameter 0q allows modulation of the degree of exploration 

and the choice of whether to concentrate the search of the 
system around the best-so-far solution or to explore other 
tours. As it is obvious the choice depends heavily on the 
quantities ( )ij t and ( )ij t . 


3.1.2 Pheromone

The quantity ( )ij t corresponds to the directional “arc” 

connecting machine i to machine j. This quantity changes 
after the completion of any search for all ants. At the first 
step of the algorithm all pheromone trails are initiated to a 
value 0 . For a detailed representation of the pheromone 

settings as well as the mechanisms employed to modify the 
pheromone trails see (Papadimitrou et al., 2006).

3.1.3 Heuristic information (Visibility)

The heuristic function (which some times is referred as
visibility, taking its name from its original use in the context 
of the Travelling Salesman Problem (TSP)) is a quantity, 
which in our problem (a static problem) doesn’t change over 
iterations (“iteration-invariant”).,Therefore a more proper 
notation is: 1/ij ijd  , where ijd in the original 

implementation of the TSP simply denotes the distance 
between town i and j. In our case, ijd   corresponds to a 

“local” cost in accordance with the total cost function that has 
to be minimized. This means that ijd measures the immediate 

cost that we have to pay by placing machine j after machine i.
This is calculated by summing all the backflows created by 
this arrangement within a unity distance, i.e. by restricting 
our search to only adjacent steps in the production phase. In 
other words, ijd is equal to the element jir of the 

requirement matrix.
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3.2 Genetic Algorithms (GA)

The idea behind GAs is to emulate what nature does; in other 
words, GAs try to model genetic recombination, mutation
and selection. They are a class of general purpose search 
methods balancing exploration and exploitation of the search 
space. They exploit the use of a population of chromosomes 
(candidate solutions) and an evolution process running on the 
population pushing them to search through the solution space 
in an effective manner. A GA has the following five 
components (Michalewicz 1996): a) A genetic representation 
for potential solutions to the problem,, b) A way to create an 
initial population of potential solutions, c) An evaluation 
function that plays the role of the environment, rating 
solutions in terms of their “fitness”, d) Genetic operators that 
alter the composition of children (usually crossover and 
mutation), and e) Values for various parameters that the 
genetic algorithm uses.

GAs were initially developed to solve real valued problems 
using binary representation. Thus, the genetic operators 
(crossover and mutation) were explicitly tailored for binary 
strings and later revised to account for real valued 
representations. However when dealing with permutation 
problems, both the representation and the genetic operators 
need to be selected with extra caution (Michalewicz, 1996). 

For the problem at hand, in analogy to the TSP the most 
natural representation is the “path representation”. For 
example two candidate solutions for a 9-machine problem 
would be represented as

(1 2 3 4 5 6 7 8 9)

(4 5 2 1 8 7 6 9 3)

It is obvious that the standard crossover and mutation 
operators cannot be applied since we have to make sure that 
each “location” is represented only once in each 
chromosome. Different crossover operations have been 
proposed as well as different mutation operations that 
guarantee that feasible offsprings will be created
(Michalewicz, 1996).

For this work we employed the cycle crossover CX 
(Michalewicz, 1996). The cycle crossover preserves the 
absolute position of the elements (cities, machines, etc.) in 
the parent sequence and this might be beneficial since in our 
case – unlike the TSP – the absolute position does matter. For 
the 2 chromosomes listed above the CX would start at the left 
and choose the first machine from the first parent to produce 
the first offspring (o1) 

o1: (1 x x x x x x x)

Since we want every machine to be taken from one of its 
parents the next machine to be considered is machine 4 (just 
bellow the selected machine 1) leading to 

o1: (1 x x 4 x x x x)

This, in turn, implies machine 8 (cited bellow machine 4) 

o1: (1 x x 4 x x 8 x)

Following this rule we select machines 3 and 2

o1: (1 2 3 4 x x 8 x)

The selection of machine 2 means that we should choose 
machine 1 from the first string which is not possible since 
machine 1 has already been selected as the first machine. 
Thus we have completed a cycle. The remaining of the 
positions are filled from the second string (parent): 

o1: (1 2 3 4 7 6 9 8 5)

Similarly 

o2: (4 1 2 8 5 6 7 3 9)

Following the same sequence of thoughts the mutation 
operator also has to be redefined. In our case, we randomly 
select a chromosome and exchange the integers between 2 
randomly selected places. 

3.3 Particle Swarm Optimization (PSO)

PSO is a population based stochastic optimization technique 
developed by Kennedy and Eberhart (Kennedy and Eberhart, 
1995; Eberhart and Kennedy, 1995) inspired by the social 
behavior of animals such as flocking or fish schooling. Since 
its introduction, PSO has found many applications in solving 
optimization problems in real number spaces (Valle et al. 
2008). 

A potential solution to a minimization (or maximization) 
problem is represented by a particle having coordinates xid

and rate of change vid in the D-dimensional space. In its 
original formulation, the updates of the particles are 
accomplished according to the following equations:

1 1 2 2( 1) ( ) [ ( )] [ ( )]id id id id nd idv t v t n r p x t n r p x t      (4)

( 1) ( ) ( 1)
id id id

x t x t v t    (5)

where vid(t) is the current velocity of the ith particle, xid(t) is 
the current position of the ith particle, pid is the particle’s 
locations at which the best fitness has been achieved so far 
and pnd is the best particle among the neighbours at which the 
best fitness has been achieved so far; r1 and r2 are two 
independently generated random numbers -uniformly 
distributed in [0, 1]- and n1, n2 are learning factors. Since its 
introduction variations of the above formulation have been 
proposed (Valle et al. 2008), improving the performance of 
the continuous version of the PSO.

Apart from the well known continuous PSO, there is also a 
discrete binary version of the PSO algorithm (Kennedy and 
Eberhart, 1997). In the binary version, the formula for the 
velocity remains unchanged, except for the fact that the 
particle positions pnd, pid, xid(t) can only take binary values.
So the probability of an individual to take a value of 1 can be 
modeled as (Valle et al. 2008):

),),1(),1(()1( ndidididid pptvtxfxP  (6)
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In this model, the probability that the ith individual chooses 1 
for the dth bit in the string, is a function of the previous state 
of the bit and the velocity which is the measure of the 
individual’s tendency to choose 1 or 0.  The probability 
above also implicitly depends on pid and pnd. Mathematically, 
vid determines a threshold in the probability function, and 
therefore should be bounded in the range of [0,1]. This 
threshold can be modeled using the sigmoid function:

))(exp(1

1
))((

tv
tvS

id
id 

 (7)

Using (7), the state of the dth position in the string for the ith

individual at time t can be expressed as:

if  )(tvS idid    then 1)( txid , else 0)( txid (8)

Where ξid is a random number with a uniform distribution in 
the range of [0,1]. This procedure is repeatedly iterated over 
each dimension and for all individuals, testing if the current 
value xid results in a better evaluation than pid, in which case 
its value will be stored as the best individual state.

Clearly, the sociocognitive concepts of particle swarm are 
included in the function for vid (according to (4)), which 
indicates that the tendency of each individual towards success 
is adjusted according to its own experience as well as that of 
its neighborhood. In all equations, some considerations have 
to be made in order to adjust the limits of the parameters.

In a more general case, when integer solutions (not 
necessarily 0 or 1) are needed, the optimal solution can be 
determined by rounding off the real optimum values to the 
nearest integer. Basic PSO equations, developed for a real 
number space, are used to determine the new position for 
each particle. Once xi(t)

n is determined, its value in the dth

dimension is rounded to the nearest integer value using  the 
following equation:

 



)()(

1:,)()(

tandtx

ndtxt

idid

idid
(9)

The results presented by some researchers using integer PSO 
indicate that the performance of the method is not affected 
when the real values of the particles are truncated (Valle et 
al. 2008). Moreover, integer PSO has a high success rate in 
solving integer programming problems even when other 
methods, such as Branch and Bound, fail.

4. RESULTS

In order to test the utility of the evolutionary methods, we 
examine a well known FMS problem, where all the involved 
quantities are generated randomly and are summarized in the 
following Table 1.

For this setup the optimal arrangement of the machines is: 7,
8, 3, 2, 6, 9, 5, 1, 4 with a total number of backtracking steps 
equal to 2923 (total cost).  The total number of possible 
solutions is 9!= 362880.  On the other hand, the worst case 
scenario would be to arrange the machines in the following 
order 2, 1, 4, 7, 5, 6, 9, 8, 3 with a total cost of 4980.

Table 1: Eight Processes, with their corresponding routes 
and demands 

Process 
#

Route information # of 
parts

1 [1 6 8 9 3 5 7 4 3 8 6 8 2 3] 8
2 [2 6 1 8 9 5 2 1 6 2 9 5 6 8 4 3 4] 22
3 [8 7 3 4 1 8 5 6 2 3 1] 33
4 [3 4 6 9 2 1 7 2 8 1] 12
5 [8 7 3 1 4 1 5 6 2 9 3 1] 14
6 [9 8 7 2 3 4 5 1 5 7 6 2 3 1] 23
7 [3 7 9 4 9 2 5 1 7 8 2 8 6 3 2] 39
8 [3 7 2 4 6 2 9 1 9 5 8 3 4] 28

4.1. Ant Colony

Our “colony” consisted of 9 ants (equal to the number of the 
machines following the approach to solve the TSP) and in 
each experiment the algorithm was let to run for 1000 
iterations. Because the algorithm is stochastic in nature, we 
repeated the experiments 10 times and calculated the average 
performance. Figure 4 depicts the evolution of the best 
solution for each one of the 10 trials along with their average.

Fig. 4. The evolutions of bsC for 10 different runs of the 
experiment. The thick line corresponds to the average of 
those 10 trials, while the dashed line on the bottom marks the 
global best value.

The average cost achieved was 2932 and the algorithm 4 
times out of 10 also found the global optimal solution (2923).

4.2. GA

In order to have an equal number of function evaluations the 
GA consisted of 9 chromosomes and was let to run for 1000 
generations. The experimental setup was also executed 10 
times end the results are depicted in Figure 4. The average 
cost achieved was 2928 and the algorithm 9 times out of 10 
found the global optimal solution. 

Fig. 5. The evolutions of bsC for 10 different runs of the 
experiment. The thick line corresponds to the average of 
those 10 trials.
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4.3. PSO

The particle swarm implementation consisted of 50 particles
since the original trials with 9 particles didn’t perform 
satisfactory. Each particle has a length of 9, with each entry 
indicating the position of each machine in the overall layout. 
In order to prevent deriving the same location for different 
machines, particles with one or more pairs of equal entries 
are highly penalized. Similar to the previous cases, the PSO 
was tested 10 times and each time it let to run for 1000 
iterations. One out of ten times the algorithm converged to 
the global minimum of 2923, with the average of the 10 runs 
being 3008. Figure 6 illustrates the total cost for the various 
runs of the PSO algorithm.
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Fig. 6. The evolutions of bsC for 10 different runs of the 
experiment. The thick line corresponds to the average of 
those 10 trials.

5. CONCLUSIONS

In this work, we investigated the solution of a simplified 
linear layout problem based on evolutionary approaches. The 
results are encouraging indicating that heuristic approaches 
can be used for the design of modern manufacturing systems,
and with further investigation could be probably used for 
more complicated problems (general machinery layout 
problems). It was shown, that by exploring only a small 
number of candidate solutions, we were able to find a good 
(near-optimal) solution without even optimising the 
parameter settings of the algorithm. 

Among the three algorithms employed, the GA performed the 
best, slightly outperforming the ACO approach. The PSO 
method didn’t perform as good (however without failing to 
find near-optimal solutions) probably due to the nature of the 
problem which is not a simple permutation problem since   
the choice of the first positioned machine is also important. In 
future work the authors will also examine, validate and 
compare the performance of some PSO variants and 
structures, for instance experimenting with different 
neighborhood structures for defining the global optimum
(Valle et al. 2008).

To summarize, it is apparent that these previously applied 
evolutionary optimization methodologies seem to be viable 
solutions for linear layout problem. But further 
experimentation is needed before reaching a conclusion about 
the superiority of one method over the others and its 
applicability for general purposes.





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