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This study presents the successful application of artificial neural networks (ANNs) for
downscaling Meteosat Second Generation thermal infrared satellite imagery. The scope
is to examine, propose, and develop an integrated methodology to improve the spa-
tial resolution of Meteosat satellite images. The proposed approach may contribute to
the development of a general methodology for monitoring and downscaling Earth’s
surface characteristics and cloud systems, where there is a clear need for contigu-
ous, accurate, and high-spatial resolution data sets (e.g. improvement of climate model
input data sets, early warning systems about extreme weather phenomena, monitoring
of parameters such as solar radiation fluxes, land-surface temperature, etc.). Moderate
Resolution Imaging Spectroradiometer (MODIS) images are used to validate the down-
scaled Meteosat images. In terms of the ANNs, a multilayer perceptron (MLP) is used
and the results are shown to compare favourably against a linear regression approach.

1. Introduction

Since the early 1970s, geostationary satellites have been gathering huge amounts of data
and providing useful information about the atmosphere. Nowadays, the modern geosta-
tionary satellite sensors (such as the spinning enhanced visible infrared imager (SEVIRI)
instrument on board the Meteosat-9 satellite) are designed to provide useful data to the
scientific community and information about the Earth’s surface and atmosphere. More
specifically, the Meteosat-9 satellite belongs to the category of Meteosat Second Generation
(MSG) satellites launched by the European Space Agency (ESA) and currently constitutes
the main meteorological satellite platform above Europe and Africa positioned at 0◦ latitude
and longitude, and 36,000 km above Earth’s surface. Parameters such as winds at different
atmospheric levels, concentrations of major atmospheric components (e.g. carbon dioxide
and ozone), cloud systems, precipitation, and many other phenomena and parameters can
be detected, retrieved, and finally monitored using MSG data sets as initial information
(Schmetz et al. 2002). The satellite data obtained from the SEVIRI instrument are pro-
vided operationally at a high temporal resolution (nominally 15 min, or 5 min in the rapid
scan mode) and a varying spatial resolution of 3 km at the sub-satellite point (SSP), which
decreases in mid-latitudes to approximately 4–5 km. The thermal infrared (TIR) imagery of
the SEVIRI instrument provides data from eight different channels ranging from 3.9 to 13.4
µm (Schmetz et al. 2002). The TIR imagery plays a crucial role in detecting, monitoring,
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and forecasting cloud evolution and a series of atmospheric characteristics (e.g. Kolios and
Feidas 2012; Georgiev and Kozinarova 2009; Vila et al. 2008; Setvak et al. 2008; Stisen
et al. 2007; Sun and Pinker 2007; Morel and Senesi 2002) through gathering contiguous
data flow during both day and night. In this way, TIR data provide valuable information
especially in monitoring parameters that vary significantly on a daily basis.

Nevertheless, for many applications, the retrieved parameters require data not only with
high temporal but also high spatial resolution. In order to improve the spatial resolution of
satellite images, many downscaling methodologies – i.e. the conversion of data from a
coarser spatial resolution to a finer one (Stein et al. 1998) – are used. Indeed, there is a
variety of such methodologies that are classified into different categories according to the
kind and the quality of the initial data set and the initial–final spatial difference (Van der
Meer 2012; Wilby et al. 2004).

Downscaling procedures are widely used to convert large-scale estimation of physical
parameters (e.g. precipitation and temperature) produced by general circulation models
into finer-scale data sets (Wilby 1998; Dibike and Coulibaly 2006; Hessami et al. 2008;
Kioutsioukis, Melas, and Zanis 2008; Chu et al. 2010).

During the last decade, downscaling methodologies have been increasingly used also
for remotely sensed data. International literature incorporates many studies (Van der Meer
2012) about downscaling moderate resolution remotely sensed data from polar-orbiting
satellites to a finer resolution using a variety of different techniques. For example, in the
study of Liu and Pu (2008), two different downscaling approaches were used to retrieve
spatially improved land-surface temperature (LST) pixel values based on TIR imagery of
the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne
Thermal Emission and Reflection (ASTER) sensors. Stathopoulou and Cartalis (2009)
examined four different downscaling methodologies to improve the spatial resolution of the
estimated LST from the TIR images of the Advanced Very High Resolution Radiometer
(AVHRR). They achieved a downscaling at 120 m from the 1000 m that were the initial
data. Zutita-Milla et al. (2009) used linear mixing model techniques in order to downscale
Medium Resolution Imaging Spectrometer (MERIS) data from a moderate spatial resolu-
tion (about 1 km) to 30 m in order to study vegetation seasonal dynamics. Moreover, Zhang
et al. (2012) used two well-known geostatistical methods (ordinary kriging and co-kriging)
for downscaling spatial resolution of remotely sensed atmospheric methane column con-
centrations retrieved from the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) instrument (on board the Envisat satellite platform).

Nevertheless, studies concerning the downscaling of data from geostationary satellites
and especially for the MSG data remain sparse. Downscaling of Meteosat data can improve
their initial spatial resolution and increase their usefulness. In a recent study, the radiances
of the 0.6 and 0.8 µm visible MSG channels (3 km resolution at SSP) were downscaled to
the moderate resolution of 1 km (Deneke and Roebeling 2010). The results of this study
were promising in terms of the reflectance in the aforementioned channels. Zakšek and
Schroedter-Homescheidt (2009) downscaled the LST product of MSG in order to calcu-
late and monitor air temperature with significant accuracy. In another study, related to the
downscaling of MSG data, Sandholt, Nielsen, and Stisen (2009) focused on the assess-
ment of LST using spatially improved SEVIRI data sets. In a more recent study, Zakšek
and Oštir (2012) downscaled LST SEVIRI data using moving window analysis in order to
study urban heat island diurnal cycles. To sum up, there is significant merit in downscal-
ing the initial operational Meteosat data set for operational purposes to derive additional
parameters at a higher spatial resolution than the initial data.
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7708 S. Kolios et al.

The scope of this study is to apply and evaluate the use of artificial neural networks
(ANNs) in order to improve the spatial resolution (downscale) of the operational SEVIRI
data (High Rate Information Transmission (HRIT) data). These are widely used in the TIR
spectral region (9.8–11.8 µm) to provide contiguous data flows during both day and night.

The rest of the article is structured as follows. Section 2 describes the involved data sets
as well as the proposed downscaling methodology. Section 3 presents the implementation
of the proposed downscaling technique for a representative data set and the results are
compared with those of a linear downscaling model. Finally, Section 4 concludes the article
by providing a discussion on the results, along with some ideas for future work.

2. Data and methodology

In this study, data from the SEVIRI instrument on board the Meteosat-9 geostationary satel-
lite and data from MODIS on board the Terra/Aqua polar-orbiting satellites were collected
and integrated. Regarding SEVIRI, channels 9 (9.8–11.8 µm) and 10 (11.0–13.0 µm) were
used for downscaling the initial spatial resolution (3 km at the SSP and around 4–5 km
at mid-latitudes) imagery of channel 9 to a finer resolution that reaches the spatial reso-
lution of MODIS TIR scenes (1.1 km). The MODIS images in channel 31 (10.78–11.28
µm) were used as reference data. The Meteosat-9 and MODIS scenes were collected via
the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
Data Centre and the Level 1 and Atmosphere Archive and Distribution System (LAADS)
of NASA, respectively.

2.1. Preprocessing

Synoptically, regarding the preprocessing stage of the initial SEVIRI and MODIS data sets,
the following steps are followed.

(1) All pixel values of all used image scenes and channels – of either SEVIRI or
MODIS – are converted from digital numbers to brightness temperatures (BTs).

(2) All SEVIRI and MODIS images are georeferenced at the World Geodetic System
1984 (WGS-84) datum.

(3) A low-frequency 3 × 3 filter (gamma filter) is applied to MODIS data in order to
suppress the existence of the observed striping in the used image scenes.

2.2. Data sample

As mentioned above, the aim of this study is to investigate the use of ANNs for estimating
the BT values at a finer spatial resolution than the initial Meteosat geostationary satel-
lite imagery. MODIS images were used as reference images because our intention was to
downscale the TIR imagery of Meteosat, which provides data even at night.

It is known that successful implementation of ANNs requires the selection of a bal-
anced and representative training data set. In an effort to select the training data set with
the widest possible temperature range, two MODIS scenes at two different seasons of the
year (summer and winter) were selected. It was decided to use data from two different sea-
sons, aiming to collect pixel values (BTs) corresponding to different upwelling radiation
values and different emissivity of the Earth’s surface and atmosphere in the TIR. More
precisely, the MODIS scenes were those acquired on 5 January 2010 (19:55 UTC) and
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16 August 2010 (20:50 UTC). The corresponding SEVIRI images were also gathered at
the same dates and times (19:45 and 20:45 UTC, but at HRIT data temporal resolution
and naming convention). It must be noted that the actual difference between the scenes
compared between MODIS and SEVIRI is less than the typical time difference apparent
from MODIS and SEVIRI names of image files. This is due to the SEVIRI sensor scan-
ning mode. More specifically, the scanning procedure lasts a little under 15 min, so the
mid-latitudes of the northern hemisphere are scanned at about 10–12 min after the initi-
ation of every new scan (Kolios 2009). Consequently, the actual time difference obtained
from MODIS and SEVIRI images is about 5 min or even less. Figures 1 and 2 depict the
MODIS subsets of the image scenes that are used to select the training sample as well as
their corresponding SEVIRI image, which covers a greater area. It must be noted also that
in the SEVIRI subsets of Figures 1 and 2, the time refers to the typical (not the actual) time
of scanning the features shown.

In each MODIS image scene, a set of pixels was chosen in order to represent a wide
range of thermally different features at satellite images for such a spatial resolution. For
the chosen sets of pixels, their relative BTs in channel 31, as well as their geographical
coordinates, are stored and spatially correlated with the SEVIRI imagery (Figure 3).

The spatial correlation of MODIS and SEVIRI pixel values (BTs) is an issue of crucial
importance with respect to collecting a representative and accurate data set for ANN train-
ing. For this reason, except for the georeference of two different satellite data to the same
system (WGS-84), an image-to-image registration was applied.

MODIS  5 January 2010, 19:55 UTC

48° 0′ 0″ N

45° 0′ 0″ N

42° 0′ 0″ N

Meteosat-9,  5 January 2010, 19:45 UTC

39° 0′ 0″ N

36° 0′ 0″ N

48° 0′ 0″ N

45° 0′ 0″ N

42° 0′ 0″ N

39° 0′ 0″ N

36° 0′ 0″ N

21° 0′ 0″ E 24° 0′ 0″ E 27° 0′ 0″ E

21° 0′ 0″ E
0 100 200 400 600 800

km

24° 0′ 0″ E 27° 0′ 0″ E

Figure 1. Subset of MODIS image scene on 5 January 2010, 19:55 UTC (10.78–11.28 µm channel),
and its most closely related Meteosat-9 image (9.8–11.8 µm channel).
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7710 S. Kolios et al.

MODIS 16 August 2010, 20:50 UTC

48° 0′ 0″ N

45° 0′ 0″ N

42° 0′ 0″ N

Meteosat-9, 16 August 2010, 20:45 UTC

39° 0′ 0″ N

48° 0′ 0″ N

45° 0′ 0″ N

42° 0′ 0″ N

39° 0′ 0″ N

21° 0′ 0″ E 24° 0′ 0″ E 27° 0′ 0″ E

21° 0′ 0″ E
0 100 200 400 600 800

km

24° 0′ 0″ E 27° 0′ 0″ E

Figure 2. Subset of MODIS image scene on 16 August 2010, 20:50 UTC (10.78–11.28 µm
channel), and its most closely related Meteosat-9 image (9.8–11.8 µm channel).

X1 X2 X3

X6
X5

Yi

X4

X7 X8 X9

Figure 3. The nine Meteosat-9 pixels (Xj) are considered to be correlated with a given MODIS pixel
(Yi). The black solid lines represent Meteosat-9 pixels with their centres (black dots). The dotted lines
represent the MODIS pixels in ideally correlated grids.

In this study, we did not use the classical and widely used approach for image-to-
image registration based on ground control points (GCPs) and polynomial transformations.
In practice, the use of a polynomial transformation and resampling method would result in
a severe vitiation in the initial pixel values of the chosen images to be registered (SEVIRI
images) to the other (MODIS images). Even if we used a large number of well-distributed
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International Journal of Remote Sensing 7711

and carefully selected GCPs, the different nature of MODIS (instrument in polar-orbit)
and SEVIRI (instrument in geostationary orbit) on the one hand, and the different field
of views, scanning modes, and spatial resolution in the comparable TIR channels, on
the other hand, would lead to significant deformation of the registered images. In addi-
tion to this, the coarse spatial resolution of SEVIRI TIR imagery and the small but not
negligible time difference between the relative MODIS and SEVIRI scenes creates consid-
erable difficulty in distinguishing specific features to be used as GCPs and consequently
leads to an inaccurate spatial correlation between MODIS and SEVIRI pixels. Considering
the above issues, the classical GCPs and polynomial transformations methodology for
an image-to-image registration could lead to significant inaccuracies, especially for large
geographical areas and for all possible features that could be extracted in such spatial
resolutions.

Thus, an alternative image-to-image spatial correlation approach was followed. More
analytically, for a given MODIS pixel, nine SEVIRI pixels with the smallest distances (great
circle distances) from the specific MODIS pixel are selected and considered as the most rel-
ative SEVIRI pixels to a given MODIS pixel. Figure 3 presents a typical application of this
spatial correlation. This procedure is automated and is implemented using a module written
in the VB.NET programming language environment. Figure 3 illustrates how nine SEVIRI
pixels (pixels with their respective dimensions and centres are depicted by black solid lines
and black circles, respectively) can contribute to the estimation of a given MODIS pixel
(grey pixel).

This image-to-image registration procedure was followed in order to eliminate geo-
referencing errors and in general all factors that could incorporate geometric errors
during the spatial correlation of two different satellite data, changing at the same time
as little as possible the initial pixels values of the SEVIRI images and consequently
their BTs.

Following the above-mentioned approach, a total of 281,069 MODIS pixels were
selected for the two reference image scenes. For these pixels, a module in the VB.NET
programming language was developed as previously mentioned in order to implement the
image-to-image registration procedure. With this module, for each one of the MODIS pix-
els, nine SEVIRI pixels of the most relative scenes to MODIS pixels regarding date, time,
and band were spatially correlated (Figure 3). Additionally, the SEVIRI BT differences
(channel 9 BT minus channel 10 BT) correlated to MODIS pixels were calculated and used
for the training of the ANN. Therefore, a total of 27 inputs (BT pixel value, distance, and
BT difference, for each of the nine selected SEVIRI pixels) were collected for each MODIS
pixel. It must be noted that the calculated temperature differences have been successfully
used to categorize cloud features according to their optical thickness (Lutz, Inoue, and
Schmetz 2003).

The above-mentioned data set was employed to internally validate our approach.
Moreover, in order to externally validate the proposed method, one randomly selected
MODIS image scene from 15 September 2008 (20:25 UTC) was also selected and used
during the external validation procedure (Japkowicz and Shah 2011). The correspond-
ing SEVIRI image was registered at 20:15 UTC (following the HRIT data temporal
resolution). This specific date was selected in order to check the robustness and accu-
racy of the proposed methodology to downscale the SEVIRI TIR imagery to dates
from different seasons compared with those from which the original data sample was
gathered.
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7712 S. Kolios et al.

2.3. Artificial neural networks

ANNs have gained a great deal of popularity due to their intrinsic capability to estab-
lish complex non-linear relationships between data, provided that the training sample
is representative of the underlying (unknown) distributions. ANNs enable researchers to
approximately reconstruct any non-linear continuous function, and therefore, such a model
is very general and flexible (Haykin 2008).

Among the various types of ANNs, the most popular is the multilayer perceptron
(MLP). An MLP consists of an input layer, one or more interior layers, and an output
layer. Each layer consists of a number of processing elements, also termed units, nodes, or
neurons, due to a loose resemblance with biological neural networks. The interior layers
are called ‘hidden layers’ because they are not directly observable from the system inputs
and outputs. The most widely used MLP architecture consists of one hidden layer such as
that depicted in Figure 4. The reason for the popularity of this architecture is because it
has been proved that any continuous function mapping of an n-dimensional input to an m-
dimensional output can be implemented exactly by a network with one hidden layer (Hecth-
Nielsen 1987).

Each neuron calculates an output f (wTx) where x is the vector of input activations from
the preceding layer, w is a vector of weights (sometimes termed synaptic weights), and f
is a bounded non-decreasing non-linear function such as the logistic function or the hyper-
bolic tangent (Reed and Marks 1999). Learning is usually performed through an iterative
process during which ANNs modify their weights to store the acquired knowledge about
the problem provided in the form of input–output pairs. A schematic representation of the
learning process is depicted in Figure 5. The training algorithm for MLP ANNs is usu-
ally the back propagation (BP) algorithm or another recent and sometimes computationally
more efficient variant (Haykin 2008).

In this work, we employed the scaled conjugate gradient method (Møller 1993; Bishop
1995; Du and Swamy 2006) because of its improved speed compared both to the classical
BP algorithm and conventional conjugate algorithms. For a more thorough presentation in

Input layer

Hidden layer

Output layer

Figure 4. An MLP with one hidden layer.
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Data

input−output

+

+–

Cost

function
Training algorithm

(weight adapatation)

Figure 5. Training of an ANN. The output of the ANN is subtracted from the desired output and
this serves as input to the training algorithm that changes the weights of the ANN.

terms of the origin and development of the ANN paradigm, the interested reader can refer
to any of the excellent textbooks available (Haykin 2008; Reed and Marks 1999).

Therefore, having a set of ground truth data, an ANN can be used to learn the mapping
between inputs and the outputs. Thus, an ANN model does not require explicit knowledge
of the input–output mapping. On the other hand, the user should provide the architecture
of the MLP. By the term architecture, we imply determination of the number of process-
ing units of the hidden layer (assuming that we adopt the use of only one hidden layer)
and sometimes the determination of the input layer, since the output layer is dictated
by the nature of the problem. The determination of the ‘optimum’ architecture requires
specific and intense experimentation in order to find the optimum settings. Too simple a
model (small number of processing units) will be unable to capture the underlying non-
linear relationships (under-fitting), whereas too complex a model could lead to overfitting
if no precautions are taken during the training procedure. The most common approach to
model selection is the use of grid search, trying varying configurations in a cross-validation
procedure (Haykin 2008).

In the case of regression applications, the output neurons are not equipped with a non-
linear function f , and the non-linear processing is performed only by the hidden units.
For almost all applications, preprocessing of the inputs is required. The simplest exam-
ple involves normalization of the inputs while in the case of correlated inputs a stage of
principal component analysis (PCA) is recommended (Bishop 1995). Since the inputs are
indeed correlated in the case of pixel values, a PCA stage was involved and the next section
provides a brief overview of this widely used method (Georgoulas, Stylios, and Groumpos
2006; Haykin 2008; Bishop 1995). Figure 6 depicts the overall proposed methodology,
where all stages of the methodology are briefly described.

2.4. Dimensionality reduction using PCA

PCA or the Karhunen–Loeve transformation is one of the most popular methods for lin-
ear dimensionality reduction (Haykin 2008). PCA linearly transforms the original space
(Haykin 2008) by projecting the d-dimensional data onto the l (l ≤ d) eigenvectors of their
covariance matrix corresponding to the l larger eigenvalues. Even if the entire set of the
eigenvectors has to be retained, this may also lead to improved performance due to the
uncorrelated nature of the new set of features.
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Meteosat satellite

images

MODIS satellite

images

Pre-

processing

VB.NET

algorithm

Training sample

collection

Spatial and

temporal

correlation

Verification sample

collection

Artificial neural

networks

development

Downscaling of

Meteosat data

Accuracy of downscaling

procedure

Figure 6. Flow chart of the procedures followed during the downscaling of SEVIRI image scenes.

In practice, for a data set stored in an n × d matrix (each row corresponds to a data
sample and each column corresponds to an input), the algorithm proceeds as follows.

(1) Compute the mean value for each feature and then subtract this mean.
(2) Calculate the covariance matrix of the zero-mean data matrix, its eigenvalues, and

its corresponding eigenvectors.
(3) Retain the eigenvectors corresponding to the l largest eigenvalues and project the

input vectors onto them to get a reduced representation.

Figure 7 depicts the scatter plot of the values of adjacent pixels (correlation coefficient
value = 0.99). Such a high correlation justifies the use of PCA.

2.5. Linear regression

For comparison reasons, a linear regression model was also tested. A linear regression
model linearly combines the inputs, also termed regressors. Due to its linear nature, it can
effectively be trained using the least squares algorithm. On the other hand, the linear nature
of the method makes it suboptimal when the underlying process is non-linear. The output,
y, of the model is given by Equation (1):

y = c0 + cTx = [ c0 cT ]

[
1
x

]
, (1)

where x is the input vector and c0 and c are the regression coefficients.
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Figure 7. Scatter plot of adjacent pixels from the original low-resolution image.

3. Results

In order to test the proposed integrated approach and compare it to the linear regression
model, we applied both internal and external validation approaches (Japkowicz and Shah
2011). For the internal validation procedure, the data collected from the first two sets of
images were split into different sets following the procedure of Section 2.2. Then, such
data sets were divided into a training set and a test set. This represents the internal valida-
tion since both training and testing sets came from the same underlying distribution. The
external validation procedure involved a separate set of image samples corresponding to
different data, and therefore, they formed a truly independent sample.

Both the MLP and the linear model were trained to ‘predict’ the value of a finer-scaled
pixel based on information collected at a coarser level. As mentioned in Section 2.2, the
original information gathered at the coarser level included the nine values of the closest
coarse pixels along with their distances from the finer-level pixel, as well as the nine dif-
ferences corresponding to temperature differences of the two SEVIRI TIR channels used
(channel 9 temperature minus channel 10 temperature). Therefore, we used 27 inputs in
total. However, as noted in Section 2.4, because of the correlated nature of the input vari-
ables, we included a dimensionality reduction stage in order to reduce the original input
vector. The number of retained principal components that determined the dimension of
the transformed input vector could be derived based on a number of methods such as the
retained variance (also termed cumulative percentage of variance explained), using a screen
plot (Martinez, Martinez, and Solka 2011), or it could be determined based on the perfor-
mance of the developed model. The first approach, which acts as a ‘filter’ without the
explicit use of a learning method/model, is more computationally efficient, but the second,
which ‘wraps’ the selection procedure with the involved learning method/model, can lead
to better overall performance (Burrell et al. 2007; Guyon and Elisseeff 2003). In this study,
we applied the latter, and simultaneously, we tried to find the ‘optimum’ number of principal
components and the ‘optimum’ architecture (number of hidden nodes) for the MLP.
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More specifically, we applied an ‘inner–outer’ loop scheme. The outer loop was
included to assess the performance of the proposed approach while the inner scheme was
applied to tune the procedure, in other words, to select the number of retained principal
components and the number of hidden units. We varied the number of principal compo-
nents from 1 to 27 and the number of hidden units from 5 to 60 in increments of 5 units,
and we performed all of the corresponding tests.

For the ‘outer’ scheme, a random resampling approach was employed (Japkowicz and
Shah 2011). Therefore, we divided the data set into training and testing sets (80% for
training and 20% for testing); this procedure was repeated 30 times, each time randomly
reshuffling the original data. Each time the training set was again divided into training, val-
idation, and testing sets (60% for training, 20% for validation, and 20% for testing), and
that procedure (the inner loop) was also repeated 10 times using a similar reshuffle scheme.
During the inner loop, the validation set was employed to stop the training procedure once
there were signs of overfitting. The best configuration (number of principal components and
number of hidden units), in terms of mean squared error (MSE) averaged over the 10 trials,
was selected and the model was retrained using the original training set (again, 20% was
reserved as validation set to avoid overfitting) and the performance was evaluated using
the reserved testing set. In this way, we decoupled the parameter selection stage from the
estimation of the performance and thus we avoided reaching overly optimistic conclusions
about the capabilities of the proposed approach. In the case of the linear regression model,
the same training and testing sets were used and the inner loop was employed only for the
selection of the best number of principal components.

The procedure revealed that in the case of MLP the ‘optimum’ number of principal
components is 4 (it was consistently selected in all 30 replications of the outer loop), while
the number of selected hidden numbers varied between 35 to 50 with a peak at 50, as shown
in Figure 8, revealing that further increase in the number of hidden units caused overfitting
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Figure 8. Selected number of hidden units over the 30 replications of the internal validation
procedure.
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Table 1. Estimated root mean squared error (RMSE) along with respective standard error
for the MLP and the linear regression approaches.

Method Mean RMSE (K) Standard error (K)

MLP 2.5535 0.0163
Linear 3.1211 0.0063
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Figure 9. Boxplot depicting the distribution of RMSE for MLP and the linear regression model.
Note that MLP compares favourably with the linear model.

effects. In the case of the linear model, the ‘optimum number’ of principal components was
in all but 3 times equal to 27, i.e. the whole set of principal components was retained.

The results in terms of average root mean square error (RMSE) are summarized in
Table 1, and a graphical representation is depicted in Figure 9 using boxplots. MLP per-
formed better compared with the linear regression model in terms of RMSE (the Wilcoxon
sign-ranked paired test yielded a p-value equal to 1.7344 × 10−6 (Snedecor and Cohran
1980)). The estimated RMSE for internal validation (Table 1) shows a better performance
for the MLP approach. The RMSE value of 2.55K is considered acceptable with respect to
the wide range of temperatures monitored (−61K to 29K), the different spatial resolution,
geometry, and standards of the images used, and the sensors they were derived from.

The above-mentioned internal validation procedure reveals the potential of using an
MLP as a method for downscaling. In an attempt to further validate our proposed method,
the MLP and the linear regression models were also employed for the ‘prediction’ of finer-
resolution pixels from an image acquired from a subset of 15 September 2008 (20:15 UTC);
the SEVIRI image scene was not employed in the aforementioned internal validation pro-
cedure. The corresponding MODIS subset (15 September 2008 (20:25 UTC)) was also
selected for comparison.

Both the MLP and the linear regression models were trained using all of the pixels that
were employed in the internal validation procedure, and the trained models were used to
‘predict’ the finer-resolution pixels. The results are summarized in Table 2 and Figures 10

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

an
ni

na
] 

at
 0

0:
46

 0
4 

Se
pt

em
be

r 
20

13
 



7718 S. Kolios et al.

Table 2. Estimated root mean squared error (RMSE) and coefficient of determination
for the MLP and the linear regression approaches using external data.

Method RMSE (K) Coefficient of determination

MLP 2.0995 0.8130
Linear 2.9399 0.6333
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Figure 10. Scatter plot of true versus estimated values for (a) MLP and (b) linear regression models,
using external data.

and 11. More analytically in Tables 1 and 2, the RMSE values for the MLP method provide
the best results, fluctuating between 2.0K and 2.6K, which is an acceptable estimation of
BTs taking into account the wide range of values (Figure 10).

Figures 10(a) and (b) depict the scatter plots of the model estimates and the true values
for the MLP and the linear regression model, respectively. As can be seen from Figure 10,
the linear model appears to underestimate the values of the finer-resolution pixels. The
MLP model achieves a fairly high coefficient of determination, but some of its estimates
are inaccurate.

Figure 11 depicts the visualized outcome of the downscaling process using MLP and
the linear regression model for the image acquired on 15 September 2008 (20:15 UTC).
As depicted in Figure 11(d), the MLP model yields an outcome with more contrast (more
high-frequency components), while the linear regression model produces a more blurred
version with some circular artefacts that are less pronounced in the MLP. The produced
image using MLP model estimations (Figure 11(c)) is the more realistic in respect to
SEVIRI data (Figure 11(a)) and even more so for the MODIS data (Figure 11(b)). The
cloud formations in Figure 11(c) are depicted more clearly than the original image scene
(Figure 11(a)) but they are smooth and blurry compared with Figure 11(b). The smooth-
ing of Figure 11(c) is possibly due to the use of nine SEVIRI pixel values for estimating
finer-resolution pixel values (Figure 3) without considering the abrupt changes at the edges
of every recorded feature and area. Consequently, it is observed that visual improvement
(better features detection) for the SEVIRI image was achieved with respect to the initial
coarser resolution. In the improved image (Figure 11(c)), different cloud types cannot be
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Figure 11. (a) Channel 9 of the SEVIRI image; (b) channel 31 of the MODIS image; (c) downscaled
image produced by the MLP model; (d) downscaled image produced by the linear regression model
(15 September 2008; 20:25 UTC; the depicted area is Greece).

seen as clearly as in the corresponding MODIS image (Figure 11(b)), but cloud areas with
dense and opaque cloud formations (like cumulonimbus) can be detected (when they exist),
contrary to the initial resolution of SEVIRI images where absent. This capability is an
important factor for the early detection of convective cloud systems and, in general, the
delineation of areas with high convective potential. Contrary to the SEVIRI image produced
by the downscaling procedure using MLP (Figure 11(c)), the relative image produced using
the linear regression model is not satisfactory, having circular aberrations that are not real-
istic as can be seen from Figures 11(a) and (b), which show the initial SEVIRI and MODIS
images, respectively.

4. Conclusions

In this study, a non-linear regression approach based on MLP was proposed and success-
fully applied for downscaling TIR SEVIRI images (spectral region, 9.8–11.8 µm). These
images are mainly used for operational purposes, providing contiguous data flows during
both day and night, and a satisfactory downscaling of these images improved the accuracy
of extracted parameters, consequently further increasing their usefulness.

The proposed approach was compared and tested against a linear regression model. The
results proved that the non-linear regression scheme for downscaling satellite data (RMSE
2.1–2.6 K; Tables 1 and 2) outperforms the linear regression approach (mean RMSE,
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7720 S. Kolios et al.

2.9–3.1 K; Tables 1 and 2). The mean RMSE error in the downscaling procedure for the
BTs using the MLP approach is considered satisfactory, given the fact that fourfold finer
spatial resolution of SEVIRI images was achieved where the training and validation data
sets were selected comparing images from two significantly different imageries (SEVIRI
and MODIS) according to their scanning modes.

The visual result shows improvement in distinguishing features like opaque cloud for-
mations in the middle and high troposphere relative to the initial SEVIRI image, but there
is evident smoothing in the downscaled images.

In future work, we intend also to test local approximators such as piecewise linear mod-
els and radial basis function neural networks, since both models employed in this study aim
to approximate the underlying function at a global level (Haykin 1999) and to apply ensem-
ble paradigms that have emerged lately as a very promising scheme in predictive modelling
(Austin et al. 2012; Wu, Liu, and Jin 2010; Rokach 2010). In future work, we will also
examine non-linear dimensionality reduction methods (Van Der Maaten, Postma, and Van
Der Herik 2009), since PCA assumes only linear correlations between the inputs which, in
some cases, might oversimplify the resulting model. Moreover, we are planning to test edge
enhancement techniques and examine how the actual spatial coordinates affect the mapping
from the coarse image to one with finer resolution. We also intend to investigate whether the
terrene and parallax phenomenon (evident in high clouds at latitudes of Meteosat imagery)
imposes specific constraints, dictating the use of spatially dependent models.
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