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Abstract. Electronic fetal monitoring has become the gold standard for fetal as-
sessment both during pregnancy as well as during delivery. Even though elec-
tronic fetal monitoring has been introduced to clinical practice more than forty 
years ago, there is still controversy in its usefulness especially due to the high 
inter- and intra-observer variability. Therefore the need for a more reliable and 
consistent interpretation has prompted the research community to investigate 
and propose various automated methodologies. In this work we propose the use 
of an automated method for the evaluation of fetal heart rate, the main moni-
tored signal, which is based on a data set, whose labels/annotations are deter-
mined using a mixture model of clinical annotations. The successful results of 
the method suggest that it could be integrated into an assistive technology dur-
ing delivery. 
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Classification. 

1 Introduction 

Fetal heart rate (FHR) monitoring has become an indispensable part of fetal assess-
ment during pregnancy and, more importantly, during the delivery. It most commonly 
refers to the monitoring of fetal heart rate and uterine contractions (UC). These two 
signals comprise what is also known as the Cardiotocogram (CTG). CTG monitoring 
provides obstetricians with insight into fetal well-being acting as the main source of 
information for the fetus which is obviously not amenable to direct observation.  

Since its introduction, the goal of fetal monitoring is to detect potential adverse 
outcomes and provide information about fetal well-being. However, the initial enthu-
siasm was followed by skepticism since the CTG was accused for the increased rate 
of cesarean sections [1] while high intra- and inter-observer variability was also re-
ported [2],[3]. Despite the skepticism, CTG remains the most prevalent method for 
intrapartum fetal surveillance [4], often supported by ST-analysis, which nonetheless 
does not diminish the need for a correct interpretation of CTGs. 
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International Federation of Gynecology and Obstetrics (FIGO) guidelines [5] in-
troduced in 1986 serve as the basis for CTG interpretation although several national 
updates have also been released – see e.g. [6] for references. The guidelines were 
meant to assure the lowest number of asphyxiated neonates as possible while avoiding 
false alarms (which leads to unnecessary cesarean sections). An additional goal of the 
guidelines is to lower the high inter and intra-observer variability. 

In an attempt to reach a more objective interpretation of the CTG, computerized 
systems appeared, some of them being as old as the FIGO guideline themselves. Be-
ginning with the work of [7] the automated analysis of CTG was based upon clinical 
guidelines [8]. Additionally, beyond the morphological features used in the guide-
lines, new features were introduced. These were primarily based on research in adult 
heart rate variability [9]. Therefore, time domain [10],[11], frequency domain [12], 
time-frequency [13], and nonlinear descriptors/features [14] were proposed over the 
past years and combined with various machine learning paradigms such as Support 
Vector Machines (SVMs) [15] and artificial neural networks (ANNs) [16],[17] to 
name just a few. 

In this work we use for the first time a Random Forest (RF) classifier along with a 
sophisticated model for the definition of classes based on the latent class analysis 
(LCA). The results are promising indicating that this kind of modelling is probably 
more suitable for building a decision support system compared to systems that rely on 
information coming from the pH. Such a decision system would be closer to clinical 
reality than a system based solely on pH. 

The rest of this paper is structured as follows: Section 2 provides the necessary 
background for FHR preprocessing and feature extraction as well as a short descrip-
tion of the RF classifier. In section 3 the data set along with the LCA are presented in 
brief, followed by a description of the experimental procedure and the respective  
results. Finally section 4 summarizes the findings offering also some hints for future 
work. 

2 The Automatic FHR Analysis Method 

2.1 FHR Preprocessing 

The FHR could be contaminated by large amount of artefacts, especially when it is 
recorded using ultrasound probe. An example of FHR with artefacts can be seen in 
Fig. 1. Therefore preprocessing aims at removing these artefacts before proceeding to 
the feature extraction stage. Our preprocessing methodology employed a simple arte-
fact rejection scheme: let x(i) be a FHR signal in beats per minute (bpms), where N is 
the number of samples and i = 1,2, …, N, whenever x(i) > 50 or x(i) < 210 we inter-
polated x(i) using cubic Hermite spline interpolation implemented in MATLAB  
version 7.14.0.739.  
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2.2 Feature Extraction 

The FIGO guidelines’ morphological features were the first features used to describe 
the FHR and further used as inputs to classification schemes. Later, in order to  
examine FHR in more detail, other features originating from different domains  
were introduced. These were essentially based on adult heart rate variability analysis 
and mostly included frequency and nonlinear methods. Since all features used in this 
work are described in our previous works [14], [15] for the sake of brevity we present  
the features in Table 1 and provide necessary information to be able to repeat the 
analysis. We refer the interested reader to the referenced works in Table 1 for a more 
detailed description of the used features. In total we worked with 21 features such that 
different parameter settings yielded a total number of 49 features. 

 

 

Fig. 1. Artefacts rejection. (a) Raw signal with artefacts, (b) signal after artefacts removal. 

2.3 Random Forest Classification 

Most classification tasks after the feature extraction stage include a feature selection 
stage [28] in order to alleviate the often encountered curse of dimensionality. Feature 
selection methods are usually divided into filter, wrapper, and embedded methods 
[29]. Decision Trees (DT) classifiers are of the last variety having the feature  
selection part inherently encoded during their construction process.  

RFs are a learning paradigm that as it is implied by its name are comprised by a set 
of DTs that act together in order to reach a classification decision. RFs were intro-
duced by Breiman [31] and since then they have been employed in many classifica-
tion as well as regression tasks [32]-[34]. RFs are very competitive compared to other 
state of the art classification algorithms, such as boosting. Unlike boosting RFs  
provide fast training. 

Each member of the ensemble of trees operates on a bootstrapped sample of the 
training data. Moreover at each node of a tree random feature selection is performed. 
More specifically, a subset S with M features from the original set of n features is 
selected and then the best feature among M is selected to split the node. With  
this mechanism there is no need for explicitly excluding a set of features before the 
classification process.  
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Table 1. Features involved in this study 

Feature set Features parameters 

FIGO-based 
[5] 

baseline mean, standard devia-
tion 

 number of accel. and decel, Δ୲୭୲ୟ୪  

Statistical STV, STV-HAA[18], STV-YEH[19], Soni-
caid[20], SDNN [9],߂௧௧[10], LTI-
HAA[18] 

 

Frequency Energy03[9] LF, MF, HF, LF/HF 

 Energy04[21] VLF, LF, MF, HF, 
LF/(MF+HF) 

Fractal dim. FD_Variance, FD_BoxCount, 
FD_Higuchi[22], DFA[23], FD_Sevcik[24]

 

Entropy ApEn[25], SampEn[26] M= 2, r = 0.15,0.2 

Complexity Lempel Ziv Complexity (LZC) [27]  

Other Poincaré SD1, SD2 

3 Experimental Analysis 

For the experimental evaluation of the proposed approach, we employed a newly 
released CTG database [35] and a multiple trial resampling method. The database,  
the evaluation procedure and the results are presented in the rest of this section. 

3.1 Database 

The CTU-UHB database [35] consists of 552 records and it is a subset of 9164 intra-
partum CTG records that were acquired between years 2009 and 2012 at the obstetrics 
ward of the University Hospital in Brno, Czech Republic. The CTG signals were care-
fully selected with clinical as well as technical considerations in mind. The records 
selected were as close as possible to the birth and in the last 90 minutes of labor  
there is at least 40 minutes of usable signal. Additionally, since the CTG signal is 
difficult to evaluate in the second (active) stage of labor, we have included only those 
records which had second (active) stage’s length at most 30 minutes. The CTGs were 
recorded using STAN and Avalon devices. The acquisition was done either by scalp 
electrode (FECG 102 records), ultrasound probe (412 records), or combination of 
both (35 records). For three records the information was not available. All recordings 
were sampled at 4Hz. The majority of babies were delivered vaginally (506) and the 
rest using cesarean section (46). A more detailed description of the CTU-UHB is 
provided in [35]. 
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3.2 Latent Class Analysis 

In this work we used clinical annotations from 9 clinicians. All clinicians are current-
ly working in delivery practice with experience ranging from 10 to 33 years (with a 
median value of 15 years). Clinicians evaluated the CTG recordings into three classes: 
normal, suspicious, and pathological (FIGO classes). Since there is a large inter-
observer variability in evaluation the simple majority voting among clinicians cannot 
be used. Therefore we employed a more powerful approach - the latent class analysis 
(LCA) [36]. The LCA is used to estimate the true (unknown) evaluation of CTG  
and to infer weights of individual clinicians’ evaluation. The LCA and its advantages 
over majority voting were described in [37]. For other examples on LCA in  
machine learning see, e.g. [38] and [39]. The clinical evaluations were considered  
as coming from mixture of multinomial distribution with unknown parameters and 
unknown mixing proportions. The Expectation Maximization (EM) algorithm [40] 
was used to estimate the unknown parameter and proportions. The EM algorithm was 
restarted several times with different starting values to avoid local maximum. The 
limit of log-likelihood convergence was set to 10e−3. The resulting class for individu-
al examples was determined by the largest posterior probability. 

The application of LCA leads to different labeling compared to the majority voting 
annotation as it is summarized in the following cross (Table 2), which corresponds to 
the data set described in Section 3.1. For the calculation of this table four cases from 
the original 552 CTGs were removed because the majority voting was inconclusive. 
This is a situation which is unlikely to occur with the LCA. 

Table 2. Cross table (contingency table) of the annotations resulting from applying the majority 
voting (MV) and the (LCA) 

 Normal by LCA Suspicious by LCA Pathological by 
LCA 

Normal by MV 168 50 0 
Suspicious by MV 7 185 66 
Pathological by MV 0 3 69 

 
In this preliminary study,we merged the suspicious and pathological class (accord-

ing to the LCA) for simplicity reasons into a “super class” of abnormal cases. Thus 
we are interested in those records that deviate from normality. 

3.3 Evaluation Procedure 

For evaluating our approach we employed 5 trials of 2 fold cross validation (5x2 CV) 
[41], [42]. In other words we divided the available data into two sets and we used one 
for training the random forest classifier and the other one (testing) for estimating its 
performance and then we reversed their roles (the training became the testing set). 
The whole procedure was repeated 5 times with reshuffling taking place between each 
one of the five different trials. 
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Since RFs are not a parameter free algorithm, some parameter tuning needs to take 
place which however should be decoupled from the performance estimation process 
[42],[43]. Therefore during each training phase we performed a grid search increasing 
the number of trees from 100 to 1000 with a step increment of 50 and the number of 
features from 1 to 10 with a step increment of 1 (Breiman suggested a value for the 
feature equal to 2log 1n +    where n  is the number of features, while also other sug-

gested values can be found in the literatures ( n  or even as low as 1 [44]), so we 
tried a search in the vicinity of these suggested values). To perform this grid search 
each time the training set was divided again into a training and testing set (2/3 of the 
original training set comprise the new training) a performance metric was evaluated 
(see paragraph bellow) and the procedure was repeated five times (not to be confused 
with the 5 repetitions of the 5x2 CV procedure) after reshuffling the cases. The aver-
aged performance metric over these five trials was used for selecting the “best” set of 
parameters. Using this set of parameters a new random forest was trained using the 
original training set and its performance was tested using the test set. 

The “best” set of parameters was selected using two different criteria, which were 
derived from the elements of the confusion matrix (Table 3). Following the standard 
practice in the medical field we labeled the abnormal cases as positive and the normal 
cases as negative: 

Table 3. Confusion matrix for a typical dichotonomous (2-class) problem 

 predicted class 
Positive Negative 

True 
class 

Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN) 

 
a) Balanced Error Rate (BER) [45]:  

( ) ( )( )( )BER FP / FN TP FN / FP TN / 2= + + +  

b) Geometric mean (G-Mean) [46]:  

G Mean TPrate TNrate− = ⋅  
 
Where: 
True Positive Rate (TPrate) also known as Sensitivity or Recall:  

( )TPrate TP / TP FN= +  

True Negative Rate (TNrate) also known as Specificity:  

( )TNrate TN / TN FP= +  

The aforementioned criteria were selected instead of the more common accuracy 
measure due to the slight imbalanced of the data set, since these criteria are not  
affected by the distribution of cases into the different classes. 
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3.4 Results 

Tables 4 and 5 summarize the results for the two different performance metrics that 
were used during the random forest tuning process and Fig. 2 includes the respective 
specificity and sensitivity values in a box plot format, which reveals that under this 
setting the two approaches are very similar.  

Table 4. Aggregated Confusion matrix using BER for tuning 

 predicted class 
abnormal normal 

True 
class 

abnormal 1365 520 
normal 189 686 

Table 5. Aggregated Confusion matrix using g-mean for tuning 

 predicted class 
abnormal normal 

True 
class 

abnormal 1359 526 
normal 187 688 

 

Fig. 2. Boxplot of the specificities and the sensitivities for the 2 different criteria used during 
tuning 
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4 Conclusions 

This research work integrates a method for combining experts’ evaluation of CTG 
recording with an automatic approach that attempts to reproduce their decision. The 
automated method uses a number of diverse features, coming from different domains, 
along with an advanced ensemble method, the RF paradigm. Our preliminary results 
indicate that the “latent” labeling approach creates different annotations compared to 
simple majority voting and that the resulting classification problem can be tackled by 
an automated method, even though the performance should be further improved  
before it can be adopted into clinical practice. 

Moreover the sensitivity (~72%) and specificity (~78%) values achieved are higher 
(even though there is no one-to-one correspondence) than those achieved using the 
pH value for labeling [47] indicating that the proposed data model (features-LCA 
labeling) may provide more consistent approach than the one relying on the pH level. 

In future work we will continue testing of the proposed three class setting approach 
(normal, suspicious, and pathological) and especially with in an ordinal classification 
setting. This way we will exploit the natural ranking of categories which in most cases 
leads to higher classification performance [48] compared to a scheme that does not 
take into account the natural ordering of the classes. 
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