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AbslracC Intrapartum Electronic Fetal Monitoring (EFM) is 
an indispensable means for fetal surveillance. However, the 
early enthusiasm was followed by scepticism, since the 
introduction of EFM in every day practise resulted in an 
increase in operative deliveries. Nevertheless the drawbacks of 
EFM relate not so much to the technique itself but more to the 
difficulties in reading and interpreting the Fetal Heart Rate 
(FHR). In an attempt to develop more objective means to 
analyse the FHR recordings and compensate for the different 
levels o f  expertise among clinicians, computerized systems have 
been developed during the last 2 decades. In this work we 
present an approach to automatic classification of FHR 
tracings belonging to hypoxic and normal newborns. The 
classification is performed using a set of parameters extracted 
form the FHR signal and two Hidden Markov Models (one for 
each class). The results are satisfactory indicating that the FHR 
convey much more information than what is conventionally 
used 

Index Terms- Cardiotocography, Fetal Heart Rate 
(FHR), Hidden Markov Models (HMM) 

1. INTRODUCTION 
Electronic Fetal Monitoring (EFM), also known as 

cardiotocography, has been widely used for antepartum and 
intrapartum fetal surveillance. Moreover, by the term 
cardiotocogram (CTG) we mean the continuous recording 
and monitoring of the instantaneous Fetal Heart Rate (FHR) 
(beatsimin), which can be either obtained by Doppler 
ultrasound (the most common method employed during the 
antepartum period) or directly from the fetal 
electrocardiogram via scalp electrodes (during the 
intrapartum period and after the rapture of the membranes), 
and the Uterine Activity (UA), which is measured using an 
external tocodynamometer or an intra-uterine pressure 
catheter (mmHg) [I]. Fig. I shows a typical CTG segment 
with the FHR at the upper part of the figure and UA at the 
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lower part. During the crucial period of labour, CTG is used 
primarily as a mean to avoid fetal and neonatal compromise, 
namely metabolic acidosis [2]. 

The FHR signal, especially, is considered as the subtlest 
component of the CTG. However, studies of FHR reliability 
have shown significant inter-observer and intra-observer 
variation in tracing interpretation [3], indicating that even 
though specific guidelines have been published for its 
interpretation [4],[5], the different levels of experience of the 
various specialists have catalytic influence on the final 
judgment. 

FHR 

Fig. 1. A typical cardiotocogram (FHR at the upper pan and UA at !he 
lower part). 

Moreover, the difficulty in distinguishing benign variant 
patterns from pattems associated with significant fetal 
acidemia may have arisen because FHR monitoring was 
introduced into clinical practice before the cause of FHR 
pattems was well understood [6] .  
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The inconsistency in interpretation and the increase of 
false positive diagnosis [3], on one hand, and the 
technological advances in computers along with new signal 
processing methods, on the other hand, have prompted many 
researchers to develop computer systems to analyze [7]-[12] 
or analyze and, additionally, classify the FHR signal [13]- 

Based on the belief that the FHR signal may convey much 
more information than what is usually interpreted by 
doctors, we propose a new method to discriminate fetal 
acidemia based on features extracted mathematically from 
the FHR signal. In this work, we employ the use of a set of 
featuredobservations, which have been successfully used for 
the antepartum case [17], slightly modified, for the 
classification of fetuses into two categories based on the 
value of their umbilical cord pH. 

For the classification of the aforementioned categories, a 
new approach based on Hidden Markov Models (HMMs) is 
presented. More specific, two HMMs, one for each categoly 
are estimated using a set of training sequences. The system 
classifies a test sequence according to the model that best 
“describes” it. 

This paper is structured as follows: section 2 is a brief 
introduction to HMMs; section 3 describes the processing 
steps of the FHR for the extraction of the features to be used 
by the HMM; and in section 4 the experimental results and 
some conclusions and ideas for future work are presented 

H91. 

11. HIDDEN MARKOV MODELS 
HMM [20],[21] is a powerful and popular tool in pattern 

recognition. It can be viewed as two related stochastic 
processes that occur at the same time (Fig. 2). The first 
process produces a sequence of observed symbols 
(observations) and the second is an underlying process that 
consists of inter-connected states. Each observation in the 
fmt stochastic process relates to each state of the hidden 
layer by means of a probability distribution. Given a set of 
observations, it is not possible to determine the exact state 
sequence that produces these observations. That is, the 
underlying state sequence that is associated with an 
observed sequence is hidden and from that stems the name, 
Hidden Markov Model. HMMs are characterized as follows: 
a. The number of states in the model. The set of states is 

denoted as s ={s,,s *,..., sN} and “being in state” s, at 

time t is denoted as q, (t) . 
b. The state probability transition matrixA = { u ~ } ,  where 

aq =p(q ( t+Wdt ) ) .  
From the definition of A arises that: 

N E a v  = I  
j = ,  

c. The output probability distribution B = {b, }, associated 

with each emitting state, where 

b, (Y ( t ) )  = P(Y ( t ) l 4 ,  (0) 

77, = P(% (1)) 

and y (t) is the feature vector (observation) at time f. 

d. The initial state distribution 77, where 

Obserwahon m m 
T l ( Y ( 9 )  Ib&Y(t)) {b$’(Q) - - - - - - - - _ _  

0 Emrning state -t Allowed transition 

Fig.2. Emitted slate lee to right HMM 

All standard HMMs are characterized by the aforementioned 
parameters. For the application of HMMs in a classification 
problem one or more models can be trained with data of a 
certain class. During classification, the corresponding class 
to a given set of parameters is identified from the model of 
the class that best fits the given parameters. 

111. PROCESSING OF FHR FOR FEATURE EXTRACTION 

A .  Pre-processing-art fact removal 
The fetal heart rate is a noisy signal due to the method 

that is used for its acquisition and also due to extraneous 
factors that cannot be isolated. Although the missing or 
“spiky” data do not create problems to simple eye 
inspection, they may lead to wrong results when further 
digital processing is going to take place. Thus, in order to 
remove ”spiky” segments or segments where the signal is 
zeroed, a pre-processing stage of the FHR signal has to take 
place. The pre-processing stage introduced in [14], frstly 
detects a stable FHR segment, which is defined as a 
segment where the difference (in beatshin) between five 
adjacent samples is less than I O  beatshin. Whenever a 
difference between adjacent beats higher than 25 beatshin 
is found, a linear interpolation is applied between the first 
of those two signals and the first signal of a new stable FHR 
segment (Fig. 3). 
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Fig 3 Dafa before and afler the removal of anefacfr 

For this work we use 36 recordings from 36 pregnant 
women ( 3 8 4 2  weeks of gestation age). The FHR 
recordings have various lengths, ranging from 20 minutes to 
more than 1 hour. Thirty of them were acquired using a HP 
1350 fetal monitor at a sampling frequency of 4 Hz, and 6 
of them were acquired using a Toitu MTSIOB. In both 
cases, scalp electrodes were used for the acquisition. The 
latter cardiotocograms were irregularly sampled and we 
transform them into "pseudo-regularly" sampled signals. In 
order to do so, we copy the way HP 1350 operates. To be 
more specific, if a new beat is detected during the sampling 
interval (sampling interval=0.25 seconds), the 
cardiotocograph assigns the computed FHR value to the 
next output value; otherwise, it assigns the previous FHR 
value. Thus, from the irregularly sampled FHR signal we 
reconstruct the sequence ofthe detected beats (R-peaks) and 
then we created a regularly sampled FHR sequence the way 
HP 1350 would have done (Fig. 4). 

oetectmn Of =-Pea* 

Fig. 4. Transformation of the irregular FHR 10 a "regularly" sampled 
sequence. 

Due to the different duration of the recordings, we use 
segments of equal duration from each case and perform the 
subsequent analysis on these segments only. Therefore we 
crop, starting from the end of the recording (or as close to 
the end as possible), segments lasting 20 minutes 
(maximum duration of some recordings). The segments are 
chosen as close to delivery time as possible so as to avoid 
time-bias. The problem encountered is that because of the 
stress during the last stage of delivery, the last minutes of 
the recordings are completely "contaminated" by artifacts. 
Therefore, for some of the recordings, the very spiky 1-3 
last minutes are not included in our data set. 

B Feature extraction 
Each 20-minute segment is divided to overlapping 5- 

minute segments. For each one of these segments, we 
employe a feature extraction stage in order to find a group 
of indexes that can characterize the fetal condition. Those 
indexes -features- are derived both from the time domain 
(following [17]) and also the frequency domain. 

FHR signal 

Fig. 5 Overlapping windows for the extraction ofsequential features 

The set of parameters and their defmitions are as follows: 

Mean value of FHR signal 
Standard deviation of FHR signal 

m 
max (FHR (i))- min (FHR (i))] 

ie )n Delta= 
m 

where max and min are computed within each 
minute of the signal and m is the number of 
minutes 

2.1 
lsFHR (i + 1) - sFHR (i 1 

STV = i=l where 
24 

sFHR(i) is the value of the signal FHR(i) 
taken each 2.5 sec (i.e. once each I O  samples) 
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(Short Term Variabilitv) 

QNONorml 

I, 

(Interval Index) 
STV 

std [sFHR(i)] 
11 = 

80% 75% 70% 90% 85% 65% 

[E] LTI is defined as the interquartile range 

WAbnorml 

of the distribution m ( j )  with 

81% 81% 88% 75% 81% 88% 

m ( j )  = JFHR’ ( j ) +  F H R ~  ( j  + 1) (Long 
Term Irregularity) 

DeIta-tod=...(FHR(i))-nrax(FHR(i)) 
These are the 7 parameters calculated in the time domain. 

In addition to them we also extracted 4 simple features from 
the frequency domain. 

Power at the range 0-0.5 Hz 
Power at the range 0.5-1 Hz 
Power at the range 1-1.5 Hz 
Power at the range 1.5-2 Hz 

The aforementioned time domain parameters have been 
successfully used in the antepartum case, so it is reasonable 
to assume that they may also perform well in the intrapartum 
case. Regarding the frequency domain, it is common 
practice to analyze not the FHR signal itself but the beat-to- 
beat intervals that produce it. For this signal specific bands 
have been identified, reflecting different activities and fetal 
states [17]. In the case of the FHQ no standard band 
selection exists. Therefore, the selection of the frequency 
bands is done arbitrarily. 

Moreover, conventional interpretation of CTG is based on 
certain morphological characteristics, according to the 
guidelines given in [4] or [SI. Of paramount importance is 
the baseline, which is the mean level of fetal heart rate when 
this is stable, accelerations and decelerations being absent 
and it is determined over a time period of  5 or I O  minutes 
[4]. By applying the algorithm described in [lo], we 
calculate the baseline as the final feature to be used in the 
HMM. Therefore for each 20-minute FHR signal we 
extracted sixteen vectors with 12 elements each. 

These features are subsequently fed to an HMM classifier 
in order to test whether we can find a way to discriminate 
between fetuses with “normal” pH values and those with 
decreased pH that are suspicious of developing acidemia. 
For the needs of this work we choose a cut-off value of 7.05 
as  the borderline/threshold between hypoxic and normal 
cases. With this convention, the 36 recordings are divided 
into two groups: the “normal” group containing 20 cases and 
the “abnormal-hypoxic” group with 16 cases. 

Two HMMs, one for the “normal” case and one for the 
“hypoxic” case are estimated using the segmental k-means 
training algorithm [22]. Each model is a left to right 
Continuous Density Hidden Markov Model (CDHMM) 
with no state skip. The output distribution probabilities are 

modeled by means of a Gaussian component with diagonal 
covariance matrix 

IV. RESULTS-CONCLUSIONS 

Because of the restricted number of cases, we use the 
multifold cross validation scheme [23] in order to evaluate 
the performance of the proposed methodology. In 
compliance with that scheme, we divide the 36 cases into 4 
non-overlapping groups containing 9 cases each (5 normal 
and 4 hypoxic). Each time we exclude one of them from the 
training process and we use it only for testing the 
performance of the constructed HMM classifier. We repeate 
this procedure 4 times and we average the classification 
performances. Various configurations of HMMs (different 
number of hidden states) are tested and the results are 
summarized in the followine b a r d o t  (Fie. 6). 
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- 
m 

c 

%, 60% 

0 50% 

Fig. 6 .  Classification rates far different number of hidden stales 

As it can be seen we manage to have a maximum overall 
classification rate of 83% (for seven hidden states) having at 
the same time high classification rates both for the normal 
(85%) and the abnormal cases (81%). The same overall 
classification rate can be achieved with a model of six 
hidden states but with unbalanced performance between the 
two classes. 

Our results seem to be comparable to those reported in 
[19], where with a cut-off point for the umbilical arterial 
blood pH set to 7.15 and in a population of 73 fetuses, (8 
fetuses with pH less than 7.15 and 65 fetuses with pH more 
than 7.15) the developed system manages to classify 7 of the 
abnormal cases to the right class (87.5% classification rate) 
and SO of the normal cases to the right class (76.92% 
classification rate). However, since the cut off value is 
different and due to the restricted number of cases, neither 
direct comparison can be made, nor direct conclusions can 
be drawn (however according to [24] if a lower value for 
arterial pH (7.05) is used (in conjunction with a base deficit 
in the extra-cellular fluid greater than or equal to 12, only 
one of the 23 patients identified as “abnormal” will fulfill 
the new criteria). Compared to the results reported in [IS], 
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our results are slightly inferior (for a cut-off value of pH heart rate: 1. Baseline determination,” Inf J Biomed Compui., vol. 
equal to 7.05, the classification rate for the normal cases is 25, no. 2, pp. 261-272, 1990. 

Mantel, R., H.P. van Geijn, F.J.M Caron, J. M. Swartjes, E. E. van 
Woerden and H. W. Jongsma, “Computer analysis of antepartum fetal 100% and for the “risk” group 84.7%). However, in that 

work, apart from the FHR signal, measurements of heart rate: 2.  Detection of accelerations and decelerations,” hi. J 
functional oxygen saturation of fetal arterial blood is used, Biomed Compul., vol. 25, no. 2, pp. 273-286, 1990. 
therefore no direct comparison can be made. [IO] G. M. Taylor, G. I.  Mires, E. W. Ahel, S. Tsantis, T. Farrell, P. F. W. 

Chien and Y. Liu, “The development and validation of an algorithm be mentioned that the choice Of the for real time computerized fetal heart rate monitoring in labour,” BY. 
threshold for the pH value can be probably chosen lower for J. Obslel. Cynoeol.. vol. 107, pp. 1130-1 137,2000. 
the “hvDoxic” case. A more iustified threshold would be the II I1 J. Jerewski, and J Wrobel. “Faetal monitoring with automated 

191 

Moreover, it 

.. 
value of pH at 7, but this would compromise more the 
classification performance, since only 2 cases would fulfill 
that criterion, leaving 34 to the normal set. It is obvious that 
with this partition, overfitting would occur. It is worth 
mentioning that only very low pH values (6.8) are related to 
neonatal death or major neurological damage [25]. 

In conclusion, the results are encouraging, indicating that 
criteria can he found to discriminate normal from acidemic 
outcome, something, which was questionable in the early 
90s [26]. However, as future work we propose the use the 
Apgar score as another index component for the formation 
of the classes. In this work, the data at our disposal 
prevented us from employing Apgar score as  another 
criterion for the classification, since all Apgar scores but one 
are higher than 8. By including the Apgar score in the 
classification process, a more objective categorization may 
be achieved [27]. 
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