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Abstract. In this paper we present a novel method for classification of
Fetal Heard Rate (FHR) the subcomponent of cardiotocogram (CTGs) based on
a novel approach for feature extraction and classification. The feature extrac-
tion is implemented by means of Independent Component Analysis (ICA), and
for the categorization, Support Vector Machines (SVM) are employed. In this
fir introductory study we achieved a classification performance of 70%, which
is quite promising for the daunting task of FHR classification

1 Introduction

Electronic Fetal Monitoring (EMF) has been widely used for antepartum and in-
trapartum fetal surveillance. EMF refers to the continuous recording and monitoring
of Fetal Heart Rate (FHR) and Uterine Activity (UA), also known as cardiotocogram
(CTQG). Figure 1 shows a typical CTG, with the FHR at the upper window and the UA
at the lower. During the crucial period of labor, CTG is used as the main screening
test on fetal acid base balance [1]. Actually, the avoidance of metabolic acidosis is the
desired outcome on the observation, evaluation and justification of CTG. The instan-
taneous FHR (beats/min) is the subtlest component of the CTG. [2].

Although CTG has been used for the last 4 decades, there is controversy regarding
its efficiency. Moreover, the Dublin randomized trial has revealed an increase in
operative vaginal deliveries in patients monitored using CTG during the intrapartum
period [3]. In addition, studies of CTG reliability have shown significant inter-
observer and intra-observer variation in tracing interpretation [4].

The inconsistency in interpretation and the increase of false positive diagnosis and,
additionally, the technological advances in computers along with new signal process-
ing methods have prompted many researches to develop computer systems capable of
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actually monitor and infer on the condition of the fetus in a reliable, effective and
reproducible manner.
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Fig. 1. A typical print out cardiotocogram.

Based on the belief that the CTG signal —and especially the FHR component- may
convey much more information than what is usually interpreted by doctors, we pro-
pose a method to classify FHR and discriminate fetal acidosis, based on features ex-
tracted mathematically from the FHR signal (ignoring in this study the UA signal).
The core of the proposed methodology is the use of Independent Component Analysis
(ICA) for the extraction of a novel set of features and the use of Support Vector Ma-
chines (SVM) for the classification task.

ICA has found applications in many fields of multivariate signal processing. It has
been used, among others, for speech separation [19], analysis of biomedical signals
{20], and detection of trends in stock markets [21]. In this paper we use ICA for the
extraction of independent “sources” which will be subsequently used as the represen-
tational basis for the FHR signal.

SVMs have gained great attention during the last decade and they have been used
extensively in the field of pattern recognition [22]. Support vector machines can be
reliable classifiers even when the sample population 1s small. Because our sample
population is indeed small, SVMs were the classifiers selected to be used after the
feature extraction stage.

This paper is structured as follows: section 2 presents a brief overview of ICA and
how it is applied to estimate the independent components from a set of observed
signals and, additionally, an introduction to SVMs. Section 3 describes analytically
the proposed methodology. In section 4, the experimental results are presented, and
section 5 outlines the conclusions of this study.

2 Background information

2.1 Independent Component Analysis -

ICA has been mainly associated with Blind Signal Separation (BSS) [19] (the term
blind indicates that neither the sources nor the way they were mixed are known).
However, it has become clear that the principle underlying ICA has a lot of other
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application areas of interest as well [23,24]. After all, ICA is a theoretical method and
BSS is an application that can be solved with many methods, including ICA. Among
the different applications of ICA, in this paper we will focus on the application of
ICA as a mean for feature extraction from a set of signals.

In the basic ICA model, from a set of # observed signals, we seek for 7 statisti-
cally independent sources, which are linearly combined to produce the observed sig-
nal(s). Both the independent sources and their linear combination are unknown.
Strictly speaking, we have the following generative model for the data

X=AS (1)

where X is the observed (zero-mean) 7 -dimensional vector, § is a # -dimensional

random vector, whose components are assumed mutually independent, and A is a
nonsingular 7 -by- 71 constant matrix (for simplicity and without loss of generality we
have assumed that the number of observations and the number of sources are equal).

The goal of ICA is to find a separating matrix W that, after multiplication with
the observation vector X, will retrieve the source vector §. Though this is not feasi-
ble, however it is feasible to retrieve an arbitrarily scaled and permutated “version” of
the original set of sources.

y = Wx=WAs - DPs (2)

where D is a nonsingular diagonal matrix and P is a permutation matrix.

The problem of finding the separating matrix can be simplified by performing a
preliminary sphering (or whitening) of the data [23]

There are currently many approaches to perform ICA [23]. In our experiments we
used the Matlab toolbox “Fast ICA” [22]. FastICA, as implemented in this toolbox,
uses algorithms close to Newton method rather than to a fixed-point iteration. For a
more in depth explanation of the FastICA algorithm the reader can refer to [25]

2.2 Support Vector Machines

SVMs are a new family of learning machines. The main idea behind SVMs, when
dealing with a pattern classification problem, is to preprocess the data in order to
represent patterns in a high dimension — typically much higher than the original fea-

ture space via a nonlinear mapping (p() The training of a SVM consists of finding

the optimal hyperplane, that is, the one with the maximum distance from the nearest
training patterns. The support vectors are exactly those patterns. However, real life
problems are rarely separable and, so, there always exists a number of misclassifica-
tions.
!
Formally speaking, given a training set S = {(xi, Y )} O where each point X, is
1=

a p -dimensional vector, the input pattern for the /-th example, and y, € {—— 1,1} is a
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label that specifies to which one of the classes the point X; belongs to, the goal is to

find a discriminating function of the form
£(x)=sign(w-o(x,)+b) (3)

where (p(x) = (¢| (x),...,¢m (x)) corresponds to a mapping from R’ to the higher

dimensional space ‘R™ (d >[). The search for the “optimum” hyperplane and, thus,
the best classifier leads to the following quadratic optimisation problem

1 . (4
Minimize EWT W+ CZ d
i=l
Subjecttoy(w (p( )+b)>1—§. £ 20,i=12,.,1 (5)
The dual problem, which is in fact the one to be solved is
(61

Maximize Za ——Za ay.ye )T(p(xj)

1/1

N
Subject to Zizly,a,. =0 (16) (7)
0=, =C ,i=12,.,l

Parameter C' controls the influence of training data points that will remain on the
wrong side of a separating nonlinear hypersurfaces (hyperplanes) in the feature space.
The discriminating function is finally given by

f(x)= sign(zllyf“f"’("f)""(x)wJ

i=l

(8

The points for which a,>0 are called Support Vectors. They are the most difficult

patterns to classify (including the points on the boundary) and usually are a small
portion of the training set.

If the nonlinear mapping function is chosen properly, the inner product in the fea-
ture space can be written in the following form

T 9y

¢ (Xi)'(p(xj)=K(Xi,xj) b}

where K is called the inner-product kernel. A kernel function is a function in input
space and, therefore, we do not perform the nonlinear mapping (p() Instead of
performing the inner products in a feature space (pT(x 1)' (p(x g ), one can directly

calculate it using the kernel function (pT(X,.)- (p(x j)z K(x,,X ). Therefore by
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selecting an appropriate symmetric kernel function one does not even have to know
what the actual mapping is [22].

3  The proposed methodology

3.1 Data set

Data have been acquired with a Hewlett Packard fetal monitor that performs sampling
at 4 Hz (4 samples/s). All cardiotocographic records had been acquired during the
final stage of the labor and, in fact, as close as possible to delivery. This means that
the data sets are time-biased free and a direct association can be made between the
segment of the signal used and the fetal outcome.

The main goal of the proposed method is to classify FHR. The experimental data
have been categorized according to the umbilical arterial blood pH. The umbilical
arterial blood pH and/or the apgar score, measured after delivery, are objective in-
dexes [27] that assess fetal well being. Even though it could be argued that those
indexes are affected by the specific handling of the delivery, this is still the best
method towards an unbiased characterization of the newborn’s condition.

The data set consisted of 40 signals and was divided into 2 subsets. In the first sub-
set we classified those signals that belonged to fetuses with umbilical arterial blood
pH less than 7.1 and in the second those that belonged to fetuses with umbilical arte-
rial blood pH more than 7.2. It is known that babies with severe acidosis (pH 7.0 or
less) will subsequently be normal in a percentage of 90%. However, these can be
considered immediate outcomes that one would prefer to avoid [28].

3.2 Pre-processing

FHR is a very noisy signal with a lot of spiky artifacts and even periods of missing
data due to the movement of the baby and the stress induced during the labor, leading
to the displacement of the transducer used to acquire it. This kind of noise cannot be
eliminated and is always present in cardiotocographic records (Figure 2).

st

Fig. 2. Original FHR signal (the presence of noise id obvious).
Those spiky or missing segments must be removed before subsequent processing
takes place. For the removal of the artifacts we used the algorithm firstly introduced
in [14]. After the removal of artifacts, we proceeded to the selection of a 20-minute

segment from each of the FHR signals. The segments were chosen to be as close to
the final stage of the recording as possible. By doing so, we try to eliminate time bias
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and also to ensure, in a way, the direct correspondence of the segment to fetal condi-
tion — which was qualified by the arterial blood pH value. The duration of the 20
minutes was selected because some of the recordings ldsted no more than 20 minutes.
In the final stage we subtracted the mean value of each signal (so as to have zero-
mean observation signals) and we came up with a segment like the one depicted in
Figure 3.

After this pre-processing step, we are ready to proceed to the main task of the
categorization. This task can be divided into 3 steps:(a) Dimensionality reduction
employing PCA, (b) Feature extraction using the signal from the stage of PCA and
applying ICA on them and, finally, (c) Classification based on the features (extracted
from the previous step) using SVMs.
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Fig. 3. Signal after pre-processing

3.3 Dimensionality reduction

The number of features is exactly the number of the Independent Components.
Therefore if we had retained all the Independent Components for each one of the
n signals, we would have associated (as it will be shown bellow) a feature vector of
dimension equal to 7, making the training task extremely difficult. Thus, dimension-
ality reduction is performed in order to reduce the final feature vector.

To perform the dimensionality reduction, we arranged the signals in a n x N ma-

trix X, (each row having zero mean). Then we calculated the n X n covariance ma-

3
;
i

. T : . .
trix E{XOXO } and stored the eigenvectors corresponding to the largest m eigenval-
ues as columns of a n X m matrix Ep., in descending order. By projecting the

original signals on the subspace spanned by those eigenvectors Egc Xy, we had a

dimensionality reduction from 7 to m . This new set of signals, the m X N matrix,
was then whitened and the “white” or “sphered” data were used for the extraction of
the Independent Components.

3.4 Feature extraction

The main idea behind the application of ICA was to use the independent sources as
a representational basis for the FHR that we had at our disposal. This means that we
look for the linear combination of the sources that best (in a mean square sense) re-
construct the original FHR signal. The linear coefficients, corresponding to each
signal, are derived from the solution of the following over-determined algebraic prob-
lem.
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Coefyy = x,, (10)

The solution was obtained using the pseudo-inverse method

- (11
Coef, = x,y" where, y* =y’ (ny) ] ab)

3.5 SVM classifier

Depending on how the inner-product kernel is generated, different learning ma-
chines can be constructed with quite different non-linear decision surfaces. In particu-
lar, the support vector-learning algorithm can be employed to construct the following
(among others) types of learning machines: polynomial learning machines, radial
basis function networks, and two layer perceptrons. In this study we used only poly-
nomial learning machines.

As mentioned, the parameter C is a user defined variable. It can be determined ei-
ther experimentally, using a training-validation procedure, or analytically, via the
estimation of the Vapnick-Chervonenkis (VC) dimension [18]. In our case we deter-
mined parameter C using the experimental procedure. Thus, we tested various con-
figurations and combinations of learning machines and input vectors.

The data set consisted of 40 cases. 20 cases with pH less than 7.1 (the risk group)
and 20 cases with pH greater than 7.2 (the normal group). Because the available set
of labeled data is restricted to 40 cases, in order to test the performance of our classi-
fication scheme, we used multifold cross-validation [18]. We divided the 40 cases
into 5 (non-overlapping) subsets, each one with 4 examples from the “normal” and 4
from the “risk” group. The SVM classifier was trained on all subsets except for one,
and the validation error was measured by testing it on the subset left out. We repeated
this procedure 5 times, each time using a different subset for testing.

4 Experimental results

We experimented using 2 to 9 independent components for various values of the
parameter C& (0,1] and for polynomials with degree ranking from 2 to 6. We

achieved an overall classification performance of 70% (80% for the normal cases and
60% for the risk cases) (Figure 4) for 5™ order polynomial kernel. Individually, we
managed to reach a classification performance of 90% for the normal cases, but with
very bad performance for the risk group (using 2" order polynomials) (Figure 5). On
the other hand, we achieved a classification rate for the risk cases of 70% and 60%
for the normal group (meaning an overall classification of 65%), using polynomial
kernels of degree 3 (Figure 6) or even 75% for the risk cases, but with very low per-
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formance for the normal cases 55% (overall 65%) (Figure 7). In the following fig-
ures, classification performance is presented for different values of C.
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Fig. 4. 5" degree polynomial Kernels and 2 independent components
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Fig. 7. 2™ degree polynomial Kernels and 2 independent components

4 CONCLUSIONS

In this paper we introduce a novel method based on the application of SVMs and ICA
in order to test whether we can find a way to discriminate between fetuses with “nor-
mal” pH values and those who have a decreased pH and are suspicious of developing
acidosis.
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The overall procedure showed that, even though the classification of the normal
cases is quite high, the classification rate of the risk cases is not quite satisfactory.
The same result was derived in other studies, where a neural network instead of a
SVM had done the classification task. This possibly indicates that the choice of the
threshold for the pH value should be lower for the risk case. A more justified thresh-
old could be the value of pH at 7, but this could compromise more the classification
performance since only 2 cases would fulfill that criterion, leaving 38 to the normal
set

In a similar attempt [10] where the cut-off point for the umbilical arterial blood pH
was set to 7.15 and in a population of 73 fetuses, (8 fetuses with pH less than 7.15
and 65 fetuses with pH more than 7.15) the developed system managed to classify 7
of the abnormal cases to the right class (87.5% classification rate) and 50 of the nor-
mal cases to the right class (76.92% classification rate) respectively. (Overall classifi-
cation performance 78.08%). Nevertheless, a number of problems have been re-
ported, concerning the evaluation of these results, especially due to the high value of
the selected cut-off. [29]. The selection of a lower threshold would lead to much
worse results, and thus, no direct comparison can be made

In view of all the above, we will test the proposed method to a larger set of data
to further validate it and we will also use the fetal apgar score as another index com-
ponent for the formation of the classes, something which was not used in this present
study, since all apgar scores but one were higher than 8.
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