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Abstract— Implementation of unsupervised induction motor 

condition monitoring systems has drawn an increasing attention 
recently among motor drives manufacturers. In the case of soft-
starters the possibility of incorporating fault detection features to 
their conventional functions provides an added value to those 
elements. Design and development of advanced algorithms that 
are able to automatically detect and alert about possible failures 
without requiring continuous human inspection is a challenging 
research goal. In this paper, an algorithm for the automatic 
detection of rotor damages in induction motors in the case of soft 
starting is proposed. The twofold approach relies, first, on the 
application of a time-frequency transform to the starting current 
signal and, second, on a pattern recognition stage based on the 
treatment of the time-frequency representation as a symbolic 
sequence. The innovation of this work is the implementation of 
the proposed approach for the automatic detection of rotor cage 
faults in soft-started motors. The experimental results prove the 
usefulness of the approach for the automatic detection of such 
faults and its potential for possible future implementation in soft-
started machines. 

Keywords— broken bar fault, boft starters, symbolic time series 
analysis, time-frequency analysis  

I.  INTRODUCTION  

Early fault detection in induction motors is a matter of high 
concern for industrial users, due to the extensive utilization of 
these machines in a wide variety of processes [1]. As a 
consequence, there has been an increasing research effort in the 
development of advanced fault diagnosis techniques that are 
able to monitor reliably the condition of such machines. A 
recent trend is to embed these techniques in the hardware of 

elements such as frequency converters or soft-starters, whose 
primary functions are not to determine the motor conditions. 
However, the incorporation of these techniques would provide 
an added value to these elements, a fact that is particularly 
relevant due to the increasing participation of frequency 
inverters and soft-starters in many industrial applications.  

In this context, two factors play a crucial role: 1) the use of 
non-invasive quantities as a base for developing diagnosis 
techniques and 2) the adoption of unsupervised algorithms that 
do not require the user’s constant presence during the decision 
making process. Regarding the first factor, techniques relying 
on the analysis of stator-currents have proliferated over recent 
years; these techniques are going beyond the conventional 
analysis of the steady-state current (Motor Current Signature 
Analysis, (MCSA) [1]).  

Indeed, the most recent current-based methods rely on the 
application of advanced signal processing methods (based on 
time-frequency transformations) to the stator current regardless 
of the operation regime of the machine (including both 
transient or steady-state currents) [2-5]. These approaches 
enable both visualization of the frequencies of the fault 
components as well as their evolution over time. Thus, they 
obtain very characteristic signatures that enable to identify the 
fault with high reliability. As an example, in the event of a 
rotor cage fault, the most relevant component, amplified by the 
failure (the Lower Sideband Harmonic, (LSH)) shows a very 
particular time-frequency evolution during a direct startup that 
was well described in relevant works [2]. This evolution 
proved to be also present for the case of soft-started motors 
with damaged rotor cages [6].  
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Regarding the second issue, the automation without any 
user intervention for determining the presence or not of a fault, 
it is a major requirement for the implementation of such 
diagnosis techniques in the aforementioned devices. 
Nonetheless, most of the existing advanced current-based 
techniques hitherto developed still rely on the user expertness 
for the interpretation of the resulting time-frequency maps. 
They require the user to identify the components evolutions 
and decide if the fault is present or not. Some few works have 
dealt with the automation of this process, though all of them 
are restricted to line-started motors [7-9]. Moreover very few 
works deal with the problem of machine operating under soft-
starter conditions [10-12]. 

This paper proposes an intelligent fault diagnosis algorithm 
that intends to assess the rotor condition in an automatic way, 
avoiding the necessity of continuous user supervision. Unlike 
other works, the algorithm is applied to the case of soft-started 
motors. Though the probability of rotor failure is supposed to 
be lower for this type of starting method, some real cases have 
been reported recently. The proposed method is based on two 
stages: first, the application of the Short Time Fourier 
Transform (STFT) to obtain characteristic signatures of the 
fault in the time-frequency plane. Afterwards, an intelligent 
algorithm based on the conversion of the two dimensional 
time-frequency representation into a one dimensional symbolic 
time series is applied. This symbolic time series is then turned 
into a “bag of patterns” representation that eventually feeds a 
nearest neighbor classifier to achieve automatic alerting on the 
presence of a fault and the estimation of its severity. 

The results, obtained with laboratory experiments prove the 
effectiveness of the approach for the diagnosis of the rotor 
condition of soft-started squirrel-cage motors. This confirms its 
potential for a possible future implementation in these types of 
devices for fault detection monitoring purposes. 

The rest of the paper is structured as follows: Section II 
describes the proposed integrated method and Section III 
presents the experimental set-up and the results. Finally section 
IV concludes this research work and discusses future 
directions.  

II. THE METHOD 

The proposed integrated approach is based on a series of 
stages for the analysis of the stator current of an induction 
machine during soft starting: Isolation of the transient, 
application of the STFT to come up with a two dimensional 
representation, transformation of the two-dimensional 
representation into a one dimensional symbolic representation 
involving a modified version of Symbolic Aggregate 
ApproXimation (SAX), extraction of feature vectors from the 
symbolic sequence using the “bag of pattern” approach and 
finally the utilization of a nearest neighbor classifier for the 
fault diagnosis.  

A. Transient Isolation 

The proposed method is used during the transient of soft-
starting in order to take advantage of the merits of the transient 
MCSA approach. To avoid the inclusion of the steady-state 
regime, a steady state detector is applied to signal the end of 

the transient [7]. The detector operates using a sliding window 
over which the Root Mean Square (RMS) value of the start-up 
line current is calculated. Then a second sliding window is 
used that operates over the sequence created during the 
previous step. This second window is used to estimate the 
standard deviation of the created time sequence and once its 
value falls below a predefined threshold the end of the transient 
regime is signaled.  

B. Time Frequency Representation 

During a motor starting at a constant rated frequency (direct 
start-up or soft starting) an asymmetry created by the breakage 
of a rotor bar is manifested through a frequency component 
that has a characteristic V pattern in the time frequency plane 
bellow the supply frequency as it is clearly indicated by 
equation 1 (considering the - 2 k s  case)  

1 2 , 1, 2,...b sf k s f k                                       (1) 

This V pattern is depicted in the time-frequency plane 
produced by the application of the STFT (Fig. 1). STFT is the 
most commonly encountered time-frequency transformation of 
a signal in engineering practice. It simply consists of the 
application of the Fourier transform over a sliding window 
w t  applied on the signal of interest x t .       

, jX t x w t e d            (2) 

 

Fig. 1. The spectrogram of the start-up current for a direct on-line machine 
with rotor assymetry and its characteristic V pattern depicted in the 
spectrogram. 

However due to the presence of additional time harmonics 
caused by the operation of the soft-starter as well as their 
interaction with inherent asymmetries, a wealth of other 
components appear making the isolation of the specific 
component quite difficult as it can be seen in Fig. 2. Therefore 
further processing is needed. One option is to try to isolate the 
specific component. The other option, which is pursued in this 
paper, is to process the whole time-frequency plane, or to be 
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more specific, the part that is known to contain the 
characteristic frequencies, to come up with a more 
tractable/condensed representation where a conventional 
classification method can be applied. 

C. SAX – Bag of Patterns Representation 

The output of the STFT stage, the spectrogram, is a high-
dimensional representation with varying dimensions depending 
on the duration of the start-up transient. In order to tackle both 
problems, a slightly modified version of the SAX algorithm 
[13] is applied as it will be explained in Section III. The 
standard SAX algorithm was developed for one dimensional 
time series and has already been used for the detection of 
broken bars in line fed machines [14]. SAX involves the 
following steps: 

i) Normalization of the time series to have zero mean and 
standard deviation equal to one. By doing so most real 
life time series will end up having a Gaussian 
distribution  

ii) Application of the Piecewise Approximate 
Aggregation (PAA) which reduces the dimensionality of 
the normalized time series 1 , 2 , ,x x x x N of 

an arbitrary length N  by dividing it into M  ( M N ) 
equally sized frames and taking the average value of the 
points falling within those frames [15], [16]. 

( 1) 1
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, for 1,2,...,i M                     (3) 

Note: In case that N  cannot be divided exactly by M the 
following formula can be used (which reduces to Eq. 3 when 
N  can be divided exactly by M ) [17][18].  
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 for 1,2,...,i M      (4) 
iii) Symbolization/discretization by creating a partition 

of the transformed space assuming Gaussian distribution 
of values after the normalization and thus selecting as 
“break points” the values that will produce equal-sized 
areas under a Gaussian curve. (Note: the assumption of a 
Gaussian distribution is not crucial [19] and it can be 
violated, but neither that nor the equiprobability violation 
[20] is so important when dealing with classification 
problems). 

After the aforementioned procedures the output of symbols 
sequence is still a quite long one. At this point the “bag of 
patterns” representation proposed in [21] can be used to 

transform the symbolic sequence to a real valued feature 
vector. 

 

Fig. 2. The spectrogram of the start-up current for a machine with a) zero 
broken bars, b) one broken bar and c) with two broken bars. 
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In the original formulation of the “bag-of-patterns” feature 
extraction, a sliding window over the real valued time series, 
defines the limits of the word with the symbols/letters of the 
word given after the application of SAX within the sliding 
window. In this work a modified version was applied as is 
explained in the following section.  

The steps that lead to a real valued feature vector are meant 
to be applied on a one dimensional time series. However the 
spectrogram is a two dimensional representation. In this work, 
the transformation of the k l  matrix (with the first dimension 
corresponding to frequency) of the spectrogram to a one 
dimensional representation is performed by simply 
concatenating all the rows together creating a 1 k l vector. 

D. Classification and Diagnosis 

The classification task and therefore the diagnosis is 
performed by a nearest neighbor classifier, which is the 
simplest member of the K-nearest neighbor (K-nn) family (K=1 
for the nearest neighbor classifier). The diagnosis is performed 
by assigning the feature vector to one of three predefined 
classes /conditions (normal – one broken bar – two broken 
bars). K-nn classifiers belong to the family of memory-based 
classifiers and they are also referred as lazy learners since they 
do not use any training algorithm but rather rely on the training 
data that are stored in memory. They can create non-linear 
boundaries and are quite simple to implement.    

In the nn classifier framework, the assignment of a new 
case x  is performed by retrieving from the training data set the 
feature vector ix , as well as its corresponding label ic , that is 
more similar to the unknown/new feature vector [22]. 
Similarity is usually measured using the Euclidian distance; the 
more similar two vectors are the smaller their Euclidian 
distance: 

arg min j
j

i x x                                                        (5) 

E. Multidimensional Scaling  

“Seeing is believing” [23]: in order to get a better 
understanding of the success (or failure) of a particular 
classification scheme it is useful to have a high level overview 
of the feature/attribute space. On the other hand, this is not 
always possible because the dimensionality of the feature space 
is much higher than three that is the number of dimensions that 
can be perceived by human vision. Therefore in order to be 
able to visualize high dimensional feature spaces, 
dimensionality reduction is applied [23], [24].  

Dimensionality reduction is a very active field of research 
with many algorithms proposed over the past few years [24], 
[25]. Nevertheless as in most cases in life simpler methods can 
be quite competitive when it comes to real life problems [25]. 
Multidimensional Scaling (MDS) is a popular set of techniques 
[26] for dimensionality reduction, both of linear and non-linear 
nature. Classical MDS is a linear technique which is closely 
related to Principal Component Analysis (PCA). MDS methods 
try to retain the pairwise distances in the projected space Y  as 
much as possible compared to the pairwise distances at the 

original space X . That is achieved through the optimization 
(minimization) of the following stress function: 

2

classicalMDS i j i j
i j

Str Y x x y y                (6) 

where, ix  ( 1,2,...,i N ) are the original data points having 

a dimension of D , and iy  ( 1,2,...,i N ) their corresponding 
projections having a dimension of , d d D  (usually d D ). 

III. EXPERIMENTAL EVALUTATION 

For the validation of the proposed method a 1.1 kW 
induction motor coupled to a DC machine (Fig. 3) acting as a 
load is used [9]. For the case of the broken rotor bar(s) the 
breakages were artificially generated in the laboratory by 
drilling a hole in the junction point between the corresponding 
bar and the short-circuit end-ring. Three different motor 
conditions, (healthy, one broken bar and two broken bars) 
under voltage ramp soft start were tested with four signals 
acquired for each condition. The sampling frequency was set to 
5 kHz for all experiments 

 

Fig. 3. The experimental set-up. 

For the faults under study the amplitude of the 
corresponding frequency component, given by equation 1, 
determines the severity of the fault. Therefore, instead of 
applying the normalization step locally or to each case 
separately, the signals are globally normalized in such a way 
that the whole training set has zero mean and standard 
deviation equal to one. After normalization, the PAA is applied 
transforming the 1 k l vector to 1 100k (in other words, 

the time axis is divided into 100 segments). In this way each 
case eventually ends up having the same length. Following that 
stage, symbolization takes place and the “bag of patterns” 
representation is applied by treating the resulting sequence as 
text using again a sliding window approach. It must be 
mentioned that since we are interested in the lower part of the 
time frequency plane only frequencies below 45Hz were 
considered. The whole procedure is illustrated at Fig. 4 just for 
the first “row” (the first frequency “bin” bellow the 45Hz limit) 
of the spectrogram corresponding to a machine with one 
broken bar. 
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Fig. 4.  a) a zoom in of the upper part of the spectrogram of a  onebroken bar 
machine b) the one dimensional illustration of the first row of the spectrogram 
(upper (fixed) frequency bin and varying time), c) the normalization of the 
original signal to have zero mean and standard deviation equal to one d) the 
output of the PAA stage which reduces the number of samples to 100 and e) 
the output of the symbolization procedure which creates a SAX string – the 
thick horizontal lines correspond to the “break points”.  

From the last plot of Fig 4, we can see that the output of the 
SAX procedure is a string of the form acdeeeddccc…. In the 
“bag-of-pattern” representation the occurrences of the different 
words (in our case words of length 2) aa, ab, ac,…,ba, bb, 
…,ff, are counted using a sliding window (of length 2). The 
frequencies of occurrence of these words consists the “bag of 
patterns” representation to be used as feature vector by the 
classifier. 

The validity of the method was tested using the leave one 
out (loo) procedure: each time one signal was left out for 
testing and the rest were used for training [22]. For each 
condition (healthy- one broken bar- two broken bars) four 
cases are used (12 cases in total).  

In this work a simple configuration with a small word 
length (2) and a medium size alphabet (6) was tested without 
an exhaustive search for the optimal values for these 
parameters. Perfect discrimination was achieved as can be seen 
in Table I. An explanation of the success of the proposed 
method can be given by inspecting the lower 2-dimensional 
scatter plot of Fig. 5 depicting the projection of the future space 
into 2D using classical MDS [26]. As it can be seen the normal 
cases are concentrated quite far apart from the faulty ones. 
However the faulty ones are quite close revealing that further 
investigation is needed to come up with an optimal 
quantification scheme of the severity of the fault. 

TABLE I.  CONFUSION MATRIX – EXPERIMENTAL RESULTS 

 Estimated class 
0BB 1 BB 2 BB 

T
ru

e 
cl

as
s 0BB 4 0 0 

1BB 0 4 0 
2BB 0 0 4 
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Fig. 5. Projection of the feature vectors of the 12 cases into a 2 dimensional 
space 

IV. CONCLUSIONS 

In this work, an automatic method for signaling the 
detection of broken rotor bars without the need for continues 
monitoring of an expert user, using the measured current of 
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induction machines during soft starting was proposed. This is 
one of the very few studies involving the use of measurements 
coming from motors operating with soft starters. The method 
utilizes a very simple time frequency technique and then a 
quite advanced method which treats the two dimensional 
representation as a long string of symbols. The creation of a 
symbolic representation naturally leads to the adoption of tools 
from the field of information retrieval and text mining for its 
further processing and categorization. The results indicate that 
the method is promising creating quite distinct representations 
between normal and faulty situations. This is revealed by the 
application of MDS. 

In future work the method will be also tested for soft 
starting with a current limiter before safer conclusions can be 
drawn. Further testing also is needed in order to find the 
optimum value for the parameters involved during the feature 
extraction stage as well as their robustness against 
measurements coming from other motors. 
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