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Abstract—This work presents an automated approach for 
detecting broken rotor bars in induction machines using the 
stator current during startup operation. The currents are 
analyzed using the well-known Short Time Fourier Transform 
(STFT) producing a two-dimensional time-frequency 
representation. This representation contains information 
regarding the presence of a characteristic transient component 
but requires further processing before it can be fed into a 
standard classification algorithm. In this work, this part is 
performed using the two dimensional extension of Piecewise 
Aggregate Approximation (PAA) that can deal with the two 
dimensional representation of STFT. The results (with both 
simulated and experimental data) suggest that the method can 
be used for the automatic detection of broken bars and even 
for determining the fault severity. Moreover, its low 
computational burden makes it ideal for its future use in on-
line, unsupervised systems, as well as in portable condition 
monitoring devices 

I. INTRODUCTION  
These recent decades have lived huge advances in the 

electric machines fault diagnosis area. This has been partially 
due to the extrapolation to this area of advanced artificial 
intelligence, signal processing and pattern recognition 
techniques that have been successfully applied in other 
scientific fields [1]. In this context, a significant proliferation 
of fault diagnosis techniques relying on sophisticated time-
frequency decomposition tools (wavelet transforms, Wigner-
Ville or Choi-Williams Distributions, Hilbert-Huang 
transforms, Hilbert transforms, etc...) [2]] has been observed. 

Many of the aforementioned methods have been applied 
to the detection of a certain variety of faults (stator short-
circuits, rotor damages, bearing faults, eccentricities, etc...) 
in different types of machines (either DC or AC). In this 
regard, the detection of rotor faults has drawn a substantial 
attention. Though this is not among the most common faults 
in AC motors, its relatively simple detection through its 
signatures in the current spectrum, as well as its higher 
importance and occurrence rate in large motors (often the 
most critical, expensive and difficult to repair) have justified 
the deep study of this fault in the literature as well as the 
development of suitable fault detection techniques [3].  

However, in spite of this prolific activity, the classical 
Motor Current Signature Analysis (MCSA) is still 
predominantly used in many industrial sites as well as by 
most of the few available condition monitoring devices to 
assess the rotor condition [6]. MCSA has however, important 
drawbacks, as extensively reported by several authors, such 
as the incorrect diagnostic results of this tool (either false 
negatives or false positives), that can have to huge economic 
repercussions [7]. 

These problems of MCSA have justified the attempts to 
promote the industrial penetration of some advanced 
techniques. Indeed, some of them can avoid some of the 
MCSA constraints, increasing the reliability of the 
diagnostic, as reported in several works.  

In this context, the analysis of startup current (that is 
commonly referred as Transient-MCSA) using advanced 
signal processing tools has been proven to be especially 
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suitable to this end; the fault-associated patterns appearing in 
the resulting time-frequency maps are very unlikely to be 
caused by a different phenomenon or reason, a fact that 
justifies its use, especially in controversial cases in which 
application of MCSA is not suitable [7]. 

In spite of the advances in this area, most of these 
techniques still rely on a qualitative interpretation of the 
resulting patterns that must be carried out by an expert user 
[11]. In other words, it is not feasible yet the implementation 
of these techniques in unsupervised systems that do not 
require the human intervention, a fact that would facilitate 
the penetration of these techniques in the industrial world. 

This work proposes a new, computationally efficient 
method to automatize the detection process of rotor faults, 
based on the representation resulting from application of a 
very simple time-frequency tool (STFT) on the startup 
current. The high-dimensional output of the STFT requires a 
data-reduction method before it can be used by a 
classification algorithm. In this work two-dimensional PAA 
[12] is employed to reduce the dimensionality of the original 
STFT representation. Then a typical pattern recognition 
approach is utilized for the final diagnosis involving an 
unsupervised dimensionality reduction stage based on 
Principal Component Analysis (PCA) and a simple linear 
classifier.  

The application of the method to signals obtained from 
simulation as well as experiment demonstrates that the 
methodology does not only allow to detect the fault, but also 
to determine its severity with high accuracy.  

The rest of the paper is structured as follows: Section II 
describes the overall procedure with special emphasis given 
to the PAA variants. In Section III the evaluation procedure 
is summarized along with the achieved results while Section 
IV concludes the paper offering also some insights for future 
research.  

II. PROCEDURE 
The overall procedure is depicted in Figure 1. The 

procedure is basically based on the analysis of the stator 
current using STFT and then the application of the two-
dimensional PAA. However, it also includes a stage for the 
isolation of the transient before the application of the STFT 
as well as a dimensionality reduction stage following the 
PAA stage and a final stage consisting of a conventional 
classifier. The rest of this section describes each one of these 
stages. 

A. Transient Isolation 
The proposed approach belongs to the Transient MCSA 

methods. As a result the steady state operation should be 
discarded. A steady state detector [14] based on the Root 
Mean Square (RMS) value of the acquired line current 
calculated over a sliding window was used to select the 
portion of the signal that should be retained. 

         
 

 
Figure 1.  The overall procedure: from data acquisition to condition 

assessment 
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The “running” standard deviation of the “running” RMS 
was computed again using a second sliding window and once 
its value was fallen below a predefined limit, the end of the 
transient was declared. 

B. Time-frequency representation 
After the isolation of the transient, STFT was employed 

to produce the time-frequency representation of the original 
signal.  

STFT is probably the simplest method for rendering 
time-frequency information from a signal ( )x t  and it 
consists of the application of the Fourier transform over a 
sliding window ( )w t  applied on ( )x t . 

( ) ( ) ( ), jX t x w t e d
∞ − ωτω = τ τ − τ∫

−∞
   (1) 

STFT is very appealing tool, due to its ease of 
implementation using the Fast Fourier Transform (FFT), a 
transform which is very familiar to engineers, compared to 
other more sophisticated time-frequency representations. 
STFT can capture the presence of the faulty component that 
manifests itself creating a V-like shape in the spectrogram 
(the squared amplitude of the output of the STFT) as it can 
be seen in Fig. 2, which however is smeared across time and 
frequency, due to the inherent limitations of any method that 
relies on the FFT [3,8]. 

So far, most transient analysis methods for the diagnosis 
of broken bars, rely on sophisticated algorithms to track this 
specific V-like structure [3,8,11], or its variations [14]. In 
this work we resort to a much simpler, though quite 
successful, “less is more” approach for processing the 
spectrogram. The method is called PAA and it was originally 
developed for one dimensional data series [12]. 

C.  Piecewise Aggregate Approximation And Its Two-
Dimensional Variant 
PAA is a dimensionality reduction method, where a time 

series S  of length N  can be represented in a p -

dimensional space by a vector 1, , pS s s= … . The i -th 
element of S  is calculated by the following equation:  

                           
( 1) 1

p i
N

i j
pj i
N

ps s
N

= − +

= ∑                  (2) 

Thus, in order to reduce the time series from N  
dimensions to p  dimensions, the data is divided into p  
equal sized windows. The mean value of the data falling 
within a frame is calculated and a vector of these values 
becomes the data-reduced representation. An illustrative 
example of the application of PAA to the second Intrinsic 
Mode Function (IMF) of a start-up current of an induction 
machine with two broken bars is shown in Fig. 3 [15]. 

 
Figure 2.  The spectrogram of the start-up current for: a) a healthy 

machine, b) a machine with one broken bar and c) a machine with two 
broken bars. The data come from the experimental set-up described in 

Section III. 

The original formulation assumes that the length of the 
signal ( N ) is divided exactly by p . Since this is not always 
the case, an expansion can be derived by accounting for the 
border line points (having them contribute to the mean value 
a fraction proportional to the distance from the border line 
point). Therefore the i -th element of S  is now given by the 
following equation: 
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( ) ( )
( )
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1 1
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⎛ ⎞

⎛ ⎞⎛ ⎞⎜ ⎟⎛ ⎞ ⎢ ⎥⎜ ⎟+ + − + ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠⎜ ⎟⎝ ⎠
⎝ ⎠

∑

for 1,2,...,i p=      (3) 
where the symbol x⎢ ⎥⎣ ⎦ , denotes “the largest integer not 
greater than x , 

 
Figure 3.  Application of PAA to the second Intrinsic Mode Function 

(IMF) of a start-up current of an induction machine with two broken bars  

The expansion to two dimensions is quite straightforward 
and has already been used as part of a two-dimensional 
authentication algorithm [16]. In the two dimensional case 
the original matrix Q  (image) of dimension N M×  is 
represented by a matrix Q  of dimension 1 2p p×  where the 

( ),Q i j element is given by (4): 

( ) ( )
( )( )

1 2

1 2

1 2 1 1 1 1

1, ,

m ni j
p p

m nx i y j
p p

Q i j Q x y
p p

= − + = − +

= ∑ ∑                    (4) 

Fig. 4 depicts an illustrative example of the two 
dimensional PAA process while Fig. 5 shows the 
corresponding PAA representations of the spectrograms of 
Fig. 2 (excluding however the upper part of the image- i.e. 
the frequency components above 45Hz, since the component 
of interests lies in the lower part of the spectrogram, below 
the supply frequency of 50 Hz). The reduced PAA 
representation even though has compressed most of the 
details present in the original spectrogram still suffices for 
automatic diagnosis as it is described in the following 
section. 

Practically, the two dimensional PAA can be produced 
by applying the one dimensional PAA twice: first, applying 
the PAA along the columns of the matrix reducing the 

dimension from N  to 1p  (new intermediate representation 

1p M× ) and then applying the PAA along the rows of the 
intermediate representation reducing the dimension from M  
to 2p  producing the final 1 2p p×  representation. The 
operations are interchangeable; we can first process the rows 
and then the columns of the original matrix. 

 
Figure 4.  Application of PAA into an image a) the original image (30x30) 

and b) the reduced representation (5x5) (artificially expanded to span the 
same range (30x30). 

III. EVALUATION OF THE METHOD 
In order to test the effectiveness of the representation 

simulation and experimental data were gathered. The 
simulation data were produced using a squirrel cage 
asynchronous machine model developed in Matlab/Simulink. 

For the experimental part a machine with the following 
characteristics was used: Rated characteristics of the 1.1 kW 
motor: Star connection, rated voltage (Un): 400V, rated 
power (Pn): 1.1 kW, 2 pair of poles, primary rated current 
(I1n): 2.7A, rated speed (nn): 1410 rpm and rated slip (sn): 
0.06. The number of rotor bars is 28. The motor was directly 
coupled to a DC machine acting as load.  
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Figure 5.  The reduced dimension PAA representation
the spectrograms depicted in figure 1 with a 5x10 rep

healthy machine, b) a machine with one broken bar an
two broken bars. 

The broken bar scenario was ‘‘simulated 
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the bar and the short-circuit end ring in suc
bar had no contact at all with the end-ring (Fi

Stator currents were sampled with a freq
Four experimental start-ups for each cond
total), two at no load and two at half of the
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time the three recordings of one startup experiment were left 
out for testing while all the rest startups were used for 
training.  

The results are summarized in the following Tables I to 
VI which depict the confusion matrix for the three different 
configurations of the principal components. (Note: a 
confusion matrix is a sort of contingency table containing 
information about actual and predicted classifications done 
by a classification system. The name stems from the fact that 
it makes it easy to see if the classifier confuses the different 
classes. The columns are labeled with the predicted classes 
and the rows with the actual/true classes (or vice versa) and 
each entry ( ),i j  in the matrix denotes the number of cases 
that actually belong to class i  and have been assigned to 
class j . For example, in Table I, the entry in row three, 
column two indicates that two cases that actually belonged to 
the two broken bar category were mistakenly classified 
(estimated) as belonging to the one broken bar category. The 
better the classifier the less non-zero off-diagonal elements 
exist, with the perfect classification system corresponding to 
a diagonal matrix). 

 

Figure 7.  The scree plot (zoomed in) for the simulation data. A reasonable 
selection for the number of retained components is 4, where the elbow 

occurs. 

TABLE I.  CONFUSION MATRIX FOR THE SIMULATED DATA FOR THE 
CASE OF THREE RETAINED PRINCIPAL COMPONENTS 

 Estimated class 
Healthy 1 BB 2 BB 

T
ru

e 
cl

as
s Healthy 30 0 0 

1BB 0 30 0 
2BB 0 2 28 

TABLE II.  CONFUSION MATRIX FOR THE SIMULATED DATA FOR THE 
CASE OF FOUR RETAINED PRINCIPAL COMPONENTS 

 Estimated class 
Healthy 1 BB 2 BB 

T
ru

e 
cl

as
s Healthy 30 0 0 

1BB 0 30 0 
2BB 0 0 30 

TABLE III.  CONFUSION MATRIX FOR THE SIMULATED DATA FOR THE 
CASE OF FIVE RETAINED PRINCIPAL COMPONENTS 

 Estimated class 
Healthy 1 BB 2 BB 

T
ru

e 
cl

as
s Healthy 30 0 0 

1BB 0 30 0 
2BB 0 0 30 

TABLE IV.  CONFUSION MATRIX FOR THE EXPERIMENTAL DATA FOR 
THE CASE OF THREE RETAINED PRINCIPAL COMPONENTS 

 Estimated class 
Healthy 1 BB 2 BB 

T
ru

e 
cl

as
s Healthy 12 0 0 

1BB 0 12 0 
2BB 0 0 12 

TABLE V.  CONFUSION MATRIX FOR THE EXPERIMENTAL DATA FOR 
THE CASE OF FOUR RETAINED PRINCIPAL COMPONENTS 

 Estimated class 
Healthy 1 BB 2 BB 

T
ru

e 
cl

as
s Healthy 12 0 0 

1BB 0 12 0 
2BB 0 0 12 

TABLE VI.  CONFUSION MATRIX FOR THE  EXPERIMENTAL DATA FOR 
THE CASE OF FIVE RETAINED PRINCIPAL COMPONENTS 

 Estimated class 
Healthy 1 BB 2 BB 

T
ru

e 
cl

as
s Healthy 12 0 0 

1BB 0 12 0 
2BB 0 0 12 

 

As it can be seen from the confusion matrices, the 
method is very effective and only in the case of three 
principal components for the simulated data it erroneously 
diagnoses two cases with two broken bars as having only one 
broken bar. However even in that case it still does not mix 
the healthy with the faulty cases.  

This can be further illustrated if we depict the projection 
of the PAA data onto the first three principal components 
(Fig. 8). As it can be seen, the healthy/normal operating data 
are lying far apart from the faulty cases, whereas the two 
faulty cases are at some areas quite close in this reduced 
feature space. 

IV. CONCLUSIONS 
In this work a computationally efficient method for the 

diagnosis of broken bars during the startup was presented. 
The proposed method employs a steady state detector for the 
isolation of the transient and then relies on the well-known 
STFT for the derivation of the time-frequency representation 
of the transient. 

This transformation results in high dimensional 
representation which needs further processing in order to 
overcome the curse of dimensionality. For this part the 
2dimensional variant of the PAA, which is a very popular 
method in the time series data mining field for 
dimensionality reduction, was employed. Aggregation is a 
popular method in data mining for the reduction of the input 
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dimension and it can increase generalization even though 
initially it seems to lead to loss of information [20].  

 

 
Figure 8.  Projection of the simulated data onto the first three principal 

axes. With blue triangles are depicted the normal oprating data and with red 
rectangles and black sircles the one broken bar and the two broken bar 

cases repsectively. 

The PAA representation is further reduced using PCA 
and then the output of the PCA stage is fed to a simple linear 
classifier which performs the diagnosis.  

Our initial investigation indicates the good potential of 
the method, which is very appealing due to its very low 
computational overhead.  

The main limitation of our method as all data driven ones 
is that it requires the use of training data from all the 
involved fault classes. 

In future work we will test our method using data coming 
from other machines as well as for the diagnosis of other 
faults apart from broken bars.  
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