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Abstract. Fetal heart rate (FHR) provides information about fetal well-
being during labor. The FHR is usually the sole direct information chan-
nel from the fetus – undergoing the stress of labor – to the clinician who
tries to detect possible ongoing hypoxia. For this paper, new CTU-UHB
CTG database was used to compute more than 50 features. Features
came from different domains ranging from classical morphological fea-
tures based on FIGO guidelines to frequency-domain and non-linear fea-
tures. Features were selected using the RELIEF (RELevance In Estimat-
ing Features) technique, and classified after applying Synthetic Minority
Oversampling Technique (SMOTE) to the pathological class of the data.
Nearest mean classifier with adaboost was used to obtain the final re-
sults. In results section besides the direct outcome of classification the
top ten ranked features are presented.

Keywords: fetal heart rate, intrapartum, feature selection, classifica-
tion

1 Introduction

Electronic fetal monitoring (EFM) is used for fetal surveillance during preg-
nancy and, more importantly, during delivery. The EFM most commonly refers
to cardiotocography (CTG) that is a measurement of fetal heart rate (FHR)
and uterine contractions (UC). Since its introduction the CTG has served as the
main information channel providing obstetricians with insight into fetal well-
being. CTG monitoring still plays a role of the most prevalent method in use for
monitoring of antepartum as well as intrapartum fetal well-being. The goal of
fetal monitoring is to prevent fetus of potential adverse outcomes and provide an
information about his/hers well-being. The main advantage of CTG, when com-
pared to previously used auscultation technique, lies in its ability of continuous
fetal surveillance though, this advantage is claimed to be insignificant in pre-
venting adverse outcomes (with exception of neonatal seizures) as described in
meta-analysis of several clinical trials [1]. The other main controversies of CTG



include: increased rate of cesarean sections [1] and high intra- and inter-observer
variability [2, 3].

Nowadays CTG remains the most prevalent method for intrapartum fetal
surveillance [2, 4], often supported by ST-analysis (Neoventa Medical, Sweden)
which is based on analysis of fetal electrocardiogram (FECG). The introduction
of additional ST-analysis into the clinical practice improved the labor outcomes
slightly [5, 6] but its use is not always possible or feasible since it requires invasive
measurement. Moreover, in order to use ST-analysis the correct interpretation
of CTG is still required.

The interpretation of CTG is based on FIGO guidelines [7] introduced in
1986, or their newer international alternatives [8]. The main goal of guidelines is
to assure lowering of the number of asphyxiated neonates while keeping the num-
ber of unnecessary cesarean sections (due to false alarms) at possible minimum.
Additional goal of the guidelines was to lower the high inter and intra-observer
variability. Despite the efforts made, the variability of clinicians evaluation of
CTG still persists [9]. Three possible ways to lower it were discussed. e.g. [10] i)
by extensive training, ii) using the most experienced clinician as an oracle, iii)
and/or by computerized system supporting clinicians with the decision process.

The attempts of computerized CTG interpretation are almost as old as the
FIGO guideline themselves. Beginning with work of [11] the automatic analy-
sis of CTG was aligned with clinical guidelines [12]. Beyond the morphological
features used in the guidelines, new features were introduced for FHR analysis.
These were mostly based on the research in the adult heart rate variability [13].
The statistical description (time domain) of CTG tracings was employed in [14]
and in [15]. The spectrum of FHR either in antepartum or intrapartum period
offered insight to fetal physiology, and the short review [16] described recent
development in this area. The joint time-frequency analysis of FHR in the form
of wavelet analysis was employed in [17]. Nonlinear methods are widely used for
FHR analysis [18, 19] and in our recent work we showed their usefulness in this
field [20]. Different approaches were used for classification of FHR into different
categories either based on pH levels, base deficit, or other clinical parameters.
These approaches includes: Support Vector Machines ( SVMs) [17, 21, 20], artifi-
cial neural networks (ANNs) [22, 23], or a hybrid approach utilizing grammatical
evolution [24].

The contributions of the paper are twofold: First, from the CTG point of
view, the used database will be open access at the time of publication, This is
one of the largest databases used for automatic evaluation of the CTG. Second,
we provide a promising approach for the automatic classification of CTG using
the umbilical pH value as a gold standard. The results could serve as a base
methodology for a new algorithm development on clinically sound data. An
overview of the procedure is shown in Fig. 1.



Fig. 1. An overview of the procedure.

2 Data Used

The database of 552 records is a subset of 9164 intrapartum CTG recordings
that were acquired between years 2009 and 2012 at the obstetrics ward of the
University Hospital in Brno, Czech Republic. The CTG signals were carefully
selected with clinical as well as technical considerations in mind. The main pa-
rameters and their distributions are presented in Table 1. We have decided to
select recordings that ended as close as possible to the birth and that had in
the last 90 minutes of labor at least 40 minutes of usable signal. Additionally
since CTG signal at II. stage of labor is very difficult to assess [25], we have
included to the database only those recordings which had II. stage at maximum
30 minutes-long. The CTGs were recorded using STAN S31 (Neoventa Medi-
cal, Mölndal, Sweden) and Avalon FM40 and FM50 (Philips Healthcare, An-



dover, MA). The acqusition technique was either by scalp electrode (FECG 102
records), ultrasound probe (412 records), or combination of both (35 records).
For three records the information was not available. All recordings were sampled
at 4Hz by a recording device. The majority of babies were delivered vaginally
(506) and rest using caesarean section (46). The more detailed description is
provided in [26].

From the 552 recordings, 44 of them had pH value lower or equal to 7.05
as this is most commonly used value for distinction between pathological and
normal outcome in the literature cf. e.g. [5]. Other thresholds were used in re-
search work, for overview see e.g. [26]. This threshold value was selected for the
formation of two classes. In this study we cast the assessment of fetus wellbeing
as a classification problem.

Table 1. Overview of main parameters of the used CTU-UHB cardiotocography
database

Mean Min. Max. Comment

Maternal age [years] 29,8 18 46 Over 36y: 40.
Parity 0,43 0 7

Gravidity 1,43 1 11
Gesta. age [weeks] 40 37 43 Over 42 weeks: 2

pH 7,23 6,85 7,47 Pat.: 48; Abnor.: 64
BDecf [mmol/l] 4,6 -3,4 26,11 Pat.: 25; Abnor.: 68

Apgar 5min 9,06 4 10 AS5 < 7: 50
Neonate’s weight [g] 3408 1970 4750 Small: 17; Large: 44
Neonate’s sex [F/M] 259 / 293

3 Signal Processing and Feature Extraction

3.1 Signal Preprocessing

The FHR was measured either externally using Doppler ultrasound (US) or inter-
nally by a scalp electrode (DECG); in special cases the combination of methods
was used, i.e. beginning recording with US measurement and ending with DECG
measurement. FHR recorded externally has lower signal to noise ratio than that
recorded internally. The artifacts could be caused by mother/fetal movement,
displacement of ultrasound probe, or simply by mis-detection of fetal heart beat
by the recording device. We employed a simple artifacts rejection scheme: let
x(i) be a FHR signal in beats per minute (bpm), where N is number of samples
and i = 1, 2, . . . , N , whenever x(i) ≤ 50 or x(i) ≥ 210 we interpolated x(i) using
cubic Hermite spline interpolation. We used interpolation implemented in MAT-
LAB®. We interpolated artifacts or missing data when the length of missing
signal was equal or less than 15 seconds – the value based on FIGO guidelines



and our experiments. When computing features we skipped the long gaps (> 15
seconds). An example of the result of artifacts removal is presented in Fig. 2.
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Fig. 2. Artefacts rejection. (a) Raw signal with artefacts, (b) signal after artefacts
rejection.

3.2 Feature Extraction

As mentioned above the FIGO guidelines features were essential for the devel-
opment of any system for automatic classification. Beyond that, other features,
originating from different domains, were examined and used for classification.
In this section we briefly describe the features, the description should serve as
a context necessary to reproduce the analysis. We refer the interested reader to
the referenced papers or to our previous works [20, 27].

Morphological features (used in clinical settings) Morphological features pro-
posed in the FIGO guidelines represents macroscopic – ”visible” – properties of
the FHR. The morphological features were as follows: mean of FHR base-
line, where the baseline is the mean level of fetal heart rate where acceleration
and deceleration are absent; number of accelerations, where acceleration is a
transient increase in heart rate above the baseline by 15 bpm or more, lasting 15
seconds or more; number of decelerations, where deceleration is a transient
episode of slowing fetal heart rate below the baseline level by more than 15 bpm
and lasting 10 seconds or more.

Short/long term variability The short term variability (STV) is the only fea-
ture sometimes computed automatically in clinical settings. The computation of
STV depends whether FHR is recorder internally or externally. For the inter-
nal recording real beat-to-beat variability could be estimated while for external
monitoring there is no real beat-to-beat (BB) variability because of intrinsic
smoothing due to the correlation based technique. Instead epoch-to-epoch (EE)
variation is used when the FHR is averaged over short period of time (2.5-3.75



sec.). Recall that x(i) is the i-th FHR sample in beat per minute (bpm), let T (i)
a FHR sample in milliseconds i = 1, 2, . . . , N , where N is the length of FHR.
As noted in [28] the STV computed using x(i) and T (i) is not always the same
because of dependence on the value of FHR mean utilized in some variability
computation. The STV is estimated for signals of length 60 sec.; for longer signals
the 60 sec. estimations are averaged. There exist several methods for comput-
ing STV and LTV, a comparison could be found in [28]. Here we present only
a short list: STVavg estimated as the average of successive beat differences:
STV = 1

N

∑N−1
i=1 |T (i+ 1)− T (i)| [ms], STV-DeHann estimated as the inter

quartile range of angular differences between successive T (i)s [29], SDNN [13],
STV-Yeh [30], and Sonicaid 8000 [31]. Long term variability (LTV) features
were computed over 60 seconds and there was no need of averaging the FHR
in 60 seconds. For FHR signals longer than 60 sec. estimations of LTV were
averaged over each 60 sec. LTV-DeHaan [29] and the Delta value [14]. Many
of the above mentioned features have been used in cases of antepartum signal
evaluation and the effectiveness of many of them depends on their performance
in the presence of accelerations and decelerations.

Frequency domain features Various spectral methods have been used for the anal-
ysis of adult heart rate [13]. In the case of FHR analysis, no standardized use of
frequency bands exists. Therefore we used two slightly different partitionings of
the frequency bands as was previously used in our work [21]. First we divided the
frequency range into 3 bands [13] and calculated the energy of the signal in each
one of them: Very Low Frequency (VLF); Low Frequency (LF) referred
to as Mayer waves and High Frequency (HF) corresponding to fetal move-
ment. Additionally the ratio of energies in the bands: ratio LF HF = LF

HF was
computed. It is a standard measure in adults and expresses the balance of be-
havior of the two autonomic nervous system branches. The alternative frequency
partitioning followed suggestions of [32]. They proposed the following 4 bands:
Very Low Frequency (VLF); Low Frequency (LF) correlated with neural
sympathetic activity; Movement Frequency (MF), related to fetal movements
and maternal breathing; High Frequency (HF), marking the presence of fetal
breathing. Similarly to the previous 3-band division the following ratio of energies
was computed: ratio LF MFHF = LF

MF+HF . This ratio is supposed to quantify
the autonomic balance control mechanism (in accordance with the LF/HF ratio
normally calculated in adults). The spectrum of FHR was estimated using the
fast Fourier transform.

Nonlinear features Almost all nonlinear methods used for FHR analysis have
their roots in adult HRV research. For nonlinear features we detrened FHR
by the estimated baseline and also normalized the signal to have zero mean
and unit variance. The Poincaré plot is a basic nonlinear feature commonly
used in HRV domain [13]. The plot is a geometric representation of HRV where
each RR interval is plotted as a function of the previous one. In this work we
estimated waveform fractal dimension by several methods. These were: box-
counting dimension, which expresses the relationship between the number



of boxes that contain part of a signal and the size of the boxes; the Higuchi
method (FD Hig) [33], where the curve length 〈L(k)〉 is computed for different
steps k and it is related to the fractal dimension by an exponential formula; the
variance fractal dimension (FD Var) that is based on properties of frac-
tional Brownian motion. The variance sigma2 is related to the time increments
∆t of a signal X(t) according to the power law [34]; an estimate of the fractal di-
mension proposed by Sevcik [35]; Detrend Fluctuations Analysis (DFA) [36] for
estimating the fractal dimension, D, via scaling exponent α, D = 3− α. For all
methods, the fractal dimension was estimated as the slope of a fitted regression
to log-log plot of, e.g. for Higuchi method 〈L(k)〉 versus k. Also we estimated
two scaling regions corresponding to STV and LTV, respectively [33]. The sep-
aration (critical) time was 3s. In addition, in order to estimate both regions by
one parameter, we also fitted the log-log plot with a second order polynomial
which coefficients (first order and second order polynomial coefficient) corre-
spond to the both STV and LTV. The Approximate Entropy (ApEn) is able
to distinguish between low-dimensional deterministic systems, chaotic systems,
stochastic and mixed systems [37]. ApEn(m,r) approximately equals the average
of a natural logarithm of conditional probabilities that sequences of length m are
close to each other, within a tolerance r, even if a new point is added. A slightly
modified estimation of approximate entropy was proposed by [38] and resulted in
Sample Entropy (SampEn). This estimation overcame the shortcomings of
the ApEn mainly because the self-matches were excluded. The used parameters
for ApEn and SampEn estimation are: tolerance r = (0.15; 0.2) ·SD (SD stands
for standard deviation) and the embedding dimension m = 2 [39] The last of the
nonlinear features was the Lempel Ziv Complexity (LZC) [40]. This method
examines reoccurring patterns contained in the time series irrespective of time.
A periodic signal has the same reoccurring patterns and low complexity while
in random signals individual patterns are rarely repeated and signal complexity
is high.

3.3 Feature Selection

Usually in most pattern recognition applications the feature extraction stage is
followed by a feature selection stage [41] which reduces the input dimensional-
ity, because in real world applications we tend to extract more features than
necessary in an effort to include all possible information. However, sometimes
some of the extracted features can be correlated, hence redundant information is
likely to be included or sometimes some features are irrelevant to the application
at hand and may negatively affect the performance of the classifier. The term
”performance” refers to the training time required during the construction of the
classification model or, which is the more serious side-effect, the discriminative
capability of the classifier. In feature selection, a search problem of finding a
subset of l features from a given set of d features, l < d has to be solved in order
to optimize a specific evaluation measure, i.e the performance of the classifier.
There are a number of approaches that try to tackle this problem which can



roughly be divided into three categories: filters, wrappers and embedded meth-
ods [42]. The filter approach ranks features based on a performance evaluation
metric calculated directly from the data; the wrapper approach employs a pre-
dictive model and uses its output to determine the quality of the selected features
and the embedded approach integrates the selection of features in model build-
ing. In this work a hybrid approach combining a filter and a wrapper approach
was combined. More specifically RELevance In Estimating Features (RELIEF)
was employed to rank the features and then based on the ranking the number of
retained features was determined by directly estimating their performance using
a predictive model. In the rest of the section we briefly present RELIEF whereas
the wrapped stage is explained in more detail in Section 4.

RELIEF is a popular feature selection algorithm based on a weight vector
over all features which is updated according to the sample points presented (the
higher the weight the better the feature). The algorithm for a binary classification
problem can be summarized as follows

Algorithm 1: RELIEF algorithm

Input: a data set D =< x1, y1, . . . ,xM, yM >, with xi ∈ RN and yi ∈ {−1, 1}
for i = 1, . . . ,M

a relevancy cut-off (threshold) τ
a number of iteration T
begin

i) initialize the weight vector to zero w = (0, 0, . . . , 0)
ii) for t ∈ T do

pick at random an example x
for i ∈ N do

update the elements of the weight vector
wi = wi + (xi − nearmiss(x)i)

2 − (xi − nearhit(x)i)
2

where nearmiss(x) and nearhit(x) denote the nearest point to x in
D that belong to the other and the same class, respectively.

end
iii) select the feature set whose members exceed the given relevancy
cut-off (threshold) τ , S = {i|wi > τ}

end
end

In our case the step iii) was not involved. Instead we selected the highest
40 out of the total 54 features and then we employed a wrapper approach using
the simplest form of search procedure, the ”Best Individual” [43], in order to
select the number of retained features. In other words after using RELIEF to
rank the features we tested 40 different subsets starting from a subset containing
the feature with the highest rank and we continued adding one feature at a time
(the second best, the third best etc.) and we estimated their classification perfor-
mance. The subset with the highest performance was determining the number of



features involved in the estimation performance phase as it is will be presented
in more detail in the next Section 4.

4 Classification Procedure

As it was pointed out in section 2, one class, the abnormal one, is heavily under-
sampled in comparison to the normal one. This creates an extra challenge to
the already difficult task of fetus well-being diagnosis. The class imbalance is
a fundamental problem, arising when pattern recognition methods are dealing
with real life problems, and many approaches have been proposed to overcome
this situation [44]. In order to compensate for this imbalance we employed a
popular technique which operates on the minority class creating artificial data,
the Synthetic Minority Oversampling TEchnique (SMOTE). SMOTE is based
on real data belonging to the minority class and it operates in the feature space
rather than the data space [45]. The algorithm for each instance (in feature space)
of the minority class introduces a synthetic example along any/all of the lines
joining that particular instance with its k nearest neighbors that belong to the
minority class. Usually after SMOTE the training set has approximately equal
numbers of the 2 classes. However in this study our preliminary results suggested
that more synthetic data from the minority class were needed. Therefore we
selected to oversample the minority class by a factor of 18 using 27 (k=27)
neighbors without trying to further optimize/tune the parameter settings of
SMOTE. For testing the classification performance by making use of as many
of the abnormal instances as possible we applied a 44 fold (stratified) cross
validation procedure with each fold containing 1 abnormal instance and 12 or
11 normal instances. Therefore each time 43 abnormal instances were used for
training and 496 or 497 normal instances and 1 abnormal instance and 12 (11)
normal instances were saved for testing. During each fold we applied SMOTE to
the abnormal instances, with the aforementioned parameters, while the normal
instances remained intact. After the application of SMOTE an ”inner” loop
involved for the selection of the ”optimal” number of features. During every fold
RELIEF used all the training data (not the synthetic ones) to rank the features
and then an inner loop was executed 4 times during which the data was randomly
divided into training and testing (70/30) and a classifier was tested using 1 to
40 features (starting with the best feature and adding one feature at a time
based on its ranking). Based on the average classification accuracy over these
four repetitions the ”optimal” number of features was selected. After selecting
the number of retained features, the whole training set (with the inclusion of the
data coming from the SMOTE stage) was used to train a classifier to be tested
on the reserved testing set. In this work we employed the simplest member of the
nearest prototype classifier family, the nearest mean prototype classifier, which
assigns an instance to the class whose mean vector is closest to, during the inner
loop procedure, and after that (after the selection of the number of features to
retain) we employed the same classifier but within the adaboost framework in
order to come up with a more powerful classification scheme. Adaboost which



comes from adaptive boosting was first introduced by Freund and Schapire [46] is
a general method for improving the performance of a week learner. It is the most
well-known model guided instance selection for building ensemble classifiers. The
basic steps of the algorithm are summarized as follows (following mainly the
notation provided in [47]).

Algorithm 2: Adaboost algorithm

Input: a data set D =< x1, y1, . . . ,xM, yM >, with xi ∈ RN and yi ∈ {−1, 1}
for i = 1, . . . ,M

kmax – the maximum number of weak learners to be included in the ensemble
C – a weak learner
begin

i) initialize the weight vector W1 = (1/M, 1/M, . . . , 1/M)
ii) for k = 1, . . . , kmax do

train weak learner Ck sampling D according to Wk

ek ←
∑
i:Ck(xi)6=yi

Wk(i), where Ck(x) is the output of the weak
classifier for instance x
αk ← 1

2
ln
(

1−ek
ek

)
Wk+1(i)← Wk(i)

Zk
×
{
e−αk , if Ck(xi) = yi
e−αk , if Ck(xi) 6= yi

, Zk is normalizing constant

end

iii) classify any new instance x using G(x) = sign
(∑kmax

k=1 αkCk(x)
)

end

In this work 40 nearest mean classifiers were employed. Trying to avoid any
bias regarding the selection of the normal instance in each fold we repeated the
procedure 5 times each time randomly reshuffling the normal instances creating
an ”outer” loop. By the outer/inner scheme we decouple the parameter selection
stage from the estimation of the performance in an attempt to avoid getting
optimistic results. The overall procedure is depicted in Fig. 1. The results of
the 5 times repetition of the stratified 44-fold cross-validation procedure are
summarized in the aggregated/cumulative confusion matrix, see Tab. 2.

As it can be observed with the specific setting we managed to have a balanced
performance for both the normal and abnormal case. Regarding the feature
selection process, Fig. 3 shows the number of times each feature configuration
(number of features) has been selected over the 5x44 trials. As it can be seen
usually a number between 10 and 20 was the most frequent configuration.

Regarding the ranking of the features by the RELIEF algorithm, Fig. 4a
depicts the average ranking of the features (lower values are better) whereas
Fig. 4b shows the number of times each individual feature was ranked.

Table 3 summarizes the top 10 features in terms of their average rank and
Tab. 4 summarizes the top 10 features in terms of occurrences within the top 20
spot list.



Table 2. Cumulative confusion matrix of the proposed approach.

Predicted
Abnormal Normal

Abnormal 141 79
Actual Normal 884 1656

Fig. 3. Histogram of the number of selected features, through the ”inner” loop proce-
dure.

(a) (b)

Fig. 4. Features ranking. a) Average ranking of individual features, b) Number of
occurrences of individual features within the top-20 ranked list

Table 3. The top 10 features selected by the RELIEF algorithm.

Feature 7 13 44 17 36 38 24 26 47 46

Average rank 1.21 1.84 3.60 4.96 9.17 9.27 11.40 11.81 13.55 13.80

The numbers in the Table. 3 stands for the following features: 7 – STV-
DeHann, 13 – meanBaseline (mean of FHR baseline), 44 – energy04 LF (low
frequency energy for four bands division), 17 – lzc (Lempel Ziv Complexity),



Table 4. The top 10 features in terms of occurrences within the top 20 list.

Feature 7 13 44 17 36 26 24 37 38 46

# occurrences 220 220 220 220 215 211 206 197 195 193

36: DFA p1 (detrend fluctuation analysis estimated second order polynomial
coefficient), 26 – BoxCount p1 (second order polynomial coefficient estimate by
box counting method), 24 – BoxCount Ds (box counting fractal dimension on
short scale), 37 – DFA p2 (detrend fluctuation analysis estimated first order
polynomial coefficient), 38 – Sevcik fractal dimension, 46 – energy04 HF LF
(high frequency energy for four bands division).

5 Discussion and Conclusion

In this work we have used a broad range of features originating from different
domains (time, frequency, state-space) for classification of CTG records into nor-
mal and abnormal classes. We used a database of CTG records, which is one of
the largest database in the research field of CTG signal processing and classifi-
cation. We implemented a hybrid filter-wrapper approach for feature selection
were roughly 25% of features was filtered out using RELIEF algorithm and the
rest were coupled with a nearest mean prototype classifier for further redcing the
dimensionality of the input space. Our results indicate that the probably the se-
lection was too conservative and further reduction might be possibly useful. The
best selected features come from various domains, with the nonlinear features
being the most prevalent. This corresponds to our previous results [20, 27], even
though that previous study was performed on different database with smaller
number of instances. Even though the linear correlation between features and pH
is not high at all as shown in [48] and confirmed by our own tests, in our case, we
managed to have a relatively high classification performance (taking into account
the low correlation of the features with the monitored parameter). Especially the
four best ranked features 3 (STV-DeHann, meanBaseline, energy04 LF, and lzc)
possess the most valuable information regarding discrimination between normal
and abnormal cases.

As we mentioned the results can serve as a base for comparing more elaborate
classification schemes involving differt feature selection schemes and different
classifiers. In our future work we intend to use other ranking methods such as
the minimal-redundancy-maximal-relevance (mRMR) criterion [49], which can
cope better with the problem of redundant information and we also intend to
try replace the wrapper approach and use a random forest (RF) [50] to act upon
a reduced number of features since the results of this work suggest that around
20 features could be a reasonable set of features, reducing this way the compu-
tational burden of the wrapper approch by taking advantage of the relatively
quick trainig time of the RF. Moreover other state of the art classifiers such
as the SVMs and the deep belief neural networks will be tested and compared
against the ”base” results that were derived from this study.
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19. Gonçalves, H., Bernardes, J., Rocha, A.P., de Campos, D.A.: Linear and nonlin-
ear analysis of heart rate patterns associated with fetal behavioral states in the
antepartum period. Early Hum Dev 83(9) (Sep 2007) 585–591
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