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Abstract—In this paper we propose the use of Intelligent Icons 

for both automatic assessment and representation of 

asynchronous machines’ condition. The method focuses on the 

analysis of the start-up current for the isolation of a component 

that is able to pinpoint faulty signatures. The analysis is based on 

the application of Empirical Mode Decomposition (EMD) which 

acts as an adaptive filter during the start up and subsequently on 

the application of Symbolic Aggregate approXimation (SAX) for 

the transformation of the extracted component into a symbolic 

representation. Using this symbolic representation, an automated 

detection procedure can be developed that discriminates between 

faulty and normal conditions using an intelligent Icons approach 

while at the same time the information can be presented to the 

user in a more intuitive way.  

Keywords— Empirical Mode Decomposition, Symbolic 

Aggregate approXimation, Intelligent Icons, sympolic 

representation. 

I.  INTRODUCTION 

Due to their low cost, robustness and minimal maintenance, 
asynchronous machines are incorporated in the majority of 
contemporary industrial drive systems. At the same time, 
condition monitoring of the electric drive systems leads to 
reduction of the maintenance costs as well as minimization of 
the downtime, which in turn means less production and 
revenue losses.  

Among the different faults encountered in induction 
machines, rotor faults have been extensively studied even 
though they represent only about 5-10% [1], [2] of overall fault 
occurrences. One of the reasons that rotor faults are of so much 
interest, is because they can lead to shaft vibration and thus 
bearing failures and air gap eccentricity, etc.[3], while bar 
breakage leads to high current in adjacent bars, thus leading to 
potential further breakages and stator faults as well [4]. As a 
result, an early detection of a rotor asymmetry can be beneficial 

not only for the rotor but for the induction machine as a whole 
[3].  

Motor Current Signature Analysis (MCSA) is currently the 
most prominent approach for rotor fault diagnosis in 
asynchronous machines [5],[6], primarily due to its non-
invasive nature. MCSA methods usually employ the Fast 
Fourier Transform (FFT) of the stator current for the detection 
of characteristic sideband harmonic components. Among them 
the left sideband harmonic (LSH) has drawn the most attention 
since its magnitude depends on the fault severity (as well as the 
rotor current) and its frequency is determined by the stator 
supply frequency and the slip: 

 1 2LSH sf s f    (1) 

where fs is the power supply frequency and s is the slip. 

The LSH appears whenever we have any electric or 
magnetic asymmetry in the rotor of an asynchronous machine 
(either a squirrel-cage or slip-ring) [7]. However, FFT based 
approaches suffer from the sidelobe leakage phenomenon when 
trying to detect and quantify this specific component.  

Moreover the analysis of the stator current during steady-
state operation is complicated by the occurrence of frequencies 
similar to those caused by a rotor fault that can be generated by 
other sources such as low-frequency torsional oscillations in 
drive trains with gearboxes as well as voltage fluctuations [3]. 
Finally, the conventional FFT approach has problems when 
diagnosing certain specific failures such as outer cage 
breakages in double cage motors [8]. 

Due to the above reasons, a second group of methods which 
also relies on the analysis of the stator current but during start-
up has drawn quite a lot of attention lately, [10] -[20] even 
though the idea of diagnosis based on transient current analysis 
is quite old [21],[22]. 
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This approach has received the name of Transient Motor 
Current Signature Analysis (TMCSA) [13] and its underlying 
idea relies on tracking the characteristic evolutions of fault-
related components mainly in the time-frequency (t-f) maps 
resulting from the application of suitable signal processing 
tools. The t-f signature linked to a specific fault has the 
advantage that it is very unlikely to be caused by another 
phenomenon or failure. 

The application of TMCSA requires the use of signal 
processing tools, suited for the analysis of non-stationary 
quantities (such as the start-up current), that enable to obtain a 
time-frequency representation of the analyzed signal. These 
tools are known as Time-Frequency Decomposition (TFD) 
tools. In this context, many different TFD tools have been 
proposed in the electrical machines fault diagnosis area: 
Discrete Wavelet Transform (DWT) [12]-[15] , Continuous 
Wavelet Transform (CWT)[16], [17], Hilbert-Huang 
Transform (HHT) [18] Wigner-Ville Distribution (WVD) 
[19],etc. Each TFD tool provides particular advantages and 
drawbacks with regards to the tracking of fault-related 
components. 

One of the main issues with the use of TMCSA methods 
lies either on the high dimensional nature of the extracted 
signatures, when the signature is represented as a time series, 
or the multidimensional nature of the representation when a 
time-frequency approach is adopted. Operators are not used to 
this kind of representations. Therefore automatic approaches 
are needed and/or more user friendly representations. In a 
previous study the extracted time series through the use of 
complex Empirical Mode Decomposition (EMD) [23] was 
discretized and fed to a Hidden Markov Model (HMM) [11]. 
One of the very few applications of a symbolic representation 
for fault detection in electrical machines has been presented in 
[24]. 

In this work we propose a more disciplined approach for 
the creation of the symbolic sequence based on Symbolic 
Aggregate ApproXimation (SAX) as well as a much simpler, 
yet effective, detection scheme for discriminating between 
healthy and machines with broken rotor bar(s). Moreover we 
present for the first time an alternative way of displaying the 
information to the end user using a recently developed 
technique for visualizing time series. 

II. PREPROCESSING 

Before the application of SAX some preprocessing is 
needed in order to isolate the part of the current signal that 
contains the information that is related to rotor bar faults. In 
this work we selected the use of EMD on one of the phase 
currents. 

EMD lacks rigorous mathematical analysis and it 

decomposes the signal into a collection of Intrinsic Mode 

Functions (IMFs), where an IMF represents a simple 

oscillatory function with the following conditions that have to 

be satisfied: a) The number of zero crossings and the number 

of local extrema are equal or they differ by one and b) The 

local average (defined by the average of local maximum and 

local minimum envelops) is equal to zero.  

Given a signal  x t  the EMD algorithm can be summarized 

as follows: 

1. locate all local minima and local maxima of the signal 

  x t  

2. use the local minima and maxima to create an upper 

  maxe t  and a lower   mine t envelope interpolating 

between successive local maxima and local minima 

respectively  

3. calculate the running mean  
   min max

2

e t e t
m t


   

4. extract the detail by subtracting the mean from the signal 

     d t x t m t  . 

5. repeat the whole process replacing  x t  with  m t  until 

the final residual becomes a constant value, a monotonic 

function or a function with only one extremum from 

which no more IMFs can be extracted (or a user specific 

number of IMFs has been extracted – application 

dependent). 

In practice, step 4 may not produce a valid IMF and sifting 
needs to take place, which implies the iteration of steps 1 to 4 

upon the detail  d t  until a specific criterion is met [23], [25]. 

As it was proven in [20], the faulty component is mainly 
contained in the second IMF as it can be seen in Fig. 1 
(extracted using the EMD toolbox [26]), where the second IMF 
for the case of a healthy machine and a machine with one and 
two broken bars is depicted. Note: all currents are normalized 
to have maximum amplitude equal to one. After the extraction 
of this specific IMF, SAX is applied. 
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Fig. 1: The second IMF of the start-up current for a) healthy machine, b) a 
machine with one broken bar and c) a machine with two broken bars  
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III. SYMBOLIC AGGREGATE APPROXIMATION (SAX) 

The SAX representation has been successfully used in a 
variety of applications including indexing, classification, 
clustering [27], motif discovery [28], rule discovery, [29], 
visualization [30] and anomaly detection [31].  

SAX takes as input a time series (signal) of arbitrary length 
N  and reduces it to a string of length w , (w N ) using a 

predefined alphabet. The alphabet length A  is an integer, 
where 2A . This string then can be used to construct a table 
of frequencies of sub words. This table can be represented as 
an image or as an icon of the signal. For long time series, we 
slide a window across it, and obtain the final SAX word [35]. 
The following subsections describe in more detail each step of 
SAX and its application for the creation of Intelligent Icons 
representation. 

A. Piecewise Aggregate Approximation  
The SAX representation is created by taking a real valued 

signal and dividing it into equal sized sections. After that the 
mean value of each section is calculated. By substituting each 
section with its mean, a reduced dimensionality Piecewise 
Aggregate Approximation (PAA) of the data is obtained. Then 
the PAA representation is converted into a discrete string. The 
PAA representation of a time series has been shown to rival 
more sophisticated dimensionality reduction techniques [32].  

A time series S  of length N  can be represented in a w -

dimensional space by a vector 1, , wS s s . The i -th element 

of S  is calculated by the following equation:  

 

( 1) 1

w
i

N

i j
w

j i
N

w
s s

N
  

   (2) 

Thus, in order to reduce the time series from N  

dimensions to w  dimensions, the data is divided into w  equal 

sized windows. The mean value of the data falling within a 
frame is calculated and a vector of these values becomes the 
data-reduced representation. It must be mentioned that prior to 
the computation of the PAA the section of the time series is 
normalized in order to have zero mean and standard deviation 
equal to one. An example of the PAA of a time series is shown 
in Fig. 2. 

B. Discretization 

After the times series S  has been transformed to its PAA 

approximation we obtain a discrete representation. Having 
normalized the time series our new time series will 
approximately follow a Gaussian distribution and we can 
simply determine the “breakpoints” that will produce equal-
sized areas under a Gaussian curve [33]. After the computation 
of the breakpoints, discretization takes place: 

 all PAA coefficients that are below the smallest 
breakpoint are mapped to the symbol “a”,  

 all coefficients greater than or equal to the smallest 
breakpoint and less than the second smallest breakpoint 
are mapped to the symbol “b”, 

 etc. 
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Fig. 2: The PAA representation of a normalized time series of an original 
length of N=1000  using w=25. 
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Fig. 3: The discretization of the time series depicted in Fig. 2 using an alphabet 
of length 4. 

 

Fig. 3 depicts the discretization process of the signal 
displayed in Fig. 2, after the PAA stage. In this example the 
parameters are 100N  , 25w   and 4A , the time series is 

mapped to the word aacddddcaabccbbbccbbccbbbSSAX  . 

C. Intelligent Icon Computation 

After we have computed the SAX representation our goal is to 
transform this word into an Intelligent Icon. The first attempt, 
to map a sequence into an icon would be to divide the bitmap 
into four quadrants and count the frequency of each of the four 
possible base pairs. If we want to generalize this we can count 

the frequencies of specific sub words of length l . For 1l   

words, frequencies are the counts of the symbols used. For 

words of length 2l   the frequencies are the counts of sub 

words of size 2 (e.g. “aa”, “ab”, “ac”, etc.). For example the 

icon of the word aacddddcaabccbbbccbbccbbbSSAX  is 

shown in Fig. 4. 
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First we assign to each letter of the alphabet a unique value 

k :  

 0, 1, 2, 3a b c d     . (3) 

Each word has an index for the location of each symbol in the 
table of the icon. For clarity we can show them explicitly as 

subscripts. For example, the first word with 2l  extracted from 

SSAX  is 0 1a a . In this example 0k a , 1k a . Then in order 

to map a sub word to the icon we can use the following 
equations to find its row and column values: 

 
1

1

0

( 2 )mod2
l

l n l n

n

n

col k


  



  , (4) 

 
1

1

0

( 2) 2
l

l n

n

n

row k div


 



  . (5) 

Intelligent Icons can be used to display time series in a 
more compact form or be used as feature vectors for 
classification/detection purposes. In this study they were used 
in both forms. 

IV. RESULTS 

A. Dataset 

In order to test our approach, start-up currents from a 
healthy and from a machine with one and two broken rotor bars 
were examined. The start-up currents were selected using three 
current transducers resulting in three recordings for each 
experiment. We ran 10 start ups for each one of the three 
conditions. Therefore we had 30 recordings for the healthy 
condition and 60 for the faulty condition (30 recordings with 
one broken bar and another 30 recordings with two broken 
bars).  

B. Classification 

Having presented the new representation of time series, we 
can now define a distance measure on it. By far the most 
common distance measure for time series is the Euclidean 

distance. Given two time series 1f  and 2f  of the same length 

N , and their icons 
1f
I , 

2f
I  we can define their Euclidean 

distance as: 

               
1 2 1 2

8 8
2

1 1

( , ) ( ( , ) ( , ))f f f f

i j

D I I I i j I i j
 

                (6) 

Fig. 5 displays the distance between each icon and the rest 
of the icons of the data set. The first 30 samples belong to the 
healthy machine and the rest 60 belong to the faulty machine 
(keep in mind that in this study we have grouped together the 
two faulty conditions approaching the problem from a fault 
detection approach rather than a diagnosis one). Notice the two 
distinct blocks that are shown in Fig. 5; their presence indicates 
the existence of two classes.  

Using a nearest neighbor (NN) classifier, the distance 
defined by Eq. 6 and employing a leave-one-out classification 
scheme we have perfect detection of a faulty situation without 
false alarms. In other words each time we used 89 of the 
recordings for creating the training set of the NN classifier and 
the case left out was used for testing the detection accuracy.  

The success of the approach in discriminating between 
faulty and healthy machines can be further elaborated using 
Multi-Dimensional Scaling (MDS) [34] in order to display the 
produced representation in the two dimensional space. MDS 
requires the distance matrix computed by Eq. (6). Fig. 6, 
displays the MDS projection on the two dimensional space 
along with the boundary created using as inputs the coordinates 
of the space as inputs to a nearest neighbor classifier. As one 
can easily observe the icons of the signals are separable even at 
this lower dimensional space. Therefore the task can be even 
easier in the original higher dimensional feature space. 

C. Intelligent Icons 

An interesting feature of the application of our method is 
the fact that similar signals (signals of the same class) will have 
similar icons. As one can observe from Fig. 7 the icon of signal 
#20 is similar to the icon of signal #27. As one can observe by 
Fig. 7, this is also true for their signals. Both cases correspond  

 
 

Fig. 4: The Icons for the SAX word aacddddcaabccbbbccbbccbbbSSAX  . 

(a) The frequencies and the sub words of level 1l   and (b) the same for 

2l  . 
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Fig. 5: The distance matrix between each intelligent icon for the 90 signals.  
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Fig. 6: Multidimensional Scaling and classification boundary using k-NN 

classification rule (k=1). 
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Signal #20 Signal #27 

Fig. 7: Two visually similar Icons and their signals for the case of a healthy 
machine. 

 

to recordings produced from a healthy machine. This is also the 
case for signals produced from a machine with broken bar(s). 
In Fig. 8 the icons of the signals #32 and #36 are shown along 
with their icons, corresponding to a machine with one broken 
bar. 

V. CONCLUSIONS & DISCUSSION 

This study presents for the first time the application of SAX 
and the Intelligent Icons technique for the detection of broken 
rotor bars in asynchronous machines. The results indicate that 
the approach can easily discriminate between healthy and 
asynchronous machines with broken rotor bars.  

The main drawback of the approach is due to one of its 
advantages when considered in other application domains: its 
scale invariance. In other words our approach in its current 
form cannot be used for the diagnosis of the severity of the 
problem. This is an open area for research for us, as well as the 
use of SAX with multidimensional data such as those produced 
by the UWT. 

Fig. 8: Two similar Icons and their signals for the case of a machine with one 
broken bar. 

 

  

Icon of Signal #32 Icon of Signal #36 

  

Signal #32 Signal #36 

Even though SAX is an algorithm which needs light 
configuration it still has some parameters that need to be 
defined by the user. First the size of the sliding window, second 
the number of equal sized sections in which to divide, third the 
size of the alphabet and finally the length of the sub words. A 
good choice for the sliding window should reflect the natural 
scale at which the events occur in the time series [35]. Thus in 
our case we have set the value of the sliding window 
empirically. In our study we conducted many experiments 
varying the number of equal sized sections, length of the 
alphabet and length of sub words. The SAX related parameters 
were selected based on visual inspection of the MDS 
representation; a set of parameters capable of creating a 
visually separable result for the two classes was acquired 
without further attempt to optimize the results. Specifically, we 
used the following values for the parameters: window 
size 2000N  , number of segments 100w  , size of 

alphabet 4A and size of words 2l  .  In future work we will 

try to automate this process and also further investigate 
combination of parameters to achieve discrimination also 
between the faulty classes, i.e. discriminate among different 
number of broken bars. Finally we must note that the approach 
is general and thus it can be also used for the discrimination of 
other types of faults (eccentricity, short circuit faults etc.) as 
well as simultaneous faults, during the start up. 

VI. APPENDIX 

Rated characteristics of the 1.1 kW motor: Star 

connection, rated voltage (Un): 400V, rated power (Pn): 1.1 

kW, 2 pair of poles, primary rated current (I1n): 2.7A, rated 

speed (nn): 1410 rpm and rated slip (sn): 0.06. The number 

of rotor bars is 28. 
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