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Abstract

Missing data cause serious problem for automatic
evaluation of the fetal heart rate(FHR) series. In this
work we present an algorithm to surpress this problem.
More specifically, an adaptive approach is proposed
based on two steps. The first step concerns the re-
construction step where we obtain an estimate of the
missing data using an empirical dictionary. The second
step consists from the construction of the dictionary
using the updated values from the first step. The above
two steps are applied iteratively until convergence. The
method adapts each time the dictionary and the re-
constructed time series to the new information that we
gain. Results on real and simulated experiments have
shown the usefullness of our approach. More specifi-
cally, a comparison with cubic spline interpolation is
performed and have shown that the proposed approach
achieved 4 to 9dB better reconstruction ability.

1. Introduction

Oxygen inssuficiency for fetus during delivery could
cause adverse sequels for the newborn. Hence, accurate
evaluation of fetal status is crucial during pregnancy
[1], [2]. A standard approach to monitor the fetal
status is the Cardiotocography (CTG), which mea-
sures maternal uterine contractions (UC) and fetal
heart rate (FHR). It is believed that these signals
contains significant information about the underlying
physiology of the fetus. The introduction of CTG in
1960 brought great expectations related to the outcome.
However, after many years and studies, it has observed
that it does not offer significant improvement in the
delivery outcomes. Furthermore, it became the main
suspect for increased rate of cesarean sections [3].
The major drawbacks of CTG are the poor standard
of interpretation and the contribution of the human

factor, demonstrated by high intra and inter observer
variability [4]. To overcome these shortcomings we
can either offer more training and education on the
interpretation of standard or produce decision support
systems to help the experts.

The general steps of a decision support system
are: preprocessing of FHR time series, extraction of
features and classification. More specifically, the pre-
processing step includes segment selection, artefact
removal and interpolation of missing samples [5]. The
goal of preprocessing is to provides us a time series
of high quality for further investigation. After prepro-
cessing, the feature extraction step takes place. In the
literature a vast amount of features have been applied
for FHR analysis. Features from time and frequency
domain, morphological features, as well as features
based on non - linear analysis, are studied in the
context of FHR analysis [5]–[7]. Also, significant effort
has been consumed on the determination of usefull
features for subsequent analysis of the time series [6],
[8]. Finally, the classification of time series as normal
or pathological is performed using a classifier, such as
Support Vector Machines (SVM) [5], [7].

A subject that has been overlooked in the literature,
related to FHR analysis, concerns the recovery of miss-
ing data. The FHR time series is a very noisy signal
and a vast amount of data from it have been missing
during the acquisition [9]. This happens due to the
movement of the baby and the stress induced during
labour. Because of missing segments in FHR time
series researchers in this field are obliged to remove
large parts of the signals from the subsequent analysis
[5]–[7]. More specifically, to deal with this problem,
linear interpolation is applied to small segments of the
time series, while bigger segments have been removed,
even the whole time series [6].

The recovery of missing data from observations is
a problem that has attracted much attention in signal



and image processing, and machine learning commu-
nities [10], [11]. In image processing community this
problem is also called inpainting [12]. In our work, we
borrow general ideas from these fields and we apply
them for the recovery of missing samples from FHR
time series. Furthermore, the recovery of missing data
constitutes a linear inverse problem and it is an ill -
posed problem since the degratation operator is ill be-
haved, as we will see in the next section. The concept
of linear inverse problems is of the most active research
field in signal and image processing. Methods based on
deterministic approach or probabilistic inference have
been extensively studied based on Markov Random
Fields (MRF) [13] or on some functional spaces [14].

In many cases, it is usefull to represent the data
under study into a domain which contains some usefull
properties. Usually, this representation is achieved by
applying a linear operator (or dictionary) on the data.
An interesting scientific problem is how to choose this
dictionary. In this field there are two general approches.
In the first approach we can choose a pre-constructed
dictionary such as wavelets, sines and cosines etc.
Also, these dictionaries are accompanied by a strong
theoretical basis that make them very attractive. How-
ever, these dictionaries are usefull when the signal
under study possess’s the anticipated properties. Al-
ternativelly, we can resort to a tunable selection of a
dictionary by adopting a learning point of view. In this
option, we build a training database of signal instances
and construct an empirically learned dictionary. The
atoms of this dictionary come from the data and not
from a theoretical model. One widely used approach
for the construction of such dictionaries, which we
adopt in our study, is the KSVD method [15].

In this work we proposed an adaptive algorithm
for the recovery of missing samples from FHR time
series. More specifically, our algorithm is of iterative
nature and consists of two alternating steps, estimation
of the dictionary and estimation of missing samples.
The remainder of this paper is organized as follows: In
section II we describe the proposed algorithm, giving
the theoretical basis of what follows in experiments. To
assess the performance of the proposed algorithm, we
present in section III a comparison with cubic spline
interpolation based on real and simulated experiments.
Finally, in section IV we give some concluding re-
marks and future directions.

2. Methodology

Assume that the time series is arranged into a nx1

vector f such that f =

[
y
z

]
, where y is of size n1x1

and contains the available (observed) samples and z is
of size n2x1 and denotes the missing samples, where
n1 + n2 = n. Note here that the proposed algorithm
works for arbitrary data missing patterns and the above
notation is obtained after performing a reordering into
the vectors. Let M denotes a n1xn projection matrix
such that:

y = Mf . (1)

As we see the matrix M is a degradation operator that
removes n2 samples from the time series. It can be
build by taking the nxn identity matrix and removing
n2 rows corresponding to the missing samples. Using
the observation model described by Eq. 1 we can
obtain the least square estimate such as:

f̂LS = MT (MMT )−1y. (2)

However, this estimate does not offer any improvement
into our problem since it places the zero value at the
missing samples. To deal with this kind of problem
a regularization term must be added into our model.
Usually the regularization term is added into a model
in the form of prior distribution, if we work with
probabilistic modelling [16], or through a penalty term,
if the deterninistic approach is adopted [17], as we
performed in our study.

Using a nxn dictionary matrix D that contains n
protype atoms for columns, we can represent a time
series as a linear combination of these atoms, f = Dx,
where x is the coefficient vector. So, our model takes
the form:

y = MDx. (3)

Obtaining an estimate for the coefficients x̂, we can
reconstruct the original time series as:

f̂ = Dx̂. (4)

The classical approach to this type of inverse problems
is to find the coefficients vector with the smallest `2 -
norm:

x̂ = argmin
x
‖x‖2 such that y = MDx. (5)

The solution to the above optimization problem is
given in closed form as:

x̂ = (MD)T (MD(MD)T )−1y. (6)

Assuming that the coefficients vector x is of sparse
nature then we can obtain an estimate by solving the
following optimization problem:

x̂ = argmin
x
‖x‖0 such that y = MDx. (7)

However, the above problem is NP -hard. One solution
to the above difficulty is to tranform the problem into



one which is more tractable. In that spirit we can
replace the ‖ · ‖0 with its convex approximation ‖ · ‖1.
More specifically, we consider the following problem:

x̂ = argmin
x
‖x‖1 such that y = MDx. (8)

The `1 minimization problem can be reformulated as
a linear problem with equality constraints, and it can
be solved by using interior - point methods [18].

The choice of matrix D is a difficult one. As we
have mention before we can choose the dictionary from
a set of predetermined dictionaries such as wavelet
transforms or we can build one. In our study, we adopt
the later approach. To construct the dictionary, the
KSVD algorithm is embraced [15]. Next, key ideas
and concepts related to KSVD algorithm is provided.
More information about the properties of KSVD can
be found in [15].

The KSVD algorithm is a generalization of the well
- known K - means algorithm. Given a set of examples
Y = {yi}Ni=1 the goal is to extract K atoms holding
various properties. From these atoms we can construct
the desired dictionary matrix D. To achieve that

min
D,W

‖Y −DW‖2F subject to ∀i‖wi‖ ≤ T0 (9)

To solve the above problem a two stage procedure
is used. In the first stage the coefficients matrix W
is estimated by using any pursuit method, while at
the second stage each dictionary element of D is
calculated along with its coefficients. More specifically,
at the first stage we need to solve the following
optimization problems:

min
wi

‖yi −Dwi‖22 subject to ‖wi‖ ≤ T0 (10)

where T0 is the number of non - zeros elements of
coefficient vector wi.

As concerns the second stage, the penalty term can
be written as ‖Y −DW‖2F = ‖Ek − dkw

k‖2F where
dk is the k column (or atom) of the dictionary and wk

is the k-th row of matrix W. Using the SVD method
we can find a rank - 1 approximation of Ek and hence
alternative dk and xk. However, this approach does not
enforce the sparsity constraint on wk and most likely
the new vector wk will have a dense structure. The
solution to this is to transform our problem into new
one where the sparsity structure remains. This can be
achieved by using only the samples that use the atom
dk. From another point of view we take only the non
zeros values of vector wk. So, our new problem is:

min
dk,wk

‖ER
k − dkw

k
R‖2F (11)

where ER
k is the restricted matrix Ek and wk

R is a
vector contains the non zeros elements of wk. Finally,
applying the SVD on ER

k , we obtain the updates for
dk and wk

R. As we can observed at the second step of
the KSVD algorithm, we update not only the dictionary
but also the coefficients. However, we keep the sparsity
structure obtained from the first step. This observation
is the key difference between the KSVD algorithm and
various others algorithms with the same goal. Most
algorithms on this field keep the coefficients fixed
during the update of the atoms.

2.1. Proposed algorithm

Assuming that we have a dictionary that describes
with acurracy our data then we can use Eq.(4) to obtain
the reconstructed signal. The coefficients x can be
computed by solving the problems described by Eq.
(5) or Eq. (8). The issue is to find/choose a good
dictionary for our missing values problem. As we
have mention above, we resort to KSVD algorithm
to solve this. However, a significant issue is how to
determine the set of examples that must be feed to this
algorithm. This issue is part of the overall strategy to
attack the problem of missing values in a signal with
considerable large size. The adopted strategy is to work
on overlapping segments of our original signal.

The signal is split up into overlapping segments.
More specifically, the signal is divided into L over-
lapped data segments of length M , overlapping by D
points, i.e from the original signal f we get a set of
segments {fi}Li=1 where each fi is a Mx1 vector. Note
here, that the segmentation above has been performed
with respect to the true signal, not the observed.
However, the same segmentation structure could be
take if we placed the zero value at the positions of
missing values.

A segment fi possibly will have some missing values
and to restore these values a reconstruction procedure,
as those described above, is used. So, at this stage,
we need to solve L minimization problems. Choosing
the segment length M at appropriate level the com-
putational cost could be encountered. Finally, window
averaging all segments f̂i we obtain the reconstructed
signal f̂ , which will be use to create the training set
for the KSVD algorithm. Using a similar segmentation
procedure on the restored signal f̂ we obtain the
desired training set for KSVD. To summarize, the
proposed adaptive algorithm constists from two steps:
• reconstruct the original signal
• using the reconstructed signal finds a dictionary

The above two steps are applied iteratively until con-
vergence. Note that in each iteration of the above



algorithm the input in the KSVD is changing, and the
proposed algorithm adapts each time the contents of
dictionary with respect to the new reconstructed data.

3. Experiments

To evaluate our algorithm experiments have been
performed on real data. Also, a comparison with spline
interpolation is provided. More specifically, the exper-
iments are divived into two cases. In the fist case, we
use real data and remove randomly samples to obtain a
missing values signal i.e. we emulate the real problem.
The comparison is performed with respect to the output
SNR defined as: SNRout = 20 log10

‖s‖2

‖s−f̂‖2 where s

and f̂ are the true and the reconstructed signals, respec-
tively. In the second case we applied our algorithm to
real data with missing values and provided a qualitative
analysis and comparison.

3.1. Data Description

The database of 552 records is a subset of 9164
intrapartum CTG recordings that were acquired be-
tween years 2009 and 2012 at the obstetrics ward of
the University Hospital in Brno, Czech Republic. The
CTG signals were carefully selected with clinical as
well as technical considerations in mind. The database
is described in depth in [19]. We present the main
clinical parameters as mean (minimum, maximum).
The parameters are maternal age 29.8 years (18, 46),
parity 0.43 (0,7), gravidity 1.43 (1,11), gestational age
40 weeks (37,43), pH 7.23 (6.85,7.47), base deficit
4.6 mmol/l (-3.4,26.11), Apgar score at 5 minute 9.06
(4,10), and neonate’s weight 3408 g (1970, 4750).
The proportion of males and females were almost
same 259 females and 293 males. We have decided
to select recordings that ended as close as possible
to the birth and that had in the last 90 minutes of
labor at least 40 minutes of usable signal. Additionally
since CTG signal at II. stage of labor is very difficult
to assess [20], only those recordings which had II.
stage at maximum 30 minutes-long were included. All
data were coming from the STAN S21 machines using
either direct FECG (102 records) scalp electrode or
ultrasound probe (412 records) or combination of both
(35 records). For the three records the information was
not available. All recordings were sampled at 4Hz. The
majority of babies were delivered vaginally (506) and
rest using caesarean section (46).
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Figure 1. FHR signal used as ground truth in the
simulated case.

SNRout(dB)
% missing values proposed (L2 norm) spline

25 % 63.1071 56.7855
50 % 50.7095 41.9989
75 % 31.7955 27.9212

Table 1. Results

3.2. Simulated Experiments

A segment of 2048 samples FHR signal (see Fig. 1)
is used to conduct our experiments. The above signal is
obtained after performing a moving average procedure
of ten points in the raw data as suggested in [21].
From this signal we remove samples randomly based
on the uniform distribution. We vary the percentage of
missing samples according to Table 1. The obtained
results are shown in Table 1. These results are ob-
tained after performing 20 Monte Carlo simulations,
and hence represent mean values. It is clear that the
proposed approach presents better results, in terms of
SNRout, compared to the spline interpolation. More
specifically, the difference between the two methods
in the quality of the reconstructed signal, ranges from
4dB to 9dB.

In Fig. 2(a) we see the reconstructed signal using
the proposed method and the cubic spline interpolation
method. In this example the percentage of missing
values was 75%. It is obvious that the proposed ap-
proach achieved better visual quality with respect to
the reconstruction. When exists consecutive missing
values the linear interpolation is not able to find the
salient structure of the true signal. This effect can be
observed in Fig. 2(b) which depticted a zoom in the
reconstructed signals.
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Figure 2. An Example of the reconstructed signal
using the proposed method and the cubic spline
interpolation.

3.3. Real data

Finally, we applied the proposed algortihm in real
situations and we provide a qualitative comparison
with the cubic spline interpolation. A FHR time se-
ries was acquired from our database which presents
missing values. The percentage of missing values was
around 5% (see Fig. 3). In Fig. 3(a) we depict the
raw signal and the reconstructed signals using the two
approaches. While at the first look the two signal
seems the same, a more carefull look reveals significant
difference between the approaches. In Figs. 3(b) and
3(c) a zoom in the signals provides us with more
information about the behaviour of the two approaches.
More specifically, we can see that the proposed method
reconstructs the missing values taking into account the
neighborhood of the particular region. For example, in
Fig. 3(b) the proposed method reveals a peak around
position 14900, a finding that it is consistent with the
structure of the signal in this region.

4. Conclusion

We have presented an algorithm to find the missing
samples from FHR time series. The algorithm is of
iterative nature and consists of two steps/stages. In the
first step the reconstructed signal is computed using
an adaptive dictionary. Then, using the reconstructed
signal we calculated the new dictionary using the
KSVD algorithm. The above two step are apllied
iteratively until convergence is achieved. The initial
results on small subset of database show the usefulness
of our approach. Especially, when consecutive missing
samples are present. In the future, we intend to study
more intensively various aspects of the algorithms such
as the length of the segments, the structure of missing
samples and the learning of the dictionary. Also, it will
be usefull to see how the proposed approach affects the
subsequent analysis of FHR time series, i.e. feature
extraction and classification.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

140

160

180

200

# Samples

b
ea

t/
m

in

 

 

raw signal
proposed method
cubic spline

(a) Whole signal

1.45 1.46 1.47 1.48 1.49 1.5 1.51 1.52 1.53 1.54

x 10
4

90

100

110

120

130

140

# Samples

b
ea

t/
m

in

 

 

raw signal
proposed method
cubic spline

(b) Zoom - Region 1

1.18 1.2 1.22 1.24 1.26 1.28 1.3

x 10
4

60

80

100

120

140

160

# Samples

b
ea

t/
m

in

 

 

raw signal
proposed method
cubic spline

(c) Zoom - Region 2

Figure 3. An Example of the reconstructed signal
using the proposed method and the cubic spline
interpolation on real situation.
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