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Summary

Objective: To develop an advanced diagnostic method for urinary bladder tumour
grading. A novel soft computing modelling methodology based on the augmentation of
fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL)
algorithm is applied.
Material and methods: One hundred and twenty-eight cases of urinary bladder
cancer were retrieved from the archives of the Department of Histopathology,
University Hospital of Patras, Greece. All tumours had been characterized according
to the classical World Health Organization (WHO) grading system. To design the FCM
model for tumour grading, three experts histopathologists defined the main histo-
pathological features (concepts) and their impact on grade characterization. The
resulted FCM model consisted of nine concepts. Eight concepts represented the main
histopathological features for tumour grading. The ninth concept represented the
tumour grade. To increase the classification ability of the FCM model, the AHL
algorithm was applied to adjust the weights of the FCM.
Results: The proposed FCM gradingmodel achieved a classification accuracy of 72.5%,
74.42% and 95.55% for tumours of grades I, II and III, respectively.
Conclusions: An advanced computerized method to support tumour grade diagnosis
decision was proposed and developed. The novelty of the method is based on
employing the soft computing method of FCMs to represent specialized knowledge
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on histopathology and on augmenting FCMs ability using an unsupervised learning
algorithm, the AHL. The proposed method performs with reasonably high accuracy
compared to other existing methods and at the same time meets the physicians’
requirements for transparency and explicability.
# 2005 Elsevier B.V. All rights reserved.
1. Introduction

Traditionally, histological examination for the clas-
sification of tumours has been based on the mor-
phology of tissues inspected through a light
microscope. Classification has great significance
because the modality of therapy for urinary bladder
tumours highly depends on the morphological
tumour characterization [1]. In 1973, the World
Health Organization (WHO) introduced standards
according to which tumours are classified as grade
I, II or III [2]. So far, theWHO 1973 grading system has
been the most widely accepted grading protocol
among pathologists. The categorization of tumours
relies on the complex interplay of various histo-
pathological factors, doctors’ observations and esti-
mations on tissue structure and appearance.
Accurate evaluation of histological material is
mainly dependent on the pathologists’ experience
because different and complementary diagnostic
variables and estimations are combined synergisti-
cally in assigning tumour grade. Taking into account
the inherent subjectivity of any human decision, the
final evaluation of tumour grading performed by
histopathologists is questioned [3,4].

This work proposes an alternativemethodology to
develop a grade diagnostic tool, which is based on
the formalization of specialized histopathological
knowledge expressed in descriptive terms and con-
cepts. The proposed method is based on fuzzy cog-
nitive maps (FCMs) [5] and the utilization of active
Hebbian learning (AHL) algorithm [6]. Our aim is to
provide a new advanced diagnostic tool possessing
three main characteristics: acceptable high diag-
nostic accuracy, transparency and interpretability.

This paper is structured in the following way:
Section 2 reviews today’s literature on computer-
assisted methods for medical diagnosis, mainly on
tumour classification and also outlines the main
application areas of FCMs. Section 3 presents some
basic aspects of FCM theory. Section 4 describes the
methodology for developing the FCM model for
tumour grading fuzzy cognitive map-grading tool
(FCM-GT). Section 5 describes the FCM part of the
grading process, how the decision regions for each
grade category have been defined and how the
proposed method is evaluated for 128 cases. Finally,
the results of the tumour classification are com-
pared with other techniques and discussed. Section
6 concludes the paper and gives future research
directions.
2. Bibliography review

Many research efforts have been made to standar-
dize the grading process of tumours which are
mainly based either on machine learning techni-
ques embedded in statistical classifiers or artificial
neural networks (ANNs) [7—10]. Such computer-
assisted methods have been used to increase the
diagnostic and/or prognostic value of tumour
grade classification.

Pattern recognition methods such as k-nearest
neighbours, discriminant analysis, Bayesian classi-
fiers (BNs), support vectormachines (SVMs) and ANNs
have been used for a number of disparate cancer
diagnosis tasks: diagnosing breast cancer [11—13],
prostate cancer [14], brain cancer [15,16], cervical
cancer [17] and ovarian cancer [18].

Unlike previous methods, which are more data
driven approaches, expert diagnosis systems incor-
porate prior knowledge and experience from
experts’ domain and they offer some insight as to
how their diagnostic output derives. In recent years,
fuzzy logic has been proved to be a powerful tool for
diagnosis and decision-making systems. Fuzzy set
theory and fuzzy logic are suitable tools for repre-
senting and handling imprecise and uncertain med-
ical concepts and they have been successfully used
to build medical expert systems [19].

As alternative methods to pattern classification,
the fuzzy k-nearest algorithm and the neuro-fuzzy
modelling (NFM) have been shown to be powerful soft
pattern classifiers applied in medicine [20,21]. Soft
classifiers suchas the fuzzyk-nearestnotonlyprovide
a diagnostic output but also indicate the degree to
which themethod is confident about its response. On
the other hand, the NFM approach uses themodelling
abilities of fuzzy logic to offer a degree of transpar-
ency in decision-making procedure.

Recent work has used image analysis methods for
automatic grade classification employing quantita-
tive tissue architectural and/or cytological features
[7—10,22]. Specifically, researchers used linear dis-
criminant analysis and tissue textural and/or struc-
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Figure 1 A simple fuzzy cognitive map representation.
tural features for the design of automatic grading
systems [8,9]. However, these research groups
relied on a subjective grading system according to
which tumours are classified into four classes. Some
other researchers made use of histological/cellular
features estimated by histopathologists in conjunc-
tion with pattern recognition approaches [15,23].
Recently, Belacel and Boulassel introduced a fuzzy
assigned method, the PROAFTN, for grading bladder
tumours using features generated by image analysis
[24].

The present study introduces a new diagnostic
tool for assisting tumour grading. The proposed
method lies in the cross-section of medical expert
systems, soft computing and machine learning.

The proposed approach on assisting grade diag-
nosis takes advanced of fuzzy cognitive maps abil-
ities. More specifically, FCM is a workable soft
computing methodology that has been successfully
applied in a number of discipline scientific areas.
FCMs have been employed to model the causal
inference [25], to make decision analysis in geo-
graphic information systems [26], to develop deci-
sion support systems [27], to perform failure modes
and effects analysis in the process industry [28] and
to model supervisory control systems [29,30].

In the medical application area, FCMs have been
used to model and analyze the radiotherapy process
and have been successfully used for decision-making
in radiation therapy planning systems [31,32]. FCMs
have also been proposed to analyze the problem of
specific language impairment diagnosis in a critical
way using several experts’ opinions [33].
3. Fuzzy cognitive maps
representation

The synergistic and complementary use of fuzzy
logic and neuro-computing has initiated the devel-
opment of soft computing methodologies. FCM is a
soft computing technique that follows an approach
similar to the human reasoning and human decision-
making process. Soft computingmethodologies have
been investigated and proposed for the description
andmodelling of complex systems [34]. FCM consists
of nodes (concepts) that illustrate the different
aspects of the system’s behaviour. These nodes
(concepts) interact with each other showing the
dynamics of the model. FCM is developed by human
experts who operate/supervise/know the system
and its behaviour under different circumstances in
such a way that the accumulated experience and
knowledge are integrated in a causal relationship
between factors/characteristics/components of
the system [35]. Fig. 1 illustrates a graphical repre-
sentation of a FCM.

Human knowledge and experience are reflected
in the selection of concepts and weights for the
interconnections between concepts of the FCM.
Each node-concept represents one of the key-fac-
tors of the modelled system and it is characterized
by a number Ai which represents its value. Concepts
correspond to attributes, characteristics and quali-
ties of the system. Interconnections among con-
cepts of FCM signify the cause and effect
relationship one concept has on the others. These
weighted interconnections represent the direction
and degree with which concepts influence the value
of the interconnected concepts.

The cause and effect interconnection between
two concepts Cj and Ci is described with the weight
wji, taking value in the range �1 to 1.

There are three possible types of causal relation-
ships between concepts:
� w
 ji > 0: which indicates positive causality
between concepts Cj and Ci. That is, an increase
(decrease) in the value of Cj leads to an increase
(decrease) in the value of Ci.
� w
 ji < 0: which indicates negative causality
between concepts Cj and Ci. That is, an increase
(decrease) in the value of Cj leads to a decrease
(increase) in the value of Ci.
� w
 ji ¼ 0: which indicates no relationship between
Cj and Ci.

The value Ai of the concept Ci expresses the
degree of its corresponding physical value. At each
simulation step, the value Ai of a concept Ci is
calculated by computing the influence of other
concepts Cj’s on the specific concept following
the calculation rule:

Aðkþ1Þ
i ¼ f AðkÞ

i þ
XN

j 6¼ i; j¼1

AðkÞ
j � wji

 !
(1)

where A
ðkþ1Þ
i is the value of concept Ci at simulation

step k + 1, A
ðkÞ
j the value of concept Cj at simulation
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step k, wji the weight of the interconnection from
concept Cj to concept Ci and f is the sigmoid thresh-
old function:

f ¼ 1

1þ e�lx
(2)

where l > 0 is a parameter that determines its
steepness. In this approach, the value l > 1 has
been used. This function is selected since the values
Ai of the concepts lie within [0, 1].

The design of the FCM model is based on
experts, using an interactive procedure of knowl-
edge acquisition [29]. To increase objectivity in the
development of FCMs, a group of experts is used.
Experts are pooled together and determine the
relevant factors that must be represented in the
FCMs as concepts. They define the main concepts
representing the model of the system on the basis
of their knowledge and experience on the opera-
tion of the system. They know which factors are
crucial and representative for the modelling of the
medical system and they assign to each one a
concept of FCM. Subsequently, they are separately
asked to describe the relationship and the caus-
ality among concepts, using IF—THEN rules to jus-
tify the cause—effect relationship among concepts
and to infer a linguistic weight for each intercon-
nection. Every expert describes each one of the
interconnections with a fuzzy rule; the inference
of the rule is a linguistic variable which takes the
values: ‘‘very very low’’ mvvl, ‘‘very low’’ mvl,
‘‘low’’ ml, ‘‘medium’’ mm, ‘‘high’’ mh, ‘‘very high’’
mvh and ‘‘very very high’’ mvvh (Fig. 2) [36]. Thus,
there are assigned so many linguistic weights for
one interconnection as the number of experts.
Then, the inferred linguistic weights for each
one interconnection are composed and an aggre-
gated linguistic weight is produced using the fuzzy
logic method SUM [37]. After that, the center of
area (CoA) defuzzification method [37] is applied
for the transformation of the overall linguistic
weight to a numerical value for weight wji, belong-
ing to the interval [�1, 1] and representing the
overall suggestion of all the experts for this parti-
cular interconnection. Thus, an initial weight
Figure 2 The seven membership functions correspond-
ing to each one of the seven linguistic variables.
matrix, Winitial ¼ ½wji�, i, j = 1, . . ., N, with
wji ¼ 0, i = 1, . . ., N, is obtained.

Experts use the fuzzy IF—THEN rule to describe
the degree of influence from concept Cj to Ci,
assumes the following form where B, D and E are
fuzzy linguistic variables:

IF a change B occurs in the value of concept Cj,
THEN a change D in the value of concept Ci is
caused.

Infer: The influence from concept Cj to Ci is E.
The advantage of this methodology is that it is not

required for experts to describe the causality rela-
tionships on numerical values, but rather to
describe qualitatively the degree of causality among
the concepts.

When the FCM model has been developed, the
AHL algorithm is applied to adjusting the weights of
the FCM interconnections and modifying them
according to the specific problem characteristics.
The AHL algorithm adapts all the weights of the FCM
model using an acyclic fragment approach for con-
cepts (asynchronous activation and interaction
among concepts based on the initial experts’ knowl-
edge). The main advantage of the AHL algorithm is
that it can determine new FCM causal links between
all the concepts in order to increase classification
capabilities of the FCM. In this way the AHL algo-
rithm increases the FCMs’ effectiveness, flexibility
and robustness, and creates advanced FCMs with
dynamic behaviour and great modelling abilities [6].
A detailed description and analysis of the AHL algo-
rithm is provided in Appendix A.
4. Developing the FCM model for
tumour grading

The FCM model for tumour grading was designed
using the methodology described in Section 3. For
this specific medical application, our experts were
histopathologists with deep knowledge and great
clinical experience, affiliated with the department
of Pathology, University Hospital of Patras, Greece.
Three experts defined the main histopathological
features (concepts) and key characteristics, which
encode the degree of tumour malignancy. These
features are listed in Table 1 and are well documen-
ted in bibliography and represent the main variables
that play an important role in the final grade diag-
nostic decision [38—41]. For this application, fea-
ture values take either two, three or four possible
discrete or fuzzy values, as shown in Table 1.

Thus, experts designed a FCM model, which con-
sists of nine concepts (Table 1). The eight concepts
are the tumour features representing the main
variables that histopathologists usually take into
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Figure 3 Example of three linguistic variables suggested
by the three experts to describe the relationship between
two concepts.

Table 1 Histological features for coding tumours’ malignancy

Histological features Assessment Type of values scaled

C1: cell distribution Even, clustered Two discrete (0 or 1)
C2: cell size Uniform, pleomorphic Two discrete (0 or 1)
C3: cell number Numerous, variable Two discrete (0 or 1)
C4: cytoplasm Homogeneous, variable Two discrete (0 or 1)
C5: nuclei Uniform, irregular,

very irregular, bizarre
Four fuzzy values
(zero, low, medium, high)

C6: nucleoli Inconspicuous, evident, prominent Three discrete (0, 0.5 or 1)
C7: necrosis Inconspicuous, frequent Two discrete (0 or 1)
C8: mitosis Absent rate, occasional, numerous Three discrete (0, 0.5 or 1)
consideration in assigning grade to the bladder
tumours. The ninth concept represents the tumour
grade. More specifically, concept C1 represents the
cell distribution, C2 the cell size, C3 the cell number,
C4 the cytoplasm, C5 the nuclei, C6 the nucleoli, C7

the necrosis, C8 the mitoses and C9 represents the
tumour grade.

Three histopathologists experts determined the
concepts of FCM. Each expert was asked to define
the degree of influence among the concepts and
describe their interrelationship using an IF—THEN
rule. Then, experts inferred a linguistic weight to
describe the cause and effect relationship between
every pair of concepts.

The three histopathologists experts suggested
that the degree of influence between concepts
was described by a linguistic variable taking value
in [0, 1] and its fuzzy set was defined as: T(influen-
ce) = {very very low, very low, low, medium, high,
very high, very very high} [34]. Each element of the
fuzzy set corresponds to a membership function
shown in Fig. 2. It is noticeable that these member-
ship functions have a finer distinction between
grades in the lowest and highest end of the influence
scale.

Some examples of the fuzzy rules that experts
proposed are given:

The following rule describes the influence of con-
cept C1 (cell distribution) on concept C9 (tumour
grade):

IF a small change occurs in the value of concept
C1 (cell distribution), THEN a small change is caused
in the value of concept C9 (tumour grade).

Infer: The influence from C1 to C9 is positive very
low.
Another rule presents the influence from concept C5

(nuclei) towards concept C8 (mitosis):
IF a small change occurs in the value of concept

C5, THEN a large change is caused in the value of C8.
Infer: The influence from C5 to C8 is positive high.

This means that if the type of nuclei changes, the
value of mitosis increases very much.
The inferred fuzzy linguistic variables for each
interconnection — determined by the group of three
experts — are combined and thus an aggregated
linguistic weight is produced using the SUM method,
which is then deffuzified with the CoA method [27].
The result is a crisp value representing the weight
for each interconnection.

To illustrate how numerical values of weights are
produced, the experts’ suggestions on how to indi-
cate the interconnection between concept C5

(nuclei) and concept C9 (tumour grade) are shown
below:

1st expert:
IF a small change occurs in the value of concept

C5, THEN amedium change in value of concept C9 is
caused.

Infer: The influence from C5 to C9 is positive
medium.
2nd expert:

IF a small change occurs in the value of concept
C5, THEN a large change in value of concept C9 is
caused.

Infer: The influence from C5 to C9 is positive high.
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Figure 4 Aggregation of three linguistic variables using
the SUM technique. Point C is the numerical weight after
defuzzification using the CoA method.

Figure 5 The FCM tumour grading model.
3rd expert:
IF a very small change occurs in the value of

concept C5, THEN a large change in value of concept
C9 is caused.

Infer: The influence from C5 to C9 is positive very
high.

Fig. 3 illustrates the three suggested linguistic
variables, for this particular example.

These linguistic variables (medium, positive high
and positive very high) are summed and an overall
linguistic weight is produced (Fig. 4), which with the
defuzzification method of CoA is transformed into
the numerical value of w59 ¼ 0:65.

The same approach was used to determine
all the weights of the FCM. A weight matrix Winitial

gathering the initially suggested weights of all
the interconnections among the concepts of
the FCM model was produced. Fig. 5 illustrates
the FCM tumour grading model (FCM-GT), con-
sisting of 9 concepts and 21 weighted interconnec-
tions.
Winitial ¼

0 0:1 0 0 0 0 0 0
0 0 0 0:7 0:65 0 0 0
0:4 0 0 0 0 0 0 0
0 0 0 0 0:7 0 0 0
0 0 0 0 0 0:6 0 0:60
0 0 0 0 0 0 0 0:3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0:55 0
0 0 0:60 0 0:60 0 0:65 0:65

2
6666666666664
When the FCM-GT has been developed it could be
used to assign grade of every tumour. But for better
classification results, the unsupervised learning
algorithm of AHL is applied. The AHL algorithm
modifies the weights of the FCM model, according
to each case, so as to ensure that the FCM-GT
determines successfully the value of grade concept
C9, which indicates the category of tumour. The
implementation of the AHL algorithm requires that
the three experts had selected the Activation and
Activated concepts and the sequence of activation
[6]. The ninth concept, which determines the
tumour grade, was defined as the activation deci-
sion concept (ADC). Experts described the sequence
of activation and thus the concepts ‘‘mitosis’’ (C8)
and ‘‘necrosis’’ (C7) were defined as the first activa-
tion concepts. Concepts ‘‘cell distribution’’ (C1),
‘‘cell size’’ (C2), ‘‘cell number’’ (C3) and ‘‘cyto-
plasm’’ (C4) behave as a second set of activation
concepts at the next step. The concepts ‘‘nuclei’’
(C5) and ‘‘nucleoli’’ (C8) are the third set of activa-
tion concepts. All concepts together influence con-
cept C9, whose value is calculated using Eq. (A.4).
The suggested sequence of activated and activation
concepts (Fig. 6) are in accordance with the way in
which the three histopathologists experts examine
the histological material microscopically in order to
0:3
0:40
0:50
0:45
0:65
0:65
0:75
0:80
0

3
7777777777775
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Figure 6 The sequence of activation.
assign the grade of tumour. Histopathologists start
by ‘scanning’ the tissue sample under the micro-
scope in order to assess the tissue appearance as a
whole (examining ‘‘mitosis’’ and ‘‘necrosis’’). Then,
they assess morphological nuclear features (exam-
ining cell ‘‘distribution’’, ‘‘size’’ and ‘‘number’’),
they focus on regions with marked nuclear atypia
(examining ‘‘nuclei’’ and ‘‘nucleoli’’) and finally
they conclude about tumour grade.
Figure 7 The estimated ‘Grade’ values for the 128 cases.
5. Novel method for tumour grading

5.1. The fuzzy cognitive map part of the
grading process

When the FCM-GT has been designed and the neces-
sary specifications for the implementation of the
AHL algorithm have determined, the FCM-GT was
tested to evaluate 128 cases (tissue biopsies) of
urinary bladder cancer.

The data-cases (specimens) of urinary bladder
cancer were retrieved from the archives of the
Department of Histopathology of the University
Hospital of Patras, Greece. Tissue sections of
tumours were fixed and stained according to the
standard Hematoxylin—Eosin method [2]. Three his-
topathologists experts reviewed a great number of
specimens but only those cases were used for which
the three histopathologists were in full agreement
regarding tumour characterization and thus only 128
cases were selected. Following the conventional
WHO grading system [42], experts classified unan-
imously the cases as follows: 40 cases as grade I, 43
as grade II and 45 as grade III.

Since there was significant variance between
experts in recognising and evaluating certain histo-
pathological patterns in a specimen, only one expert
was asked to examine each tissue section and esti-
mate the values of the eight histopathological vari-
ables (Table 1). These values were transformed in
the range [0, 1], and were assigned to the corre-
sponding concepts of the FCM grading model.

The following mathematical form was used to
transform the quantitative values of each one of
the eight characteristics to a numerical value [15]:

Submitted value ¼ ½option selected� � 1

½total number of options� � 1

(3)
For example, let us say that one histopathologist
describes feature ‘‘nuclei’’ (concept C5) as ‘‘irregu-
lar’’, which is the second of four possible options
(e.g. ‘‘uniform’’ ‘‘irregular’’ ‘‘very irregular’’ and
‘‘bizarre’’), so the assigned value would be:

½option 2 selected� � 1

½total of 4 options� � 1
¼ 2� 1

4� 1
¼ 1

3
(4)

The initial value of concept C9 was set a random
value in [0, 1], which was the same for all cases.
Then, for each case, the FCM-GT with the initial
values of concepts and with the initial weight matrix
Winitial starts to examine the grade of tumour. The
AHL algorithm is employed for every case to modify
the FCM weights and finally the value of concept C9

is calculated, which is the grade for this case.
Fig. 7 illustrates the values of concept C9 (we

refer to this value as ‘‘Grade’’) for each of the 128
cases. For grade I cases, the estimated ‘‘Grade’’
values are represented by ‘*’; for grade II cases,
the estimated ‘‘Grade’’ values are represented by
‘&’; for grade III cases, the estimated ‘‘Grade’’
values are represented by ‘5’.

5.2. Definition of decision boundaries and
final classification stage

Then the decision regions associated with each
tumour grade category are determined (grade I, II
or III). For this purpose, one-dimensional decision
boundaries were determined employing the Baye-
sian statistical decision method [43].

Let G1, G2 and G3 be the classes, which contain
the estimated ‘‘Grade’’ values for grades I, II and III
cases, respectively.

According to Bayesian method an estimated value
G — for an unknown case — is assigned one of the
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most probable classes (G1, G2 or G3) or to the class
with the greater conditional probability P(GijG).

The probability P(GijG) (Bayes rule) is defined as:

PðGijGÞ ¼
PðGjGiÞPðGiÞ

PðGÞ (5)

where
� P
(G) is the probability density function (pdf) of
values G:

PðGÞ ¼
X3
i¼1

PðGjGiÞ � PðGiÞ (6)

P(GjGi) is the grade class-conditional probability
density function, describing the distribution of
�

the grade valuesG in each one of the grade classes
Gi, i = 1—3. Assuming that P(GjGi) follows a Gaus-
sian distribution, the value of:

PðGjGiÞ ¼
1

si sqrtð2pÞ
exp � 1

2

G�mi

si

� �2
 !

(7)

can be easily estimated using the available data,
si is the standard deviation and mi is the mean
value of grade values G for the cases belonging to
grade class Gi.
� P
(Gi) is the a priori probability estimated from the
available data: assuming N is the total number of
cases and Ni of them belonging to Gi then the a
priori probability for each class Gi, is: P(Gi) � Ni/
N.

The Bayesian classifier is designed to classify an
unknown case as follows:
� If
 max{P(G1jG), P(G2jG), P(G3jG)} is P(G1jG), then
the case with grade value G is classified as tumour
with grade I (class G1).
� I
f max{P(G1jG), P(G2jG), P(G3jG)} is P(G2jG), then
the case with grade value G is classified as tumour
with grade II (class G2).
� I
Figure 8 The classification of the 128 cases along with
the decision boundaries.
f max{P(G1jG), P(G2jG), P(G3jG)} is P(G3jG), then
the case with grade value G is classified as tumour
with grade III (class G3).

To compute optimal decision boundary between
G1 and G2 classes, we equate their posterior prob-
abilities:

PðG1jGÞ ¼ PðG2jGÞ (8)

Similarly to compute decision boundary between G2

and G3 classes, we equate:

PðG2jGÞ ¼ PðG3jGÞ (9)
Choosing the most likely class for each case we
minimize the overall error rate. However, in this
particular medical application the eventual risk of
misclassifying a high-grade case, as grade II (or I), is
much higher than the reciprocal error. Also the risk
for misclassifying a grade II case as grade I is higher
than the opposite. To satisfy these requirements in
estimating the decision boundaries, the eventual
risk of misclassifying a high grade case and the risk
of misclassifying a grade II case as grade I were taken
into consideration; the posterior probabilities were
multiplied by penalty terms (see for a more formal
description [43]), and new decision boundaries that
minimize the overall risk were estimated as follows:

l12 � PðG1jGÞ ¼ l21 � PðG2jGÞ (10)

where l12 is the penalty term for misclassifying
grade I case as grade II and l21 is the penalty term
for misclassifying grade II as grade I, and

l23 � PðG2jGÞ ¼ l32 � PðG3jGÞ (11)

where l23 is the penalty term for misclassifying
grade II case as grade III and l32 is the penalty term
for misclassifying grade III case as grade II.

Penalty terms were adjusted so as to achieve the
desired trade off between correct diagnosed grades
III and II cases; correct diagnosed grades II and I
cases. More specifically, l12 = 0.1, l21 = 0.3, l23 =
0.3 and l32 = 1.

Fig. 8 shows the estimated one-dimensional deci-
sion boundaries following the pre-described Baye-
sian approach. The decision boundaries are equal to
0.891 and 0.918, respectively.

To evaluate the accuracy with which cases were
classified as grade I, II or III, the leave one outmethod
was employed. According to this method, each time
the decision boundaries were constructed using all
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Table 2 Truth table of the FCM-based tumour grading
process

Histological
finding

FCM-based tumour grading process
(FCM-GT)

Grade I Grade II Grade III Accuracy
(%)

Grade I 29 11 0 72.55
Grade II 2 32 9 74.42
Grade III 0 2 43 95.55
cases but one,whichwas thenused as a test case.The
leave one out method was repeated for all cases of
each grade category and the results were presented
in a truth table (Table 2) revealing the satisfying
accuracy of the tool; the accuracy for grades I, II
and III cases was: 72.5% (29/40), 74.42% (32/43) and
95.55% (43/45), respectively. More specifically, these
accuracies percentages provide the degree of con-
fidence with which we can rely on the FCM grading
outcome for a given new case.

5.3. Discussion of results

The proposed method based on FCMs for tumour
grading provides a framework within which histo-
pathologists evaluate a series of traditional diag-
nostic concepts (features). The way the FCM grading
model is designed increases the objectivity of the
diagnostic process by taking into account the dif-
ferent experts’ opinions regarding the interplay of
histopathological variables in the final grade diag-
nostic output. Using these variables, the FCM model
estimates a grade value according to which a parti-
cular case is classified as grade I, II or III.

Concerning the grade diagnostic accuracy, the
methodology exhibited a significant high sensitivity
of 95.55% for the high-risk (grade III) tumours. A
lower accuracy of 72.55 and 74.42%was obtained for
tumours: grades I and II, respectively. However, in
the existing literature, similar or lower levels of
confidence have been reported with which histo-
pathologists diagnose urinary bladder cancers of:
grade I or II [3]. It is also worth mentioning that no
case of grade III was misclassified as grade I and vice
versa. These results suggest an accepted agreement
between the proposed method and grade assigned
by the histopathologists.
Table 3 Comparison of three different techniques applyin

Histopathological finding FCM-GT (%)

Grade I 72.55
Grade II 74.42
Grade III 95.55
In recent work, exactly the same histopathologi-
cal set of data (Table 1) was fed directly to a multi-
layer neural network — employing the back-
propagation learning algorithm — to diagnose
tumours’ grade and the following classification
results were obtained: 64.9% for grade I, 69.4%
for grade II and 82.7% for grade III [22,44].

Other studies on computer-aided grade classifi-
cation have relied on pattern classification
approaches. Choi et al. [8] and Jarkans et al. [9]
have used linear discriminant analysis and tissue
textural and/or structural features for the design
of automatic grading systems. But, both researchers
have relied on a different subjective grading system
(a modification of the 1973 grading protocol)
according to which tumours are classified into four
classes (grades I, IIa, IIb and III).

In another work, researchers have proposed a
computer-based grading system using ANNs in con-
junction with quantitative cell nuclei features and
subjectively evaluated histopathological variables.
Their system classified tumours of grades I, II and III
with an accuracy of 82, 80.5 and 93.1%, respectively
[23].

In a more recent work, Belacel et al. have applied
a multicriteria fuzzy assignment method PROAFTN,
and a panel of 24 quantitative parameters derived
from computer-assisted microscopy, to perform
tumour grading. Themethod exhibited the following
accuracies: 71.3% for grade I, 52% for grade II and
57.7% for grade III tumours [24].

Table 3 gathers all the results from the three
different techniques.

Whereas the accuracy of the FCM model is very
important it possesses several other benefits in
comparison to other pattern classification
approaches, which make FCM-GT more acceptable
to the clinical practice. It offers a degree of trans-
parency on diagnostic knowledge and FCM-GT has
the ability to explain decisions accurately when
diagnosing new cases. Because it is very important
for a physician to be able to analyze and understand
how the method derives the diagnostic output. In
this way, the proposed model would be beneficial to
both experts and practising histopathologists. For
the former, the model is capable of revealing new
interrelations and regularities that might not see
before in an explicit way providing thus the experts
with a novel point of view on the specific problem of
g to same data

NNs (back-propagation) (%) PROAFTN (%)

64.9 71.13
69.4 52
82.7 57.73
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grading tumours. For the latter, the FCM model
could be used for training purposes since not only
it highlights the areas where diagnostic criteria
seem to be vague but also it offers an explanation
of the various variables interplay in the final out-
come.

Finally, the proposed methodology offers a flex-
ible modelling method where new features can
easily be introduced, added or deleted in the grade
model following histopathologists grading criteria
that continuously evolve.
6. Summary and closing remarks

In this paper, a novel advanced method to support
grade diagnostic decision is proposed and analyzed.
The novelty of themethod is based on employing the
FCMs to represent specialized knowledge (experi-
ence, expertise and heuristic) on histopathology and
on using the AHL algorithm. The proposed FCM-GT
proves to be an efficient and dynamic model for
automatic grade characterization. The proposed
method works with reasonably high accuracy com-
pared to other existing methods and at the same
time fulfils the physicians’ requirements for trans-
parency and explicability.

Proposed future research work could be directed
towards the development of an integrated two-level
hierarchical structure. In the lower level, values of
some histopathological variables could be automati-
cally extracted from image analysis methods. These
values will be fed to the upper-level where an
advanced FCM-GT tool accomplished with new con-
cepts will perform automatic grade classification.
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Appendix A

The AHL algorithm introduces the asynchronous
updating for the concepts and weights of FCMs [6]. It
requires the definition of the activation and acti-
vated concepts, the sequence of activation as well
as the activation decision concepts (ADCs), which
are the observable outputs of the system. The ADCs
concepts are our main concern and we want to
estimate their values. The AHL algorithm is based
on the premise that there are some steps of activa-
tions (sequence of activation). A simulation cycle
consists of steps, at each activation step one or
more concepts are the activation concepts that
influence the interconnected ones and so on until
the termination of the sequence of activation that
close the cycle. This concept, at the next iteration
step, becomes activated concept. For example, let
us say the jth concept Cj, is the triggering concept
that influences concept Cj. The concept Cj is
declared the activation concept, with the value
Aact

j and it triggers the interconnected correspond-
ing concept Ci, which is the activated concept. At
the next iteration step, the concept Ci influences
the other interconnected concepts Ci and so on. It is
assumed that there is asynchronous stimulation
mode due to which the concept Cl becomes the
activation concept that triggers Cl and the other
interconnected concepts and there is a sequence of
activation steps. During this activation process, the
weight wji of the causal interconnection of the
related concepts is updated and themodifiedweight
wðkÞ

ji is derived for each iteration step k.
It should be noticed here that experts initially

determined the activated and activation concepts
for every activation step, according to the infra-
structure of the FCM and the system itself. So, the
sequence of activation and activated concepts
determine the way with which factors-concepts
affect the ADCs [6].

The AHL adjusts the weights between concepts at
each activation step using the following discrete
type of asynchronous mode:

wjiðkÞ ¼ g �wjiðk� 1Þ þ h � Aact
j ðk� 1Þ � Aiðk� 1Þ

(A.1)

where the h is the learning rate parameter and g is
the weight decay parameter. Here, it is supposed
that for the activation step k, concept Cj with
value Aact

j is the activated concept and concept
Ci with value Ai is the interconnected activation
concept at the same simulation step. The para-
meters h and g take positive values and it is also
supposed that g > h.

The learning rate parameter h is a small positive
scalar parameter that is defined to decrease expo-
nentially with activation cycle c, following the
equation:

hðcÞ ¼ b1 � expð�l1 � cÞ (A.2)
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Behaviour of FCMs depends on the step size h(c)

decay with time, thus h(c) is selected to decrease
and the rate of decrease depends on the speed of
convergence to the optimum solution and on the
activation mode. The parameters b1 and l1 are
positive learning factors, which are determined
using the trial and error method procedure so that
to optimize the final solution.

The learning factor h(c) takes the following values
that ensure fast convergence of concepts values:

hðcÞ ¼ 0:02 � expð�0:2 � cÞ (A.3)

The weight decay coefficient g may be zero,
constant or may decrease by the number of iteration
steps c, this depends on the problem’s constraints.
The parameter g takes the constant value of 0.98 for
this specific problem to ensure that the learning
process converges in a desired steady state.

Eq. (1) that calculates the value of each concept
of FCM is updating, taking the form of Eq. (A.4)
where the value of weight w

ðkÞ
ji is calculated using

Eq. (A.1):

Aiðkþ 1Þ ¼ f AiðkÞ þ
XN

j 6¼ i; j¼1

Aact
j ðkÞ � wjiðkÞ

 !

(A.4)

The FCM simulation model is now based on the
repetitive multiplication of the activated concept
with value Aact

j at iteration number k, with the
updated connection weight wjiðkÞ.
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