

ANT COLONY ALGORITHM FOR NEAR-OPTIMAL ARRANGEMENT
 OF LINEAR MACHINE LAYOUT

Apostolis Papadimitriou,George Georgoulas, Chrysostomos Stylios1 and Peter Groumpos

Laboratory for Automation & Robotics, University of Patras, 26500, Patras, Greece
Tel. +30 2610997293 Fax +302160997309 Email: georgoul@ee.upatras.gr

1Dept. of Informatics and Telecommunications Technology, TEI of Epirus,

47100 Artas, Epirus, Greece Tel. +30261050330 Email:stylios@teleinfom.teiep.grr

Abstract: Ant Colony System (ACS) is a meta-heuristic methodology, inspired by the
behaviour of natural ants, which has already been applied to a numerous combinatorial
problems. Flexible Manufacturing Systems cope with multi-product, usually small sized
production. In this research work we investigate and apply an Ant Colony Optimization
algorithm, which arranges the machines of a production line so that to minimize the total
amount of backward flows. The experimental results show that a near optimal solution
can be found exploiting only a small portion of the feasible solution space. Thus, the
proposed algorithm indicates that it is a promising method, which can be applied to
complex shop floor configuration for a generalised layout. Copyright © 2006 IFAC

Keywords: ant colony optimization, machine layout problem, ant colony system.

1. INTRODUCTION

Ant colonies are distributed systems that in spite of the
simplicity of their individual units, they present a
highly structured social organization and they can
accomplish complex tasks, which in some cases far
exceed the individual capacities of a single ant. One of
the most surprising behavioural patterns exhibited by
ants is the ability of certain ant species to find the
“shortest paths”. Biologists have shown experimentally
that this ability is possible by exploiting
communication capabilities based only on pheromones,
an odorous chemical substance that ants may deposit
and smell. A well known class of ant algorithm known
as “Ant Colony Optimization” (ACO) (Dorigo and
Stutzle, 2004) has been inspired by the behaviour of
natural ants.

Ant algorithms were introduced in early 1990’s (Dorigo
et al., 1991a; Dorigo et al., 1991b) and they were
combined with a multi-agent approach for difficult
combinatorial optimization problems. These problems
usually belong to the class of NP-hard problems
(problems for which the computational effort needed to
find optimal solutions increases exponentially with
problem size). Examples of combinatorial problems
are, the shortest-paths problems, as well as many other
real-world problems like finding the minimum cost
plan to deliver goods to customers, the optimal

assignment of employees to tasks to be performed, the
best routing scheme for data packets in the Internet, the
optimal sequence of jobs which have to be processed in
a production line, the allocation of flight crews to
airplanes, and many more (Dorigo and Stutzle 2004;
Dorigo et al., 1999).

Two classes of algorithms are available for the solution
of combinatorial optimization problems: exact and
approximate algorithms. Exact algorithms try to find
optimal solutions. Despite their recent successes, for
many NP-hard problems the performance of exact
algorithms is not satisfactory and their applicability is
often limited to rather small instances. Approximate
algorithms trade optimality for efficiency. Their main
advantage is that, in practice, they often find reasonably
good solutions in a very short time. Algorithms of this
type are loosely called heuristics (the term heuristics
comes from a Greek word that means “to discover”,
from which also comes the famous Archimedes’
exclamation “eureka”) (Rich and Knight, 1991).
Recently, a new class of algorithms emerged, called
metaheuristics. A meta-heuristic is a set of algorithmic
concepts that can be used to define heuristic methods
applicable to a wide set of different problems. The use
of meta-heuristics has significantly increased the ability
of finding very high-quality solutions for hard
combinatorial optimization problems in a reasonable
time.

A particularly successful meta-heuristic is the ACO
meta-heuristic. Algorithms that fit into the ACO meta-
heuristic framework are called ACO algorithms. ACO
is characterized as being a distributed, stochastic search
method based on the indirect communication of
“artificial” ants, mediated by pheromone trails. The
pheromone trails in ACO serve as distributed numerical
information used by the ants to probabilistically
construct solutions for the problem under consideration.
The ants modify the pheromone trails during the
algorithm’s execution giving a clue to other ants about
their search experience. The ACO meta-heuristic
defines the way the solution is constructed and the
pheromone trails are modified by enriching artificial
ants with capabilities that are not present in real ants. A
large number of different ACO algorithms have been
proposed and can be found in the literature. The main
differences between the various implementations of
algorithm concern the techniques used to control the
search process. These extensions include among others:
Elitist AS (Dorigo 1992; Dorigo, et al., 1991a, Dorigo,
et al., 1991b, Dorigo, et al., 1996), Ant-Q (Gambardella
and Dorigo, 1995; Dorigo and Gambardella, 1996), Ant
Colony System (Dorigo and Gambardella, 1997a;
Dorigo and Gambardella, 1997b), MAX-MIN AS
(Stutzle and Hoos, 1996; Stutzle and Hoos, 2000;
Stutzle 1999), Rank-Based AS (Bullnheimer, et al.,
1997)

In this research work, we propose and apply ACO to
arrange a number of machines in a production line so
that to minimize the total amount of backward flows.
This is a first approach towards the development of a
method to configure more complex and more general
layouts of machines in the shop floor based on the ACO
meta-heuristic algorithm.

2. LINEAR MACHINE LAYOUT PROBLEM

For Flexible Manufacturing Systems (FMS) the layout
design is even more crucial than in conventional
manufacturing. Whereas a variety of methods that
implement complex networks and layouts are available,
the linear or single-row layout is the most commonly
implemented layout in manufacturing systems due to its
simplicity. There are many shapes of linear layouts,
such as straight line, circular loop, U-shape and
serpentine line (Haragu and Kusiak, 1998) (Figure 1).

The configuration of the production line is heavily
dependent on the material-handling system. Apart from
its configuration, the production line is characterized by
the flow of material as unidirectional or bidirectional.
In the latter, four different types of flow movement can
occur: Repeated operations, in-sequence operations,
bypassing-operations and backtracking operations
(Figure 2). The most desirable is the in-sequence
operation due to its unidirectional movement.

Fig.1. Alternative configurations of single-row layouts

Backward flow is the least desirable since it costs and
complicates the flow more than the forenamed flow
movements.

The ideal scenario would include only in-sequence
moves. In practice, however, bypassing and
backtracking of jobs as they pass down the line is
inevitable. The designer of a single-row layout has to
find the optimal arrangement of machines for such a
production line. The optimality depends on the criteria
and the restrictions that are posed. There are four
criteria, which a designer could take into account
(Ponnambalam and Ramkumar, 2001): Minimization of
the number of backtracking movements, minimization
of total backtracking flow distance, maximization of in-
sequence movements and minimization of the flow
distance.

Carrie (1975) was the first to study the linear layout
problem and several approaches have been proposed
since then (Aneke and Carriw, 1986; Lee, 1991;
Kouvelis and Chiang, 1992; Sarker et al., 1994; You-
Dong, 1997; Ponnambalam and Ramkumar, 2001).

In this paper, we investigate the solution to the
“minimal backward-flow” model, (minimization of
total backtracking flow distance) introducing the ACO
algorithm for a simplified model.

Fig.2. The Four different flow movements in a linear

layout

2.1 Minimal backward-flow model.

This model is developed by trying to minimize the total
amount of backward flows for a production cell, as it is
indicated but its name. For this model, we make the
following assumptions:

• Only one machine of each type is allowed in
the line (no duplications of machines are
allowed).

• The cost of material flows is proportional to
the number of parts and the distance of flows.

• Each machine is regarded as a point and the
distance between machines is “1”, the unit
distance.

The distance between the initial input point of parts and
the first machine is also regarded as the unit distance.
In Figure 3 the adopted conventions are depicted.

Fig. 3. Linear machine layout and corresponding

notation

It must be mentioned that minimization of backtracking
does not necessarily reduce the bi-directional travel
distance. Such a requirement would probably lead to a
different formulation.

Therefore, the problem can be described as follows:

Having n machines and m items of parts to be produced
and for each item a corresponding demand of jd (j = 1,
2. . . m), place the machines in such an order so that to
minimize the backward flows. The quantity that has to
be minimized is the total number of backtracking steps.

Thus, for this problem, following the notation of
Sarker, et al., (1994), we seek to minimize:

1 1

M M

ij ij
j i

TB r b
= =

= = ⋅∑∑ R B (1)

where M is the number of machines, ij M M
r

×
 = R is

the requirement matrix, ij M M
b

×
 = B is the backtrack

matrix, ijr is the number of total moves from machine i
immediately to machine j and ijb is the number of
backtrack steps from machine i to machine j. For a
more rigorous analysis the interested reader is referred
to (Sarker, et al., 1994).

Example 1

For example, suppose that we have 3 machines and we
want to produce 2 items (10 parts of the 1st item and 15
parts of the 2nd item). In order to produce those parts,
we have to use the 3 machines in the following order:

Item 1 1-2-3-2-3-1 (10 parts)
Item 2 3-2-1-3-2-3-1-2 (15 parts)
and the machine layout is 1-2-3.

In order to calculate the total cost, we construct the
matrices R, B and we multiply them, element by
element and we sum them according to equation 1.

1 2 3
1 0 0 0
2 1 0 0
3 2 1 0

To

From

=

B

1 2 3
1 0 25 15
2 15 0 35
3 25 40 0

To

From

=

R

Therefore the total backtracking cost is found:

1 15 2 20 1 40 105TB = × + × + × = . As it is obvious the
requirement matrix remains constant, whereas the
backtrack matrix changes according to the arrangement
of the machines. This function is both complicated and
difficult to estimate before all the machines are in
place.

In the proposed approach starting from an initial
machine, we attempt to determine the machine that has
to follow so that the aforementioned cost function is
minimized, using local information. The construction of
new solutions is based on an ACO algorithm
incorporating the information contained in the
requirement matrix.

3. ACO IMPLEMENTATION

The employment of the ACO algorithm for this
particular problem is performed by considering that the
artificial ants are moving from one machine to another
building a path, which is a candidate solution for this
problem. That is, starting from a machine, the ant
proceeds by selecting the machine to be put next in the
layout. The selection of the next machine has to be
done based on a trade-off between the pheromone (τ),
which is deposited on the arcs connecting the current
machine with the other machines and a heuristic (n)
function, which measures locally the quality of the
machine that can be added to the current partial
solution.

Adopting the Ant Colony System (ACS) approach
(Dorigo and Gambardella, 1997a; Dorigo and

Gambardella, 1997b) we construct a candidate solution
using the following “tour” formulation.

3.1 “Tour” construction

When the k-th ant is located at machine i, it chooses to
move to machine j, according to the so-called
pseurorandom proportional rule, given by:

{ } 0

0

max [()] [()] ,

,

k
i

iu iuu J
t t if q q

j
J if q q

α βτ η
∉

⋅ ≤
=

>

 (2)

where 0q is a parameter that it is selected by the user in
the interval [0,1], and J is a machine that has not been
used so far and is selected with probability:

[()] [()]
() ,

[()] [()]
k
i

k kiJ iJ
iJ i

il il
l J

t t
p t if J J

t t

α β

α β

τ η
τ η

∉

⋅
= ∉

⋅∑
 (3)

among the other candidates. k
iJ denotes the tabu list

(forbidden list), which contains all the machines that
have been so far used including the current machine i ,

ijη is a heuristic value that is available a priori, ijτ is
the pheromone trail, α and β are two parameters, which
determine the relative influence of the pheromone trail
and the heuristic information. In other words, with
probability 0q the ant makes the best possible move as
indicated by the learned pheromone trails and the
heuristic information (in this case, the ant is exploiting
the learned knowledge), while with probability (1- 0q) it
performs a biased exploration of the arcs. Tuning the
parameter 0q , it allows modulation of the degree of
exploration and the choice of whether to concentrate the
search of the system around the best-so-far solution or to
explore other tours. As it is obvious the choice depends
heavily on the quantities ()ij tη and ()ij tτ .

3.2 Pheromone

Real ants follow pheromone trails. Artificial ants tend
to follow this artificial-pheromone. The quantity ()ij tτ
corresponds to the “arc” connecting machine i to
machine j. Or to be more accurate corresponds to the
directional arc from i to j. This means that usually it is:

() ()ij jit tτ τ≠ . This quantity changes after the
completion of any search for all ants. At the first step of
the algorithm all pheromone trails are initiated to a
value 0τ . This initial value 0τ can either be set to a
small number or preferably, as in the case of the
Traveling Salesman Problem (TSP), to the value of
1 nnnC , which has been found to be a good choice,
where n is the number of cities (number of machines
for our problem) and nnC is the length (cost) of the
solution found using the nearest neighbour heuristic.

3.3 Heuristic information (Visibility)

The heuristic function (which some times is referred to
with the term visibility, reminding its origin from the
TSP problem) is a quantity, which in our problem (a
static problem) doesn’t change over iterations
(“iteration-invariant”), so a more proper notation is:

1/ij ijdη = .

Where ijd in the original implementation of the TSP is
simply denoting the distance between town i and j. In
our case, ijd implements a “local” cost in accordance
with the total cost function that has to be minimized.
This means that ijd measures the immediate cost that
we have to pay by placing machine j after machine i.
This is calculated by summing all the backflows created
by this arrangement within a unity distance, i.e. by
restricting our search to only adjacent steps in the
production phase. In other words, ijd is equal to the
element jir of the requirement matrix.

3.4 Pheromone Trail Update

Global update. Only one ant (the best-so-far ant) is
allowed to add pheromone after each iteration. Thus,
the update in ACS is implemented by the following
equation:

() ()1 , i, jbs bs
ij ij ij Tτ ρ τ ρ τ= − + ∆ ∀ ∈ (4)

where bsT is he best-so-far tour (machinery layout),
1bs bs

ij Cτ∆ = , where bsC is the “length”, i.e. the
calculated cost for this particular arrangement of
machines bsT and the parameter ρ represents
pheromone evaporation (with 0 1ρ≤ ≤). For ACS
algorithm, during the pheromone trail update, both
evaporation and new pheromone deposit, it only applies
to the arcs of the best constructed solution so far.

Local update. The ants use a local pheromone update
rule, which is applied immediately after having crossed
an arc (i, j) during the tour construction:

() 01ij ijτ ξ τ ξτ= − + (5)

Where ξ is a parameter (0<ξ<1) and 0τ is the initial
value for the pheromone trails. The effect of the local
updating rule is the following: every time an ant uses an
arc (i, j), its pheromone trail ijτ is reduced, so that this
arc becomes less desirable for the following ants. This
approach allows an increase in the exploration of arcs,
which have not been visited and, in practice, this
algorithm does not show a stagnation behavior (ants do
not converge to the generation of a common path).

4. RESULTS

In order to test the proposed method we examine an
FMS problem, where all the involved quantities are

generated randomly and are summarized in the
following table 1.

For this particular problem the optimal arrangement of
the machines is: 7, 8, 3, 2, 6, 9, 5, 1, 4 with a total
number of backtracking steps equal to 2923 (total cost).
The total number of possible solutions is 9!= 362880.
On the other hand, the worst case scenario would be to
arrange the machines in the following order 2, 1, 4, 7,
5, 6, 9, 8, 3 with a total cost of 4980.

Table 1: 8 Processes, with their corresponding routes
and demands

Process

Route information # of
parts

1 [1 6 8 9 3 5 7 4 3 8 6 8 2 3] 8
2 [2 6 1 8 9 5 2 1 6 2 9 5 6 8 4 3 4] 22
3 [8 7 3 4 1 8 5 6 2 3 1] 33
4 [3 4 6 9 2 1 7 2 8 1] 12
5 [8 7 3 1 4 1 5 6 2 9 3 1] 14
6 [9 8 7 2 3 4 5 1 5 7 6 2 3 1] 23
7 [3 7 9 4 9 2 5 1 7 8 2 8 6 3 2] 39
8 [3 7 2 4 6 2 9 1 9 5 8 3 4] 28

Our “colony” consists of 9 ants (equal to the number of
the machines) and in each experiment the algorithm is
let to run for 1000 iterations. For each execution of the
experiment, we have a total of 9000 constructed
solutions (obviously some of them are repeated more
than one times), which is only 2.5% of the total number
of candidate solutions. Since the algorithm is stochastic
in nature, we repeat the experiments 10 times and
calculate the average performance. In Figure 3 we
depict the evolution of the best solution for each one of
the 10 trials along with their average.

The average cost achieved is 2932 and in addition to
that, the algorithm 4 times out of 10 also finds the
global optimal solution (2923).

Fig. 3. The evolutions of bsC for 10 different runs of

the experiment. The thick line corresponds to the
average of those 10 trials, while the dashed line on
the bottom marks the global best value.

5. CONCLUSIONS

In this work, we propose and adapt the ACS paradigm
for the solution of a simplified linear layout problem.

The results are encouraging indicating that this method
has potentials and with further investigation could be
used for more complicated problems concerning
machinery layout for shop floors. It is proven that by
exploring only a small number of candidate solutions,
we are able to find a good (near-optimal) solution even
though without optimising the parameter settings of the
algorithm. In future work, we are planning to use an
evolutionary approach (such as Particle Swarm
Optimization) for the tuning of the set of parameters.

We must also point out that this particular problem is
slightly different compared to the traditional TSP
problem. In the TSP problem the relative positions of
the node numbers are more important than the absolute
positioning of the node numbers. However, in our case
this is not true, since the choice of the first positioned
machine is also important. However, no special action
is taken in favour of the first machine in the layout and
the machines are uniformly located in the first place.
The next step in our research will be to develop an ant-
like procedure to account for the first machine in the
layout, favoring the one that tends to give better results.

REFERENCES

Aneke, N.A.G., and A.S. Carrie (1986). A design

technique for the layout of Multi-product flow
lines. International Journal of Production
Research, vol 24, pp. 471-481.

Bullnheimer, B., R.F. Hartl and C. Strauss (1997). A
new ranked-based version of the Ant System: A
computational study. Central European Journal
for Operations Research and Economics, vol 7, no
1, pp. 25-38.

Carrie, A.S. (1975). Layout of Multi-product lines.
International Journal of Production Research, vol
13, pp. 541-575.

Dorigo, M. (1992). Optimization, Learning and Natural
Algorithms [in Italian]. PhD thesis, Dipartimento di
Electronica, Politecnico di Milano, Milan.

Dorigo, M., and L.M. Gambardella (1996). A study of
some properties of Ant-Q. In H. Voigt, W. Ebeling,
I. Rechenberg, & H. Schwefel (Eds.), Proceeding
of PPSN-IV, Fourth International Conference on
Parallel Problem Solving from Nature, vol 1141 of
Lecture Notes in Computer Science (pp.656-665).
Berlin, Springer-Verlag.

Dorigo, M. and L. M. Gambardella (1997a). Ant
colonies for the traveling salesman problem.
Biosystems, vol 43, no 2, pp. 73-81.

Dorigo, M. and L.M. Gambardella (1997b). Ant Colony
System: A cooperative learning approach to the
travelling salesman problem. IEEE Transactions
on Evolutionary Computation, vol 1, no 1, pp. 53-
66.

Dorigo, M., G. Caro and L. M. Gambardella (1999).
Ant Algorithms for Discrete Optimization.
Artificial life, vol 5, pp. 137-172.

Dorigo, M., V. Maniezzo and A. Colorni (1991a).
Positive feedback as a search strategy. Technical
report 91-016, Dipartimento di Electronica,
Politecnico di Milano, Milan.

Dorigo, M., V. Maniezzo and A. Colorni (1991b). The
Ant System: An autocatalytic optimizing process.
Technical report 91-016 revised, Dipartimento di
Electronica, Politecnico di Milano, Milan.

Dorigo, M., V. Maniezzo and A. Colorni (1996). Ant
System: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, vol 26, no 1, pp. 29-41

Dorigo M. and T. Stϋtzle (2004). Ant Colony
Optimization, A Bradford Book, The MIT Press,
Massachusetts Institute of Technology.

 Gambardella, L.M. and M. Dorigo (1995). Ant-Q: A
reinforcement learning approach to the travelling
salesman problem. In A. Prieditis and S. Russell
(Eds), Proceedings of the twelfth International
Conference On Machine Learning (ML-95) (pp.
252-260). Palo Alto, CA, Morgan Kaufmann.

Heragu, S.S. and A. Kusiak (1998). Machine layout
problem in flexible manufacturing systems.
Operations Research, vol 36, no 2, pp. 258-268

Kouvelis, P. and W. C. Chiang (1992). A simulated
annealing procedure for single row layout
problems in flexible manufacturing systems. Int. J.
Prod. Res. vol 30, no 4, pp 717-732.

Lee, C.E.C. (1991). An integrated methodology for the
analysis and design of cellular flexible assembly
systems. Ph.D. thesis Purdue University West
Lafayette, IN, USA.

Ponnambalam, S.G. and V. Ramkumar (2001). A
genetic Algorithm for the Design of a Single-Row
Layout in Automated Manufacturing Systems. Int
J. Adv. Manuf. Technol., vol 18, pp. 512-519.

Rich, E. and K. Knight (1991). Artificial Intelligence,
Mcgraw-Hill, Inc, International Edition.

Sarker, B.R., W.E. Wilhelm and G. L. Hogg (1994).
Backtracking and its Amoebic Properties in One-
dimensional Machine Location Problems. J. Opl
Res. Soc., vol 45, no 9, pp 1024-1039.

Stutzle, T. (1999). Local search Algorithms for
Combinatorial Problems: Analysis, Improvements
and New Applications. vol. 220 of DISKI. Sankt
Augustin, Germany, Infix

Stutzle, T. and H.H. Hoos (1996). Improving the Ant
System: A detailed report on the MAX-MIN Ant
System. Technical Report AIDA-96-12, FG
Intellektik, FB Informatik, TU Darmstadt,
Germany.

Stutzle, T. and H.H. Hoos (2000). MAX-MIN Ant
System. Future Generation Computer Systems, vol
16, no 8, pp. 889-914.

You-Dong, W. (1997). A linear programming approach
to linear machine layout problem. The Journal of
Industrial Mathematics Society, vol 47, no 2, pp.
59-69.

