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Abstract: Ant Colony System (ACS) is a meta-heuristic methodology, inspired by the 
behaviour of natural ants, which has already been applied to a numerous combinatorial 
problems. Flexible Manufacturing Systems cope with multi-product, usually small sized 
production. In this research work we investigate and apply an Ant Colony Optimization 
algorithm, which arranges the machines of a production line so that to minimize the total 
amount of backward flows. The experimental results show that a near optimal solution 
can be found exploiting only a small portion of the feasible solution space. Thus, the 
proposed algorithm indicates that it is a promising method, which can be applied to 
complex shop floor configuration for a generalised layout. Copyright © 2006 IFAC  
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1. INTRODUCTION 
 
Ant colonies are distributed systems that in spite of the 
simplicity of their individual units, they present a 
highly structured social organization and they can 
accomplish complex tasks, which in some cases far 
exceed the individual capacities of a single ant. One of 
the most surprising behavioural patterns exhibited by 
ants is the ability of certain ant species to find the 
“shortest paths”. Biologists have shown experimentally 
that this ability is possible by exploiting 
communication capabilities based only on pheromones, 
an odorous chemical substance that ants may deposit 
and smell. A well known class of ant algorithm known 
as “Ant Colony Optimization” (ACO) (Dorigo and 
Stutzle, 2004) has been inspired by the behaviour of 
natural ants.   
 
Ant algorithms were introduced in early 1990’s (Dorigo 
et al., 1991a; Dorigo et al., 1991b) and they were 
combined with a multi-agent approach for difficult 
combinatorial optimization problems. These problems 
usually belong to the class of NP-hard problems 
(problems for which the computational effort needed to 
find optimal solutions increases exponentially with 
problem size). Examples of combinatorial problems 
are, the shortest-paths problems, as well as many other 
real-world problems like finding the minimum cost 
plan to deliver goods to customers, the optimal 

assignment of employees to tasks to be performed, the 
best routing scheme for data packets in the Internet, the 
optimal sequence of jobs which have to be processed in 
a production line, the allocation of flight crews to 
airplanes, and many more (Dorigo and Stutzle 2004; 
Dorigo et al., 1999).  
 
Two classes of algorithms are available for the solution 
of combinatorial optimization problems: exact and 
approximate algorithms. Exact algorithms try to find 
optimal solutions. Despite their recent successes, for 
many NP-hard problems the performance of exact 
algorithms is not satisfactory and their applicability is 
often limited to rather small instances. Approximate 
algorithms trade optimality for efficiency. Their main 
advantage is that, in practice, they often find reasonably 
good solutions in a very short time. Algorithms of this 
type are loosely called heuristics (the term heuristics 
comes from a Greek word that means “to discover”, 
from which also comes the famous Archimedes’ 
exclamation “eureka”) (Rich and Knight, 1991). 
Recently, a new class of algorithms emerged, called 
metaheuristics. A meta-heuristic is a set of algorithmic 
concepts that can be used to define heuristic methods 
applicable to a wide set of different problems. The use 
of meta-heuristics has significantly increased the ability 
of finding very high-quality solutions for hard 
combinatorial optimization problems in a reasonable 
time. 



     

 
A particularly successful meta-heuristic is the ACO 
meta-heuristic. Algorithms that fit into the ACO meta-
heuristic framework are called ACO algorithms. ACO 
is characterized as being a distributed, stochastic search 
method based on the indirect communication of 
“artificial” ants, mediated by pheromone trails. The 
pheromone trails in ACO serve as distributed numerical 
information used by the ants to probabilistically 
construct solutions for the problem under consideration. 
The ants modify the pheromone trails during the 
algorithm’s execution giving a clue to other ants about 
their search experience. The ACO meta-heuristic 
defines the way the solution is constructed and the 
pheromone trails are modified by enriching artificial 
ants with capabilities that are not present in real ants. A 
large number of different ACO algorithms have been 
proposed and can be found in the literature. The main 
differences between the various implementations of 
algorithm concern the techniques used to control the 
search process. These extensions include among others:  
Elitist AS (Dorigo 1992; Dorigo, et al., 1991a, Dorigo, 
et al., 1991b, Dorigo, et al., 1996), Ant-Q (Gambardella 
and Dorigo, 1995; Dorigo and Gambardella, 1996), Ant 
Colony System (Dorigo and Gambardella, 1997a; 
Dorigo and Gambardella, 1997b), MAX-MIN AS 
(Stutzle and Hoos, 1996; Stutzle and Hoos, 2000; 
Stutzle 1999), Rank-Based AS (Bullnheimer, et al., 
1997)  
 
In this research work, we propose and apply ACO to 
arrange a number of machines in a production line so 
that to minimize the total amount of backward flows.  
This is a first approach towards the development of a 
method to configure more complex and more general 
layouts of machines in the shop floor based on the ACO 
meta-heuristic algorithm.  
 
 

2. LINEAR MACHINE LAYOUT PROBLEM 
 
For Flexible Manufacturing Systems (FMS) the layout 
design is even more crucial than in conventional 
manufacturing. Whereas a variety of methods that 
implement complex networks and layouts are available, 
the linear or single-row layout is the most commonly 
implemented layout in manufacturing systems due to its 
simplicity. There are many shapes of linear layouts, 
such as straight line, circular loop, U-shape and 
serpentine line (Haragu and Kusiak, 1998) (Figure 1).  
 
The configuration of the production line is heavily 
dependent on the material-handling system. Apart from 
its configuration, the production line is characterized by 
the flow of material as unidirectional or bidirectional. 
In the latter, four different types of flow movement can 
occur: Repeated operations, in-sequence operations, 
bypassing-operations and backtracking operations 
(Figure 2). The most desirable is the in-sequence 
operation due to its unidirectional movement.  
 

 
Fig.1. Alternative configurations of single-row layouts  
 
Backward flow is the least desirable since it costs and 
complicates the flow more than the forenamed flow 
movements. 
 
The ideal scenario would include only in-sequence 
moves. In practice, however, bypassing and 
backtracking of jobs as they pass down the line is 
inevitable. The designer of a single-row layout has to 
find the optimal arrangement of machines for such a 
production line. The optimality depends on the criteria 
and the restrictions that are posed. There are four 
criteria, which a designer could take into account 
(Ponnambalam and Ramkumar, 2001): Minimization of 
the number of backtracking movements, minimization 
of total backtracking flow distance, maximization of in-
sequence movements and minimization of the flow 
distance.  
 
Carrie (1975) was the first to study the linear layout 
problem and several approaches have been proposed 
since then (Aneke and Carriw, 1986; Lee, 1991; 
Kouvelis and Chiang, 1992; Sarker et al., 1994; You-
Dong, 1997; Ponnambalam and Ramkumar, 2001).  
 
In this paper, we investigate the solution to the 
“minimal backward-flow” model, (minimization of 
total backtracking flow distance) introducing the ACO 
algorithm for a simplified model. 
 
 

 
Fig.2. The Four different flow movements in a linear 

layout  
 
 
 
 
 



     

2.1 Minimal backward-flow model. 
 
This model is developed by trying to minimize the total 
amount of backward flows for a production cell, as it is 
indicated but its name. For this model, we make the 
following assumptions: 
 

• Only one machine of each type is allowed in 
the line (no duplications of machines are 
allowed). 

• The cost of material flows is proportional to 
the number of parts and the distance of flows. 

• Each machine is regarded as a point and the 
distance between machines is “1”, the unit 
distance. 

 
The distance between the initial input point of parts and 
the first machine is also regarded as the unit distance. 
In Figure 3 the adopted conventions are depicted. 
 

 
Fig. 3. Linear machine layout and corresponding 

notation 
 
It must be mentioned that minimization of backtracking 
does not necessarily reduce the bi-directional travel 
distance. Such a requirement would probably lead to a 
different formulation.  
 
Therefore, the problem can be described as follows: 
 
Having n machines and m items of parts to be produced 
and for each item a corresponding demand of jd  (j = 1, 
2. . . m), place the machines in such an order so that to 
minimize the backward flows. The quantity that has to 
be minimized is the total number of backtracking steps. 
 
Thus, for this problem, following the notation of 
Sarker, et al., (1994), we seek to minimize: 

1 1

M M

ij ij
j i

TB r b
= =

= = ⋅∑∑ R B  (1)

where M is the number of machines, ij M M
r

×
 =  R  is 

the requirement matrix, ij M M
b

×
 =  B is the backtrack 

matrix, ijr is the number of total moves from machine i 
immediately to machine j and ijb  is the number of 
backtrack steps from machine i to machine j. For a 
more rigorous analysis the interested reader is referred 
to (Sarker, et al., 1994). 

Example 1 
 
For example, suppose that we have 3 machines and we 
want to produce 2 items (10 parts of the 1st item and 15 
parts of the 2nd item). In order to produce those parts, 
we have to use the 3 machines in the following order: 
 
Item 1 1-2-3-2-3-1         (10 parts) 
Item 2 3-2-1-3-2-3-1-2  (15 parts) 
and the machine layout is 1-2-3.  
 
In order to calculate the total cost, we construct the 
matrices R, B and we multiply them, element by 
element and we sum them according to equation 1.  

1 2 3
1 0 0 0
2 1 0 0
3 2 1 0

To

From
 

=  
 
  

B

1 2 3
1 0 25 15
2 15 0 35
3 25 40 0

To

From
 

=  
 
  

R
 

 
Therefore the total backtracking cost is found: 

1 15 2 20 1 40 105TB = × + × + × = . As it is obvious the 
requirement matrix remains constant, whereas the 
backtrack matrix changes according to the arrangement 
of the machines. This function is both complicated and 
difficult to estimate before all the machines are in 
place.  
 
In the proposed approach starting from an initial 
machine, we attempt to determine the machine that has 
to follow so that the aforementioned cost function is 
minimized, using local information. The construction of 
new solutions is based on an ACO algorithm 
incorporating the information contained in the 
requirement matrix.  
 
 

3. ACO IMPLEMENTATION 
 
The employment of the ACO algorithm for this 
particular problem is performed by considering that the 
artificial ants are moving from one machine to another 
building a path, which is a candidate solution for this 
problem. That is, starting from a machine, the ant 
proceeds by selecting the machine to be put next in the 
layout. The selection of the next machine has to be 
done based on a trade-off between the pheromone (τ), 
which is deposited on the arcs connecting the current 
machine with the other machines and a heuristic (n) 
function, which measures locally the quality of the 
machine that can be added to the current partial 
solution.  
 
Adopting the Ant Colony System (ACS) approach 
(Dorigo and Gambardella, 1997a; Dorigo and 



     

Gambardella, 1997b) we construct a candidate solution 
using the following “tour” formulation. 
 
 
3.1 “Tour” construction  
 
When the k-th ant is located at machine i, it chooses to 
move to machine j, according to the so-called 
pseurorandom proportional rule, given by: 

{ } 0

0

max [ ( )] [ ( )] ,

,

k
i

iu iuu J
t t if q q

j
J if q q

α βτ η
∉

⋅ ≤
=

>





 (2)

  
where 0q  is a parameter that it is selected by the user in 
the interval [0,1], and J is a machine that has not been 
used so far and is selected with probability: 
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( ) ,
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∉

⋅
= ∉

⋅∑
   (3)

among the other candidates. k
iJ  denotes the tabu list 

(forbidden list), which contains all the machines that 
have been so far used including the current machine i , 

ijη  is a heuristic value that is available a priori, ijτ  is 
the pheromone trail, α and β are two parameters, which 
determine the relative influence of the pheromone trail 
and the heuristic information. In other words, with 
probability 0q  the ant makes the best possible move as 
indicated by the learned pheromone trails and the 
heuristic information (in this case, the ant is exploiting 
the learned knowledge), while with probability (1- 0q ) it 
performs a biased exploration of the arcs. Tuning the 
parameter 0q , it allows modulation of the degree of 
exploration and the choice of whether to concentrate the 
search of the system around the best-so-far solution or to 
explore other tours. As it is obvious the choice depends 
heavily on the quantities ( )ij tη  and ( )ij tτ .  

 
 

3.2 Pheromone 
 
Real ants follow pheromone trails. Artificial ants tend 
to follow this artificial-pheromone. The quantity ( )ij tτ  
corresponds to the “arc” connecting machine i to 
machine j. Or to be more accurate corresponds to the 
directional arc from i to j. This means that usually it is: 

( ) ( )ij jit tτ τ≠ . This quantity changes after the 
completion of any search for all ants. At the first step of 
the algorithm all pheromone trails are initiated to a 
value 0τ . This initial value 0τ  can either be set to a 
small number or preferably, as in the case of the 
Traveling Salesman Problem (TSP), to the value of 
1 nnnC , which has been found to be a good choice, 
where n  is the number of cities (number of machines 
for our problem) and nnC  is the length (cost) of the 
solution found using the nearest neighbour heuristic.  
 
 

3.3 Heuristic information (Visibility) 
 
The heuristic function (which some times is referred to 
with the term visibility, reminding its origin from the 
TSP problem) is a quantity, which in our problem (a 
static problem) doesn’t change over iterations 
(“iteration-invariant”), so a more proper notation is: 

1/ij ijdη = . 
 
Where ijd  in the original implementation of the TSP is 
simply denoting the distance between town i and j. In 
our case, ijd   implements a “local” cost in accordance 
with the total cost function that has to be minimized. 
This means that ijd  measures the immediate cost that 
we have to pay by placing machine j after machine i. 
This is calculated by summing all the backflows created 
by this arrangement within a unity distance, i.e. by 
restricting our search to only adjacent steps in the 
production phase. In other words, ijd  is equal to the 
element jir of the requirement matrix. 
  
 
3.4 Pheromone Trail Update 
 
Global update. Only one ant (the best-so-far ant) is 
allowed to add pheromone after each iteration. Thus, 
the update in ACS is implemented by the following 
equation: 

( ) ( )1 ,      i, jbs bs
ij ij ij Tτ ρ τ ρ τ= − + ∆ ∀ ∈  (4)

where bsT is he best-so-far tour (machinery layout), 
1bs bs

ij Cτ∆ = , where bsC  is the “length”, i.e. the 
calculated cost for this particular arrangement of 
machines bsT  and the parameter ρ represents 
pheromone evaporation (with 0 1ρ≤ ≤ ). For ACS 
algorithm, during the pheromone trail update, both 
evaporation and new pheromone deposit, it only applies 
to the arcs of the best constructed solution so far. 
 
Local update. The ants use a local pheromone update 
rule, which is applied immediately after having crossed 
an arc (i, j) during the tour construction: 

( ) 01ij ijτ ξ τ ξτ= − +  (5)

Where ξ is a parameter (0<ξ<1) and 0τ  is the initial 
value for the pheromone trails. The effect of the local 
updating rule is the following: every time an ant uses an 
arc (i, j), its pheromone trail ijτ  is reduced, so that this 
arc becomes less desirable for the following ants. This 
approach allows an increase in the exploration of arcs, 
which have not been visited and, in practice, this 
algorithm does not show a stagnation behavior (ants do 
not converge to the generation of a common path).  
 
 

4. RESULTS 
 
In order to test the proposed method we examine an 
FMS problem, where all the involved quantities are 



     

generated randomly and are summarized in the 
following table 1. 
 
For this particular problem the optimal arrangement of 
the machines is: 7, 8, 3, 2, 6, 9, 5, 1, 4 with a total 
number of backtracking steps equal to 2923 (total cost).  
The total number of possible solutions is 9!= 362880.  
On the other hand, the worst case scenario would be to 
arrange the machines in the following order 2, 1, 4, 7, 
5, 6, 9, 8, 3 with a total cost of 4980. 
 

Table 1: 8 Processes, with their corresponding routes 
and demands  

Process 
# 

Route information # of 
parts 

1 [1 6 8 9 3 5 7 4 3 8 6 8 2 3] 8 
2 [2 6 1 8 9 5 2 1 6 2 9 5 6 8 4 3 4] 22 
3 [8 7 3 4 1 8 5 6 2 3 1] 33 
4 [3 4 6 9 2 1 7 2 8 1] 12 
5 [8 7 3 1 4 1 5 6 2 9 3 1] 14 
6 [9 8 7 2 3 4 5 1 5 7 6 2 3 1] 23 
7 [3 7 9 4 9 2 5 1 7 8 2 8 6 3 2] 39 
8 [3 7 2 4 6 2 9 1 9 5 8 3 4] 28 

 
Our “colony” consists of 9 ants (equal to the number of 
the machines) and in each experiment the algorithm is 
let to run for 1000 iterations. For each execution of the 
experiment, we have a total of 9000 constructed 
solutions (obviously some of them are repeated more 
than one times), which is only 2.5% of the total number 
of candidate solutions. Since the algorithm is stochastic 
in nature, we repeat the experiments 10 times and 
calculate the average performance. In Figure 3 we 
depict the evolution of the best solution for each one of 
the 10 trials along with their average. 
 
The average cost achieved is 2932 and in addition to 
that, the algorithm 4 times out of 10 also finds the 
global optimal solution (2923). 
 

 
Fig. 3. The evolutions of bsC  for 10 different runs of 

the experiment. The thick line corresponds to the 
average of those 10 trials, while the dashed line on 
the bottom marks the global best value. 

 
 

5. CONCLUSIONS 
 
In this work, we propose and adapt the ACS paradigm 
for the solution of a simplified linear layout problem. 

The results are encouraging indicating that this method 
has potentials and with further investigation could be 
used for more complicated problems concerning 
machinery layout for shop floors. It is proven that by 
exploring only a small number of candidate solutions, 
we are able to find a good (near-optimal) solution even 
though without optimising the parameter settings of the 
algorithm. In future work, we are planning to use an 
evolutionary approach (such as Particle Swarm 
Optimization) for the tuning of the set of parameters.  
   
We must also point out that this particular problem is 
slightly different compared to the traditional TSP 
problem. In the TSP problem the relative positions of 
the node numbers are more important than the absolute 
positioning of the node numbers. However, in our case 
this is not true, since the choice of the first positioned 
machine is also important. However, no special action 
is taken in favour of the first machine in the layout and 
the machines are uniformly located in the first place. 
The next step in our research will be to develop an ant-
like procedure to account for the first machine in the 
layout, favoring the one that tends to give better results. 
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