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Abstract—This paper explores the possibility of creating an 

automatic method for assessing the condition of induction motor 

circuits fed by inverters. The stator current and magnetic flux 

are processed in the frequency domain and a feature selection 

stage is employed to pinpoint the most informative components to 

further be fed to a classifier that performs the assessment of the 

motor circuit. The results are promising, indicating that short 

circuit detection as well as quantification is feasible using non-

invasive techniques. 

Keywords— induction motors; variable speed drives; fault 

detection; fault diagnosis; current measurement; magnetic flux 

leakage. 

I.  INTRODUCTION  

During the last couple of decades maintenance has shifted 
from preventive to a predictive paradigm [1]. Predictive 
maintenance heavily relies on condition monitoring techniques, 
which utilize a continuous or pseudo-continuous monitoring of 
specific quantities. The latter can capture a fault in an early 
stage, pinpoint its origin and sometimes even predict its 
progression. Fault detection, fault diagnosis and failure 
prognosis allow for a timely intervention. With the advances in 
sensors, hardware and computational power, condition 
monitoring methods have started becoming an indispensable 
means of industrial infrastructures.  

One of the fields where condition monitoring techniques 
have gained popularity is the field of electric machinery. 
Among the electric machines, the induction motor has received 
the most attention due to its widespread use, with numerous 
methods proposed which include more elaborate techniques 
and consider more realistic scenarios.  

A common fault encountered in induction machine relates 

to stator windings. Short circuits of the stator winding account 
for 21% - 40% of the total faults, depending on the type and 
size of the machine. This percentages makes them the second 
most frequent fault after the bearing [2]. The insulation system 
is even more susceptible to failure due to stresses caused by the 
pulsed inverter voltage. The voltage step at the inverter output 
can be amplified up to a factor of two at the motor terminal due 
to the reflection of the travelling wave [3]. The latter is caused 
by the much higher motor impedance compared to the cable 
impedance. 

Lately for assessment of rotating equipment, the traditional 
vibration-based monitoring techniques are supplemented with 
techniques focusing on the analysis of the electromagnetic 
quantities [4]-[8]. The use of these techniques aims to detect 
various faults as early as possible by detecting the changes 
caused by the fault to the electromagnetic quantities of the 
motor. Another boosting factor for the adoption of these type 
of methods is that the required equipment is often already 
present for other purposes (motor control) and are thus, no 
invasive by nature [9]. 

Among the various electromagnetic quantities that are 
gaining popularity in the field of induction motor condition 
monitoring, the currents and the magnetic flux are very 
popular; the first because it is by far the most non-invasive 
technique and the latter due to its sensitivity in capturing faults 
in an incipient phase. For the case of current signature analysis 
(a common term describing these methods is Motor Current 
Signature Analysis MCSA), it has been reported that non-fault 
related phenomena (voltage unbalances, variable-speed 
operations etc.) can mislead the subsequent analysis creating 
false positive detections.  

The use of inverters has created the need of an extra 
processing step to remove the high frequency noise that 
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contaminates the recordings [10]. In [10] a wavelet-based 
technique for “cleaning” the measured signals was employed. 
However, the method did not offer an automatic diagnosis 
stage. In [11] an automatic classification method was employed 
based on linear discriminating analysis, but only two levels of 
short circuit fault were considered. In this work it is 
investigated whether an automatic method can categorize 
different levels of short circuit faults. 

Therefore, the aim of this paper is to compare different 
measurement settings and two different classification schemes 
for the problem of fault severity in the case of short circuits for 
inverter fed induction motors. This work also aims to 
investigate whether it is possible for the methods to 
“extrapolate” to situations where the levels of fault severity 
were not encountered during the training phase and assess 
possible limitations and requirements for a more general 
deployment.  

The rest of the paper is structured as follows: Section II 
summarizes all the necessary background of the involved 
methods and the experimental set-up. Section III summarizes 
the results, and finally Section V concludes the paper 
presenting the major findings, possible limitations and 
directions for future research. 

II. METHODS 

In this work stator current and magnetic flux measurements 
were involved with the latter being measured by two different 
sensors configurations. A description of the set up used is given 
in the following subsection II.A while the rest of the 
subsections (II.B-II.F) describe in short, the methods used. The 
whole severity detection procedure was treated as a standard 
classification problem, including feature extraction from the 
raw signals, feature selection and categorization using a 
classifier. 

A. Experimental setup – Data collection 

The test bench for all the experiments (Fig.1) is located in 
the laboratory of the University of Pavia [10] The motor is a 
three-phase squirrel cage induction motor, rated power 1.5 kW, 
wye connected, with 4 poles, 36 stator slots, 46 rotor slots, and 
supplied by a PWM two-level IGBT voltage source inverter. It 
is modulated with space vector modulation (SVM) with a 

switching frequency of  switchf = 6 kHz. 

The short circuit faults were simulated using three external 
connectors at the stator winding for shunting the 5%, the 10% 
or the 15% of the total number of turns per phase. By providing 
the supply directly on the first, on the second or on the third 
connector, shunting the first 15, 30 or 45 turns, we reduce 5%, 
10% or 15% the overall impedance of this phase respectively. 
A detailed description is given in [12]. 

All experiments were carried out atno-load with the 
magnetic powder brake coupled to the motor de-energized. The 
coupling to the brake was necessary for collecting also the 
speed, beside other quantities. The four measurements 
collected were the following: 

i) the current of one phase (different from the one which the 
short circuit is applied); 

ii) the axial leakage flux, using Emerson M-343F-1204 
commercial flux meter, in frontal position, on the fan side of 
the motor; 

iii) the radial leakage flux, by means of a custom probe, 
positioned on the body of the motor.  

iv) the speed, by means of the brake coupled to the motor. 

Note: leakage flux signals were adequately hardware 
filtered (to avoid aliasing). More details about the hardware 
involved can be found in [12]. 

The fundamental frequency for all experiments was set at 
50Hz. For each condition (no fault/healthy, simulated 5%, 10% 
and 15% short circuit fault) 40 measurements were collected as 
a sampling frequency of 120 kHz for a period of 8.7 seconds 
(leading to signals of 1048576 samples long).  

The currents and the flux measurements were subsequently 
analyzed for the categorization of motor condition. 

 

Fig. 1:  Experimental test bench 

B. Feature extraction 

It has been widely documented in the literature that short 
circuit faults leave their footprints in the frequency domain. 
While many advanced frequency analysis methods have been 
developed over the past decades, in this work we focused on 
the simplest frequency analysis method, which involves the use 
of the periodogram [13]. After the transformation of the raw 
measurements to normalized power spectrum values, multiples 
of the fundamental frequency, as in [11], were extracted. As it 
can be seen in Fig. 2, which depicts the normalized power 
spectrum at those frequencies, for four randomly selected 
measurements (for all three involved quantities), the short 
circuit fault modulates the frequency content but not in a 
uniform manner.  

Due to the very large number of extracted frequencies, the 
feature vector has very high dimension. To alleviate the 
corresponding problem of the “curse of dimensionality” a 
feature selection stage was involved before passing the feature 
vector to the classifier. 

C. Feature selction / ranking 

Feature selection is the process that tries to remove 
irrelevant and/or redundant features. Moreover, feature 
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selection usually improves the generalization performance of a 
classifier when the number of training samples is not large 
compared to the dimensionality of the original feature vectors. 
Feature selection algorithms are usually categorized as [14]:  

 

Fig. 2:  Aggregated plots of the extracted normalized power spectrum values 

for the three measurements for all four investigated conditions. 
 

Filters: assess and rank features using a criterion that does 
not rely on the classifier involved. 

Wrappers: use a predictive algorithm to assess subsets of 
the original feature set. 

Embedded methods: perform features selection as part of 
the classifier building (e.g. Decision Trees (DT)). 

In this work a filter approach was selected using as criterion 
the Area Under the Receiver Operating Characteristic (ROC) 
curve (AUC) [15]. The AUC, for the case of binary 
classification problems, can be calculated using the equation 
below [16]: 
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where 
−r  (

+r ) indicates negative (positive) cases (
−

ir , ( +

jr ) is 

the value of the feature of the i -th (j-th) negative (positive) 

case), with m (n) being the number of negative (positive) 

cases. 
In case of more than two classes, the AUC is averaged 

across all class pairs [17]. Using this criterion (average AUC) 
the extracted features (normalized power of different frequency 
components) were ranked and fed to the Minimum 
Mahalanobis Distance (MMD) described below [18]. This 
ranking was also part of a preprocessing process before feeding 
the Random Forest (RF) classifier [19] as a means to reduce 
the computation time and also “bias” the learning towards 
more promising features.  

D. Linear Classifier 

The MMD classifier is a very simple (it has not tuning 

parameters), which can perform “embarrassingly” well when 

dealing with real life data [18]. 

The classifier select class i  according to: 

( )( ) ( ) ( ) 1

1...

arg max 2ln
T

l l l
l L

i P −

=

=  − − −x μ C x μ  (3) 

with ( )lP   being the a priori probability of occurrence of 

class l , (L being the total number of distinct classes) whose 

average vector is x, while C is the covariance matrix of all the 

training data (data from all classes pooled together).  

E. Random Forests (RFs) 

RFs introduced by Breiman [20] can be used both for 
regression and classification. RFs can be trained fast and, at the 
same time, can provide competitive results compared to other 
state of the art methods [19].  

RFs paradigm for classification performs class prediction 

by taking the majority vote of B DTs. In other words, if ( )ˆ
bC x  

is the class prediction of the b-th DT for an input x, the 
prediction of the RF is given by [19]: 
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( ) ( ) 
1

ˆ ˆ_
B

RF bC x majority vote C x=  (3) 

Each DT is trained on a bootstrap sample of the available 
data. The DT is grown till it reaches the minimum node size 

minn  (if 
minn =1 we are talking about decision stamps) and at 

each step m out of p features are randomly selected (the default 

value suggest in [20] is p 
 

, where x    returns the 

greatest integer that is less or equal to x).  

F. Evaluated scenarios 

Multiple experiments were carried in this study. For the 
first one (multiclass problems see below) three different 
settings were considered: a) all the extracted features involved, 
b) features up to frequency 2kHz and c) features up to 
frequency up to 1kHz. The reason for this setting is to 
investigate whether viable results can be achieved even with 
simpler acquisition hardware, which is more likely to be found 
in an industrial facility.  

For the case of the MMD classifier three different input 
ranges were considered: a) the top five ranked features, b) the 
top ten ranked features and c) the top 20 ranked features. For 
the case of the RFs only when the whole feature set was 
involved the ranking mechanism was invoked to select the top 
100 features, so as to increase computational speed and 
eliminate uninformative frequencies.  

Four different evaluation scenarios were considered: 

a) All conditions available / multiclass 

Data from all four different conditions (healthy, 5%, 10%, 
15) were available during training and testing. The classifier 
would not have to deal with completely “unseen settings” and 
needed to classify each sample from the testing set into one out 
of four classes (healthy, 5%, 10%, 15). A 10x10 fold Cross 
Validation (CV) procedure was involved [21], meaning that the 
standard 10-fold CV procedure was repeated ten times after 
reshuffling all the available data. 

After this first set of experiments the most promising (and 
simpler) configuration from the lower frequency range were 
selected for carrying a second round of experiments. 

b) Healthy – “incipient fautl” data available 

All data from the healthy class and from the 5% short 
circuit class were used for training forming a binary 
classification problem (healthy / short circuit) while for testing 
all 10% and 15% cases were passed to the classifier for 
assessment. 

c) Healthy – “intermediate fault” data available 

All data from the healthy class and from the 10% short 
circuit class were used for training forming a binary 
classification problem (healthy / short circuit) while for testing 
all 5% and 15% cases were passed to the classifier for 
assessment. 

d) Healthy – high level degradation data available 

All, data from the healthy class and from the 15% short 
circuit class were used for training forming a binary 

classification problem (healthy / short circuit) while for testing 
all the 5% and 10% cases were passed to the classifier for 
assessment. 

Therefore, for the multiclass problem a resampling 
procedure was used for the evaluation of the different schemes, 
while for the other three cases, where “extrapolation” was 
investigated, the training and testing was carried just once. 

III. RESULTS 

Due to space limitations, the confusion matrices of the first 
experiment were not included and only the sensitivities per 
class (correctly classified instances / total number of instances 
belonging to that class) are reported in Tables I to III. Some 
more information is given in the conclusion section regarding 
the mixing of the classes. 

A. Experiment  

In the following tables “All” stands for the whole frequency 
range and “xf” means that the x top ranked features were used. 

After the first round of experiments, for the current 
measurements, the 1kHz, 5f, MMD configuration was selected. 
For this particular measurement the results are suboptimal for 
this setting but as it was noted the intention was to investigate 
both simpler classification and hardware related case. For the 
commercial flux sensor, the 1kHz, 20f, MMD was selected. 
For the custom-made sensor also the 1kHz, 20f, MMD was 
selected. 

1) Current measurement data 
TABLE I 

ALL CONDITIONS AVAILABLE 

Case healthy 5% 10% 15%  

All, 5f, MMD 400/400 400/400 391/400 393/400 

All, 10f, MMD 397/400 400/400 367/400 351/400 

All, 20f, MMD 396/400 400/400 376/400 348/400 

All, RF (100f) 389/400 399/400 372/400 374/400 

2kHz, 5f, MMD 400/400 400/400 376/400 365/400 

2kHz, 10f, MMD 400/400 400/400 380/400 374/400 

2kHz, 20f, MMD 400/400 399/400 377/400 359/400 

2kHz, RF  400/400 399/400 351/400 370/400 

1kHz, 5f, MMD 400/400 400/400 380/400 384/400 

1kHz, 10f, MMD 400/400 400/400 381/400 369/400 

1kHz, 20f, MMD 400/400 400/400 374/400 363/400 

1kHz, RF  400/400 400/400 382/400 369/400 

 

2) Comercial Flux Data 
TABLE II 

ALL CONDITIONS AVAILABLE 

Case healthy 5% 10% 15%  

All, 5f, MMD 400/400 400/400 370/400 390/400 

All, 10f, MMD 400/400 391/400 389/400 392/400 

All, 20f, MMD 400/400 400/400 393/400 400/400 

All, RF (100f) 400/400 400/400 400/400 400/400 

2kHz, 5f, MMD 390/400 400/400 364/400 361/400 

2kHz, 10f, MMD 390/400 400/400 343/400 354/400 

2kHz, 20f, MMD 394/400 400/400 299/400 344/400 

2kHz, RF  400/400 400/400 400/400 400/400 

1kHz, 5f, MMD 390/400 400/400 363/400 362/400 

1kHz, 10f, MMD 390/400 400/400 338/400 358/400 

1kHz, 20f, MMD 400/400 400/400 400/400 400/400 

1kHz, RF  400/400 400/400 400/400 400/400 
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3) Flux data from custom made probe 
TABLE III 

ALL CONDITIONS AVAILABLE 

Case healthy 5% 10% 15%  

All, 5f, MMD 382/400 365/400 400/400 400/400 

All, 10f, MMD 398/400 390/400 399/400 400/400 

All, 20f, MMD 400/400 400/400 400/400 400/400 

All, RF (100f) 400/400 400/400 400/400 400/400 

2kHz, 5f, MMD 363/400 359/400 390/400 400/400 

2kHz, 10f, MMD 400/400 391/400 393/400 400/400 

2kHz, 20f, MMD 400/400 390/400 393/400 400/400 

2kHz, RF  400/400 398/400 397/400 400/400 

1kHz, 5f, MMD 371/400 372/400 397/400 400/400 

1kHz, 10f, MMD 400/400 393/400 397/400 400/400 

1kHz, 20f, MMD 396/400 400/400 400/400 400/400 

1kHz, RF  400/400 400/400 400/400 400/400 

 

B. Healthy / 5% training – 10%, 15% testing 

1) Current measurement data 
TABLE IV 

CONFUSION MATRIX 

Case healthy faulty 

10% 1 39 

15% 0 40 
 

2) Commercial Flux 
TABLE V 

CONFUSION MATRIX 

Case healthy faulty 

10% 0 40 

15% 0 40 
 

3) Custom made probe 
TABLE V1 

CONFUSION MATRIX 

Case healthy faulty 

10% 0 40 

15% 0 40 

C. Healthy / 10% training – 5%, 15% testing 

 

1) Current measurement data 
TABLE VII 

ALL CONDITIONS AVAILABLE 

Case healthy faulty 

5% 1 39 

15% 0 40 
 

2) Commercial Flux 
TABLE VIII 

CONFUSION MATRIX 

Case healthy faulty 

5% 0 40 

15% 0 40 
 

3) Custom made probe 
TABLE IX 

CONFUSION MATRIX 

Case healthy faulty 

5% 6 34 

15% 0 40 

D. Healthy / 15% training – 5%, 10% testing 

1) Current measurement data 

TABLE X 
CONFUSION MATRIX 

Case healthy faulty 

5% 15 25 

15% 0 40 
 

2) Commercial Flux 
TABLE XI 

CONFUSION MATRIX 

Case healthy faulty 

5% 5 35 

15% 0 40 
 

3) Custom made probe 
TABLE XII 

CONFUSION MATRIX 

Case healthy faulty 

5% 39 1 

15% 0 40 

 

Fig. 3: Histogram (empirical “pdf”) of the normalized power spectrum for the 
four different investigated conditions/. 

IV. DISCUSSION - CONCLUSIONS 

Tables I to III show that in general the different conditions 
can be separated. The current measurement schemes perform 
slightly worse compared to the magnetic flux related ones. The 
use of more features does not have a uniform effect on all 
settings, therefore further experimentation is needed. RF 
perform slightly better than the MMD classifier, but this slight 
improvement has to be further investigated. Last but not least 
frequency features that lie bellow 2kHz can be used for the 
assessment of this particular fault. In all the experiments, the 
normalized power frequency at 150 Hz for the current 
measurements and for the magnetic flux measured by the 
custom made probe and the normalized frequency at 100 Hz 
for the magnetic flux measured by the commercial sensor were 
ranked first. However, as it can be seen in Fig. 3, using just one 
frequency component is not enough for reliable assessment of 
the windings of an induction motor. 

The more interesting findings, however, comes from Tables 
IV – XII. From these tables it can be deduced that the method 
can “extrapolate” but the quality of the extrapolation depends 
on the data used for representing the faulty class: when data 
with more severe fault are encountered, the classifier can in 
general correctly assign them to the faulty category (Tables IV 
-VI). When during training the data for the faulty class 
correspond to quite severe faults, then the algorithm might or 
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might not detect fault that come from less severe situations 
(Tables X-XII). This can be further illustrated by looking at the 
projection of the extracted features in lower dimensional space 
(Fig. 4) using Principal Component Analysis (PCA) [17]. From 
these figures it can be seen that with increased severity the data 
points move towards a specific direction. This in accordance 
with the intuition and suggests that an ordinal classification 
approach could also be tested. 

 

Fig. 4: Projection of the features up to 1 kHz to a 2 dimensional space (from 
top to bottom: current, commercial flux measurement, custom made probe 

flux measurement. 
 

In future work, more experiments will be carried out using 
data coming from other loading conditions as well as from 
other motors to verify the results of this preliminary study. 
Furthermore, ordinal classification as well as regression 
methods will be tested and compared with the conventional 
classification approach described in this work. 
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