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Abstract— Cardiotocography (CTG) is the major monitor-
ing tool for fetal well-being surveillance during labor. It con-
sists of two distinctive signals: the Fetal Heart Rate (FHR) and 
the Uterine Contractions signal. The CTG interpretation is 
classically performed by obstetricians with visual inspection 
for reassuring or ominous patterns, which are associated with 
fetus’ condition. Deviations of the CTG and especially of the 
(FHR) from normality can be an indication of oxygen depriva-
tion during the stressful labor process, which can lead to major 
neurological damage to the fetus or even death. This compro-
mise is usually reflected at the pH level of newborn’s blood. 
Therefore pH levels are usually used for the discrimination 
between healthy and compromised fetuses. In this work we 
present our preliminary results of the application of a machine 
learning approach, using least squares support vector ma-
chines, to FHR classification using the largest CTG open-
access database so far. 
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I. INTRODUCTION  

Cardiotocography (CTG) refers to the simultaneous ac-
quisition of the fetal heart rate (FHR) and uterine contrac-
tions and their display on a single paper strip, cf. Figure 1. 
Experienced obstetricians read the CTG traces and assess 
fetal wellbeing following the guidelines of the International 
Federation of Gynecology and Obstetrics (FIGO) [1] or 
similar guidelines provided by other national boards [2]. 
However even though these specific guidelines are quite 
clear it has been reported that their use in clinical practice is 
a challenging endeavor. In fact CTG interpretation is ac-
companied by persistent high inter and intra-observer varia-
bility [3], [4] and also blamed for an increase of the number 
of caesarean sections. The CTG evaluation and following 
clinical decisions still remain subjective and are scrutinized 
in malpractice lawsuits [5]. Therefore in order to reduce the 
variability in CTG interpretation and also minimize the 
subjectivity of the assessment a number of computerized 
systems have been proposed based primarily on the analysis 
of the FHR signal that is the most informative component of 
the CTG.  

 
Fig. 1 FHR and Uterine Contractions (UC) signal 

These computerized systems are usually built around a 
pattern recognition pipeline: after a stage of signal 
prerocessing/denoising, features are engineered and extract-
ed from the FHR signal with some or all of them used to 
train a classifier that learns to discriminate different labor 
outcomes.  

For the feature engineering/extraction stage a wealth of 
methods/attributes have been proposed, ranging from fea-
tures that capture the essence of the FIGO guidelines (base-
line level, number of accelerations, number of deceleration, 
decelerations depth, shape, and frequency etc.) [6],to fea-
tures coming from the time domain [7], [8], the frequency 
domain [9], the time-frequency domain [10], the domain of 
nonlinear dynamics [11], [12], [13] or even features created 
by the application of genetic programming methods to basic 
features [14]. 

For the classification/decision stage also a plethora of 
methods have been proposed such as Support Vector Ma-
chines (SVMs) [9], [10], [12], [15], Artificial Neural Net-
works (ANNs) [16], [17], Hidden Markov Models (HMMs) 
[18], fuzzy systems [19], and other approaches such as ordinal 
classification approaches [20] and one class classifiers [21]. 

All the aforementioned classifiers share in common the 
need of a labeled training set where the labels correspond to 
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the classes that the newborn was assigned after the delivery. 
This assignment can be performed using various criteria [22]. 
Among them, probably the most straightforward is the one 
that is based on the pH value coming from the umbilical ar-
tery cord blood analysis. In that case, a threshold is used that 
discriminates between healthy fetuses and fetuses that had 
suffered somewhat from the excess stress during labor. The 
most commonly accepted threshold is that of a pH value 
equal to 7.05 [23]. 

In this work we investigate a method to classify FHR, us-
ing a set of features extracted from different domains com-
bined with a variant of SVMs method and tested using the 
largest open-access CTG database [24], achieving competi-
tive results compared to other similar approaches.   

Section 2 describes briefly the involved methods. Section 3 
presents the results and Section 4 concludes the paper offering 
also directions for possible future work. 

II. FETAL HEART RATE CLASSIFICATION 

A. Preprocessing  
Labor is a very stressful period and this also reflects upon 

the recordings of the FHR, especially when recorded using 
ultrasound devices that is typically contaminated by spiky 
artifacts and also includes periods where the signal drops to 
zero due to mother movement and electrode displacement. 
Therefore, before any application of feature extraction algo-
rithm, some kind of mitigation is needed. Even though more 
elaborate approaches have been proposed for noise removal 
from FHR recordings [25], in this work a more conventional 
and straightforward approach is adopted that relies on 
Hermite spline interpolation to fill short missing gaps 
(shorter than 15 seconds) of the FHR recordings. The results 
of the application of the preprocessing stage for a single 
FHR recording are depicted in Figure 2. 

B. Feature Extraction   
Feature engineering is one of the most crucial stages in 

the pattern classification process [26] with the FHR classifi-
cation not being an exception. As it was mentioned in the 
introduction a variety of features have been proposed and 
tested for FHR classification. In this work trying to capture 
as much information as possible a feature set from different 
domains is compiled. In total 54 features coming from the 
time domain (measures of variability), frequency domain 
(energy at different frequency bands [7], [27]), non-linear 
domain (Approximate Entropy [28], Sample Entropy [29], 
Lempel Ziv Complexity [30], Fractal Dimension [31], 
Detrend Fluctuations Analysis [32] etc.) and morphological 
features trying to quantify the FIGO rational (number of 
accelerations, number of decelerations, baseline value etc.). 
A detailed description of the whole set can be found in our 
previous publications [10], [12], [20].  

 

Fig. 2 FHR signal preprocessing. Top: the original FHR signal with miss-
ing data (unnatural zeroing). Bottom:  denoised signal 

C. Feature Selection 
Feature extraction is sometimes more of an art than sci-

ence [33]. Therefore usually one extracts more features than 
actually needed or even features that might be irrelevant for 
the problem at hand. This however can harm the classifica-
tion performance of the system. Thus a feature selection 
stage usually follows feature extraction. The feature selec-
tion stage decreases the dimensionality of the input stage 
which apart from the apparent computational benefits often 
increases the generalization performance of the system [33]. 

Feature selection approaches can be divided into three 
basic categories: filters, wrappers, and embedded methods 
[34]. Wrappers require the use of a classification algorithm 
while filters do not. Embedded methods integrate the fea-
ture selection process with the building of the classifier.  

In this work filter selection is used, which is very fast as it 
does not require the training of a classifier at each step. Instead 
it sorts the features based on some intrinsic characteristic  

 

Fig. 3 The AUC values for all 54 features in a decreasing order. 
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(i.e. p-values, the Area Under the Receiver Operating Charac-
teristic Curve (AUC) etc.). Due to the imbalance nature of the 
problem (see Section 3.A) the AUC is selected because it is 
not affected by class imbalance.  

The initial plot of features’ AUC values for a number of 
random samples of the data set, clearly showed, cf. Figure 3, 
that there were three distinct groups of features: three fea-
tures provide the best AUC value and stand out from the 
rest, followed by other six features with an AUC value a bit 
higher than the rest 45 features. This observation prompted 
for direct analysis based on the three different sets of fea-
tures: a) the top three features, b) the top nine features (top 
three and the next six features) and c) all 54 features.       

D. Classification Using Least Squares Support Vector 
Machines (LS-SVM) 
In this work the final classification stage, which assigns a 

FHR to one of the two predefined classes, is performed 
using the least-squares version of SVMs [36]. SMVs are 
among the state of the art methods for binary classification 
problems. Moreover SVMs are partly insensitive to the 
presence of correlated inputs [37], an issue which it not 
taken into consideration by the filtering process of the pre-
vious stage. On top of that, the LSSVM paradigm trains 
much quicker for moderate size problems compared to the 
conventional SVMs. Apart from the possible correlations 
between the inputs, the LS-SVM also needs to cope with the 
imbalanced nature of the problem since the pathological 
class accounts for around 8% of the total number of cases. 
Unequal penalty costs are selected to provide a balanced 
performance between the two classes [39]. The popular 
RBF kernel is used in this work to provide nonlinear  
capabilities to the classifier. 

III. RESULTS  

A. Data 
The open-access CTG database is used in this work, con-

sisting of 552 records, which is a subset of 9164 intrapartum 
CTG recordings [24] acquired between the years 2009 and 
2012 at the obstetrics ward of the University Hospital in 
Brno, Czech Republic. The last 30 minutes of the 1st stage 
of labor are selected for subsequent processing. From the 
552 recordings, 44 of them have pH value lower or equal to 
7.05 which is selected as the limit to normality. Obviously, 
this creates a highly skewed class distribution.  

B. Evaluation of the Classification Performance 
For the classification performance evaluation a 44-fold 

stratified cross validation procedure is involved (at each 
fold one of the abnormal and 11 or 12 from the normal cas-
es were left out for performance evaluation) repeated 15 

times. During each fold an tuning process also takes place 
which does not involve in any way the cases left out for 
estimating the performance of the algorithm.  This way the 
tuning process is completely decoupled from the performance 
estimation process [40]. As it was noted in the previous sec-
tion there is high imbalance between normal and pathological 
cases. To take that into further consideration, during the tuning 
process (selection of hyper-parameters σ , C, and the imbal-
ance factor of the LSSVM [41] formulation) we avoid the use 
of the traditional total accuracy as a measure of performance 
but we use the Matthews Correlation Coefficient (MCC) 
which is immune to class imbalance [42]. 

The results of the aforementioned procedures for the 
three different feature sets are presented in Table 1 and 
graphically illustrated in Figure 4. As it can be seen the best 
performance is achieved using only the three individually 
best features, for more features included the classification 
performance degrades. Figure 4 also shows that the inclu-
sion of more features affects negatively the sensitivity of the 
method. However no clear pattern can be inferred for the 
specificity. 

Table 1 Sensitivity and specificity measures based on tests with different 
number of features and MCC optimization criteria 

#Features Sensitivity Specificity 

3 0.685 0.777 

9 0.672 0.724 

54 0.558 0.769 

 

 
Fig. 4 Sensitivity and specificity for different feature sets. The x axis 

displays the number of features chosen together with a metric (SE: sensitiv-
ity, SPE: specificity). 

IV. DISCUSSION-CONCLUSIONS  

In this work, an integrated approach for FHR classification 
is presented and tested using the largest available open-access 
CTG database. The achieved classification performance is 
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better compared to our previous work and is in full agreement 
with the literature. Our results further suggest that a sensitivi-
ty/specificity ratio of 70/70 seems to be reasonable for large 
dataset as it was summarized in [22] and further reported in 
[43]. This observation brings forward the question of whether 
pH labeling and FHR based features can reach higher perfor-
mance values. Since pH is still predominantly used in clinical 
practice to determine adverse labor outcomes and will not be 
likely abandoned in a future, perhaps its use in combination 
with other criteria along with other clinical information would 
be beneficial [22]. Latent Class Analysis (LCA) model for 
aggregating information coming from different sources has 
given promising results towards that direction.  
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